miércoles, 13 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Qué es la masa?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                                    Patrón del Kilogramo

“Es una propiedad extrínseca de los cuerpos que determina la medida de la masa inercial y de la masa gracvitacional. La masa gravitatoria es la medida de la fuerza de atracción gravitatoria que experimenta una porción de materia básica dentro de un campo gravitatorio. Aunque neméricamente idéntica a la masa inercial, conceptualmente difiere de esta.”

 

Resultado de imagen de Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.

 

 

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una vez potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

How the LHC works

Lanzado un haz de muones por los tubos del LHC a velocidades cercanas a la de la luz, ganaron diez veces su masa. Es decir, con la velocidad, cuando se acerca a la de c, cualquier cuerpo gana en masa, ya que, siendo el límite la velocidad de la luz, c, cuando va alcanzandola, se frena y la energía de inercia se convierte en masa.

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron del “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón. Después de ser descubierto por el LHC, se dieron algunas explicaciones.

Resultado de imagen de La fuerza electrodébil

La interacción débil, recordareis, fue inventada por E. Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? Como s su partícula, nos cabe esperar que la veamos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

Resultado de imagen de Campos escalares

El concepto de campo escalar data del siglo XIX y su aplicación está orientada a la descripción de fenómenos relacionados con la distribución de temperaturas dentro de un cuerpo, las presiones en el interior de fluidos, el potencial electrostático, la energía potencial en un sistema gravitacional, las densidades de población o de cualquier magnitud cuya naturaleza pueda aproximarse a una distribución continua.

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe.

Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que, algunos, han llegado a llamar:

¡La partícula Divina! Cuando en realidad, si al fin aparece, sólo será un fenómeno natural más.

¡Ya veremos en que termina todo esto!

Resultado de imagen de La fuerza electrodébil

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y Vaduz Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todos, exponer su teoría relativista.

Resultado de imagen de El Campo de <a href=

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental. Ahora que dicen haberla hallado con los experimentos del LHC, las cosas han quedado algo más equilibrada con algunas reticencias.

Ahora, por fin la tendremos con el LHC, y ésta pega, se la traspasamos directamente a la teoría de supercuerdas.

Resultado de imagen de Un Universo de 10 dimensiones

El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Resultado de imagen de El Modelo Estándar

Después de todo esto, llego a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el bosón de Higgs.  Y ahora, por fin, tenemos un acelerador con la energía necesaria para que nos la muestre y que con su potencia pueda crear para nosotros una partícula que pese nada menos que 1 TeV.

¡La confianza en nosotros mismos, no tiene límites!

Sin embargo, en unos meses sabremos sobre el bosón de Higgs, hasta hace poco inalcanzable.

¿Pasará igual con las cuerdas?

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting