lunes, 27 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Que pinta el Azar en todo esto?

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Poder de la Naturaleza...El Poder de la Naturaleza...

      Todo lo que ocurre en la Naturaleza tiene una causa anterior, nada es fruto del Azar

Sí, la Naturaleza nos muestra constantemente su poder. Fenómenos que no podemos evitar y que nos hablan de unos mecanismos que no siempre comprendemos. Nuestro planeta por ejemplo, se comporta como si de un ser vivo se tratara, la llaman Gaia y realiza procesos de reciclaje y renovación por medio de terremotos y erupciones volcánicas, Tsunamis y tornados debastadores que cambian el paisaje y nosotros, lo único podemos hacer es acatar el destino que ignoramos de lo que está por venir.

El mundo nos parece un lugar complicado. Sin embargo, existen algunas verdades sencillas que nos parecen eternas, no varían con el paso del tiempo (los objetos caen hacia el suelo y no hacia el cielo, el Sol se levanta por el Este, nunca por el Oeste, nuestras vidas, a pesar de las modernas tecnologías, están todavía con demasiada frecuencia a merced de complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico es más un arte que una ciencia, los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatoria, los cambios en las Sociedades fluctuan a merced de sucesos que sus componentes no pueden soportar y exigen el cambio.

Resultado de imagen de La complejidad del cerebro humanoResultado de imagen de La complejidad del cerebro humano

 La inmensa complejidad que está presente en el cerebro humano y de cómo se genera lo que llalamos “la mente”, a partir de una maraña de conexiones entre más de cien mil millones de neuronas, más que estrellas existen en nuestra Galaxia, la Vía Láctea. Es algo grande que, en realidad, no hemos alcanzado a comprender.

La mente humana es de tal complejidad que no hemos podido llegar a comprender su funcionamiento. ¿Por qué unas personas tienen una gran facilidad para tocar el piano, otros para comprender las matemáticas complejas y algunos para ver lo que nadie ha sido capaz de detectar en el ámbito de la Naturaleza, pongamos por ejemplo un paisaje, o, llegar a comprender fenómenos físicos que configuran el mundo, el Universo y la vida?

Es precisamente a escala humana, donde se dan las características (posiblemente) más complejas del Universo, las que se resisten más a rendirse ante métodos y reglamentos fijos que las pretenda mantener estáticas e inamovibles por el interés de unos pocos. Las Sociedades son dinámicas en el tiempo y en el espacio y, su natural destino es el de evolucionar siempre, el de buscar las respuestas a cuestiones patra ellas desconocidas y que al estar inmersas en el corazón de la Naturaleza, se sirven de la Ciencia para poder llegar al lugar más secreto y arrancar esas respuestas que tánto, parecen necesitar para continuar hacia el futuro.

Claro que, ese futuro, no depende de esas Sociedades Humanas que de alguna manera, están a merced de sucesos como aquel de Yucatán, cuando al parecer, hace ahora 65 millones de años, perecieron los Dinosaurios que reinaron en el Planeta durante 150 millones de años hasta que llegó aquél fatídico (para ellos) pedrusco que, en realidad, posibilitó nuestra llegada.

 Extinción de los dinosaurios

Aquellos terribles animales que poblaban la Tierra hubiera hecho imposible nuestra presencia en el planeta. Formas de vida incompatibles con nuestra especie que desaparecieron -según parece- por causas naturales venidas del espacio exterior para que más tarde, pudiéramos nosotros hacer acto de presencia en el planeta que nos acoge.

Aquello se considera una extinción masiva ocurrida en la Tierra, algo tan claramente reflejado en el registro fósil que se utiliza para marcar el final de un período de tiempo geológico, el Cretáseo, y el comienzo de otro, el Terciario. Puesto que la “C” ya se ha utilizado como inicial  en un contexto similar en relación con el período Cámbrico, este marcador se suele denominar frontera K-T, con una “K” de Kreide, que es el nombre del Cretáceo en alemán. No fueron solos los dinosaurios los que resultaron afectados, aunque son los que aparecen con mayor protagonismo en los relatos populares cuando se habla de este desastre.

Esqueletos de dinosaurios expuestos en el Museo Real de Ontario, Canadá.  

Alrededor del 70 por ciento de todas las especies que vivían en la Tierra al finales del cretáceo habian desaparecidos a principios del Terciario, lo cual indica que se trató realmente de una “extinción en masa” y explica por qué los geólogos y los paleontólogos utilizan la frontera K-T como un marcador importante en el registro fósil. Dadas las dificultades que plantean unas pruebas de tiempos tan remotos, y la lentitud con la que se acumulan los estratos geológicos, todo lo que podemos decir realmente sobre la velocidad a la que se produjo aquella extinción es que sucedió en menos de unas pocas decenas de miles de años, pero en ningún caso durante muchos millones de años; sin embargo, esto se considera un cambio brusco en relación con la escala de tiempo utilizada en geología.

Las preguntas obvias que esto plantea son las mismas que surgen tras un gran terremoto -por qué sucedió, y si podría suceder de nuevo y, en su caso, cuándo- En el caso del suceso K-T hay un candidato muy adecuado para ser el desencadenante que hizo que la extinción se produjera, por ejemplo, hace 60 0 55 millones de años. Los restos del enorme cráter que data justo de entonces ha sido descubierto bajo lo que es ahora la península de Yucatán, en Méjico,  y por todo el mundo se han hallado estratos de hace 65 millones de años que contienen restos de iridio, un metal pesado que es raro en la corteza terrestre, pero del que sabemos que es un componente de algunos tipos de meteoritos. La capa de iridio es tan delgada que tuvo que depositarse en menos de 10.000 años (quizá mucho menos), lo cual es coherente con la teoría de que el suceso K-T fue desencadenado en su totalidad, de manera más o menos instantánea, por un gran golpe que llegó del espacio interestelar.

Resultado de imagen de Un meteorito cae en la TierraResultado de imagen de Un meteorito cae en la Tierra

                                                                              La catástrofe está servida

No sería difícil explicar por que pudo suceder todo esto. La energía cinética contenida en un impacto de este calibre sería equivalente a la explosión de unos mil millones de megatoneladas de TNT y arrojaría al espacio unos detritos en forma de grandes bloques que se desplazarían siguiendo trayectorias balísticas (como las de los misiles balísticos intercontinentales) y volverían a entrar en la atmósfera por todo el globo terráqueo, difundiendo calor y aumentando la temperatura en todas las regiones. Se produciría un efecto de calentamiento de 10 kilowatios por cada metro cuadrado de la superficie terrestre durante varias horas, un fenómeno que ha sido descrito gráficamente por Jay Melosh. A continuación, unas diminutas partículas de polvo lanzadas al interior de la parte superior de la atmósfera se extendería alrededor del todo el planeta y, combinada con el humo de todos los incendios desencadenados por el “asado a la parrilla”, bloquearían el paso de la luz del Sol, causando la muerte de todas las plantas que dependían de la fotosíntesis y congelando temporalmente el planeta.

Si el planeta se congela, ¿dónde nos meteremos? ¿cuántas criaturas tendrán la oportunidad de sobrevivir?

Hay pruebas de que, en épocas pasadas, la Tierra sufrió visitas inesperadas desde el espacio que trajo muerte y desolación.  Hace unos 35 millones de años, la Tierra soportó unos impactos parecidos sin que se produjera una extinción del calibre del suceso K-T. Aunque los factores desencadenantes tengan la misma magnitud. Por otra parte, existen pruebas de que los Dinosaurios y otras especies estaban ya en decadencia en los dos últimos millones de años del Cretáceo. Parece que los grandes lagartos habían experimentado altibajos durante los 150 millones de años que se pasaron vagando por la Tierra. Hay opiniones para todos y algunos dicen que su desparición se debió, en realidad, al aumento del Oxígeno en nuestra atmósfera.

Resultado de imagen de El suceso KT extinción masivaResultado de imagen de El suceso de extinción conocido por KT

                    Tras el gran suceso de extinción, la vida floreció de nuevo

El suceso K-T es en realidad sólo una entre cinco catástrofes similares (en la medida en que afectó en aquella época a la vida en la Tierra) a las que los geólogos denominan en conjunto las “cinco grandes” -y no es en absoluto la mayor-. Cada una de ellas se utiliza como marcador entre períodos geológicos y todas han sucedido durante los últimos 600 millones de años.

La razón por la que nos centramos en este pasado geológico relativamente reciente es que fue en esa época cuando los seres vivos desarrollaron por primera vez algunas características, tales como las conchas, que podían fosilizarse fácilmente, dejando rastros que pueden reconocerse en los estratos que se estudian en la actualidad.

Nuevas especies de fósiles de invertebrados marinos, que vivieron hace 465 millones de años, se han hallado en diversos yacimientos de la provincia de Ciudad Real en España, y, por todas partes del mundo, si se profundiza en la Tierra, se encuentran fósiles y conchas de tiempos pasados. En la imagen recreada arriba se recoge el descubrimiento especies nuevas,  de animales marinos con concha que han posibilitado su hallazgo después de tantos millones de años.

Pero centrémonos en las “cinco grandes extinciones” que, tomándolas cronológicamente se produjeron hace unos 440 millones de años (que marcaron la frontera entre los períodos Ordovícico y Silúrico), hace 360 millones de años (entre el Devónico y el Carbonífero), 250 millones de años (entre el Pérmico y el Triásico), 215 millones de años (en la frontera entre el Triásico y el Jurásico) y 65 millones de años (en la frontera K-T).

Resultado de imagen de El suceso de extinción conocido por KT

Intensidad de la extinción marina a través del tiempo. El gráfico azul muestra el porcentaje aparente (no el número absoluto) de los géneros de animales marinos extintos durante un determinado intervalo de tiempo. Se muestran las ultimas cinco grandes extinciones masivas.

Hay otras muchas extinciones en el registro fósil pero, las más importantes son las mencionadas. La más espectacular de todas ellas es el suceso que tuvo lugar hace unos 250 millones de años, al final del Pérmico. Se extinguieron al menos el 80 por ciento, y posiblemente hasta el 95 por ciento, de todas las especies que vivían en nuestro planeta en aquellos tiempos, tanto en la tierra como en los océanos, y lo hizo durante un intervalo de menos de 100.000 años. Sin embargo, dado que también se calcula que el 99 por ciento de todas las especies que han vivido en la Tierra se han extinguido, esto significa que son el doble las que han desaparecido en sucesos de -aparente- menor importancia.

La cuestión que nos intriga es si las extinciones en masa son realmente acontecimientos especiales, de carácter diferente al de las extinciones de menor importancia, o si son el mismo tipo de suceso, pero a gran escala -¿son las extinciones de vida en la Tierra unos hechos cuya naturaleza es independiente de su magnitud, como los terremotos y todos los demás fenómenos que la Naturaleza nos envía periódicamente que dan lugar a catástrofes y pérdidas de muchas vidas? La respuesta sincera es “no lo sabemos”, pero hay bastantes evidencias como para intuir que ésta es una posibilidad muy real.

 http://upload.wikimedia.org/wikipedia/commons/f/f7/Voluntary_Human_Extinction_Movement_logo.png

El logotipo del Movimiento por la Extinción Humana Voluntaria es un globo terráqueo sobre el que aparece la letra V y sobre ella otra pequeña tierra y el acrónimo VHEMT de Voluntary Human Extinction Movement.

Gracias a un meticuloso trabajo de investigación de Jack Sepkoski, de la Universidad de Chicago que, pudo trazar un gráfico en el que mostraba como ha fluctuado durante los últimos 600 millones de años el nivel de extinciones que se produjo en cada intervalo de cuatro millones de años.

grafica de las extinciones los últimos 250 MyResultado de imagen de El suceso de extinción conocido por KT

                         Extinciones segun Sepkoski

El gráfico nos muestra que la muerte de los dinosaurios fue también la muerte de los invertebrados marinos. La pregunta que se puede plantear es que clase de aleatoriedad es ésta, si realmente son sucesos aleatorios. Resulta que es una ley potencial -nuestro viejo amigo, el ruido 1/f-. El origen de esta señal aleatoria, de enorme interés por su ubicuidad y propiedades matemáticas, sigue siendo un misterio, a pesar de la atención que se le ha dedicado.

Imagen relacionadaResultado de imagen de La Tierra en su recorrido espacial puede pasar por zonas nosiva y peligrosas

Claro que la Tierra, no es un objeto inamovible, sino que, por el contrario recorre el Espacio a unos 30 Km por segundo, y, en su deambular, atravieza regiones que pueden contener elementos nosivos y gérmenes que, si llegan a la superficie del planeta… ¡Puede causar una gran catástrofe!

Ahora bien, no parece probable que todas las extinciones de vida que han sucedido en la Tierra hayan tenido como causa impactos procedentes del espacio. Lo que parece estar diciéndonos el registro fósil es que las extinciones se producen en todas las escalas, todos los tiempos, y que (como en el caso de los terremotos) puede producirse una extinción de cualquier magnitud en cualquier época. Algunas extinciones podrían ser desencadenadas por impactos de meteoritos; otras, por períodos glaciares. Una cosa sí que nos queda clara: es necesario un gran desencadenante para que ocurra un gran suceso, y, no podemos olvidar que estamos inmersos en un Sistema Complejo -la vida en la Tierra- que es autoorganizador, se alimenta a partir de un flujo de energía, y existe al borde del Caos. Si comprendemos eso, estaremos preparados para entender lo que todo esto significa para la vida en sí misma, siempre expuesta a las fuerzas del Universo.

Resultado de imagen de Extinciones y plagas

Por otra parte, a lo largo de nuestra Historia hemos conocido situaciones de muertes masivas como por ejemplo: La Peste de la Guerra del Peloponeso (430 a.C.), La Plaga Antonina (165 y 180), La Plaga de Justiniano (541 y 542), La Peste Negra (1348 y 1350), o, La Gripe Española (1918) y, todas ellas son en realidad de origen desconocido.  Esto me lleva a pensar que la Tierra, nuestro planeta, viaja por el espacio como una gran nave espacial y recorre regiones interestelares en las que no sabemos qué puede haber, y, ¿quién puede negar que al atravesar esas regiones, no estén presenten en esllas esporas fuertemente acorazadasa contra la radiación que, atravesando la atmósfera terrestre se instalen tan ricamente en nuestro mundo para florecer y sembrar la muerte entre nosotros? Lo cierto es que son muchas las cosas que no sabemos.

Resultado de imagen de El Tiempo pasa y todo cambia

De todas las maneras, no podemos negar que grandes cambios nos acechan y, como la medida del “tiempo” es distinta para la escala humana que para la del Universo, en cualquier momento podrá tener lugar un acontecimiento de índole diversa (la caída de un meteorito, una pandemia debastadora, cataclismos tectónicos de gran magnitud, explosiones supernovas  de inmensa intensidad que barra nuestra atmósfera y siembre de radiación el planeta…) que vendrá a transformar todo lo que nosotros consideramos importante y que, para la Naturaleza, no es nada.

De todas las maneras, en una cosa sí tenemos que estar de acuerdo: ¡La vida! Esa cosa tan frágil pero tan fuerte, se ha resistido a desaparecer a lo largo de los millones de años que lleva en el planeta y, eso nos lleva a sospechar que, lo mismo habrá sucedido en otros lugares y la Vida, debe estar por todas partes… ¡A pesar de todo!

emilio silvera

La fuente de la mayor parte del contenido de este trabajo,  hay que buscarla en los pensamientos del maestro J. Gribbin, un Astrofísico de nuestro tiempo.

Siempre es la misma cosa…que adopta distintas formas

Autor por Emilio Silvera    ~    Archivo Clasificado en El pasado    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Mosaico de imágenes de todo el cielo

                                     La Mente, el mundo, el Universo

Nuestra estrategia para explicar la base neuronal de la conciencia consiste en centrarse en las propiedades más generales de la experiencia consciente, es decir, aquella que todos los estados conscientes comparte. De estas propiedades, una de las más importantes es la integración o unidad. La integración se refiere a que el sujeto de la experiencia no puede en ningún momento dividir un estado consciente en una serie de componentes independientes. Es una propiedad que está relacionada con nuestra incapacidad para hacer conscientemente dos cosas al mismo tiempo, como, por ejemplo relacionar en un papel todas las familias de partículas que conocemos mientras que, al mismo tiempo,  se mantiene una discusión sobre los agujeros negros.

Aplicando la atención hemos llegado a saber que, el electrón tiene una masa en reposo (me) de 9, 109 3897 (54) x 10-31 kg y una carga negativa de 1,602 177 33(49) x 10-19 culombios. Esa realidad, aunque vinieran los sabios físicos de un planeta habitable situado en la estrella Resplandor de una Galaxia muy lejana, cuando hicieran los cálculos matemáticos y los experimentos necesarios, las cifras seguirían siendo las mismas, toda vez que, al tratarse de constantes fundamentales, ni la masa ni la carga pueden tener otra realidad distinta sea cual fuere el observador. Esto nos quiere decir que, hay realidades que nunca varian y, eso, nos puede traer alguna esperanza de que, alguna vez, podríamos conocer el Universo, tal como es.

Esta sí es una realidad, sin ella, el mundo no sería tal como lo conocemos.

Sin embargo, no podemos negar nuestras limitaciones tanto de percepción como intelectuales para reconocer “el mundo” tal como es. Es “nuestro mundo” que, cuando sea visitado por “otros”, pudiera ser muy distinto al que nosotros percibimos y, podrían “ver” cosas que nosotros no vemos.

Vivímos en nuestra propia realidad, la que forja nuestras mentes a través de los sentidos y la experiencia. Incluso entre nosotros mismos, los seres de la misma especie, no percibimos de la misma manera las mismas cosas. Sí, muchos podemos coincidir en la percepción de algo, sin embargo, otros muchos diferirán de nuestra percepción y tendrán la suya propia. Esa prueba se ha realizado y la diversidad estuvo presente.

                 Estará aquí, la llave de la sabiduría

No, no será nada fácil despejar las incognitas presentes en esta inmensa complejidad que llamamos Mente. Creo de manera firme que, finalmente, todo se traduce a Química y Luz. Energías de velocidades alucinantes que recorren el enmarañado entramado de neuronas y que hace posible todas y cada una de las maravillas que “real”mente se producen en nosotros y que no siempre sabemos traducir ni comprender.

Es tan grande el poder de nuestra mente que nada hay tan distante que no podamos, virtualmente hablando, traer ante nosotros. Somos capaces ya de escrutar el espacio y vislumbrar los confines del universo en edades muy cercanas a su nacimiento y, merced a los microscopios, nos acercamos al universo atómico para explorar los componentes de la materia. Parece que nada podrá (con el tiempo) escapar a nuestro control, con lo que todo nuevo “mundo” se revelará a nuestro entendimiento.

Nunca estamos satisfechos de los logros alcanzados (menos mal) y siempre surgirán seres especiales (Copérnico, Kepler, Galileo, Hooke, Newton…) que nos guiarán por el camino iluminado de su genio para mostrarnos la auténtica sabiduría mediante un pensamiento evolutivo que siempre dará un paso adelante, superando así el pensamiento nuevo al anterior. Pero, eso sí, esos avances han sido posible gracias a que hombres y mujeres pensaron con la lógica pero…, nunca dejaron de lado la imaginación.

La prueba de ello la podemos encontrar en Newton y Einstein. ¿Quién puede dudar de la grandeza de Newton? La pregunta está contestada de antemano. Sin embargo, los ejemplos de la historia son muy elocuentes: Newton con su física, Leibniz con su metafísica, con sus principios filosóficos como el de la razón suficiente. Y la física ganó a la metafísica; Newton a Leibniz, aunque de aquella batalla…habría mucho que hablar.

Durante mucho tiempo, espacio y tiempo se entendieron como entes absolutos, hasta que llegó Einstein con sus dos teorías de la relatividad, la especial y la general, y aunque los caminos que siguió para conseguirlos no fueron metafísicos, no podemos negar la intervención de un genio de inspiración superior que a veces, nos puede llevar a pensar que, en algún sentido, finalmente Leibniz había sido el más acertado, ya que las teorías einstenianas pueden ser clasificadas dentro de un orden del pensamiento superior.

Así, la evolución continuó su camino imparable y el espacio y el tiempo absolutos de Newton, resultaron ser menos absolutos de lo que se pensaba; eran relativos y, además, eran una misma cosa, que a partir de ahí pasó a llamarse espacio-tiempo unidos y no separados. Así fue deducido por Minkouski al leer la teoría de Einstein.

                 Laplace

Quiero mencionar en este punto a dos grandes newtonianos: Lagrange y Laplace.

La obra de Newton, como todas las grandes obras, fue discutida y sometida a estudios rigurosos, analizada y removida. La ciencia del genio, claro, permaneció al margen de todas las críticas para dejar de ser discutida y pasar a ser desarrollada. Así ha resultado ser la Historia.

Recordemos en este sentido la cumbre de la física y de las matemáticas del siglo XVIII que es la Méchanique analytique (Chez la Veuve Desaint, París 1788), de Joseph-Louis Lagrange (1736 – 1813), un íntimo amigo de d’Alembert, en la que la mecánica de Newton alcanzó un nuevo nivel de pureza al reducir el sistema a un conjunto de fórmulas generales de las que se podían deducir todas las expresiones necesarias para resolver un problema. O los cinco tomos del Traité de mécanique céleste (Crapelet para J. B. M. Duprat, París 1799 – 1827) de Pierre-Simón Laplace (1749 – 1827), en los que se erradican numerosas anomalías de las explicaciones originales de Newton sobre los movimientos de los cuerpos celestes.

El texto de Laplace, al igual que el de Lagrange, era de difícil lectura para legos en las ciencias matemáticas, y tal complejidad dio lugar a versiones posteriores más sencillas para el entendimiento general, que finalmente hizo posible divulgar los enormes conocimientos alcanzados a partir de Newton, gracias a estos dos genios.

Resultado de imagen de Nos queda mucho por saber sobre el UNiverso

Sí, se vislumbra, a lo lejos, una esplendorada luz que, sin embargo, tiene en todo su centro un signo de interrogación que viene a significar lo que no sabemos. Es mucho lo que nos queda por descubrir y, hombres que,  como Newton, Lagrange y Laplace y después Planck, Maxwell y Einstein nos han dejado un camino que seguir, sin embargo, no estamos situados aún en esa zona luminosa del saber sino que…

Resultado de imagen de Los refranes

Un respiro en el camino:

  • El ignorante, teme o adora lo que no comprende.
  • Los ingratos acaban por disuadir a los virtuosos de poner en prácticas sus bondades.
  • Amigo leal y franco, mirlo blanco.

Esto me recuerda aquella aseveración atribuida indistintamente a Séneca y Aristóteles:

“¡Oh, amigos míos, no hay ningún amigo!”

Hay otra que nos da a entender que los amigos egoístas y poco dispuestos a prestarnos su ayuda, en momentos necesarios son inútiles y no importa, pues, prescindir de ellos:

“Amigo que no presta y cuchillo que no corta,

que se pierdan poco importa.”

¡Esto de los amigos! Hay otra que dice:

“El que tiene un amigo, tiene un tesoro.

El que tiene un tesoro, tiene muchos ‘amigos’.”

“Si un amigo se comporta como la sombra que,

cuando luce el Sol nos abandona, no era un amigo.”

 

Monografias.com

 

 

Pero volvamos al trabajo y continuemos repasando cosas interesantes y viajemos hasta el siglo XIX, que fue vital para la ciencia. Aunque la ciencia ya había mostrado para entonces su capacidad única para estudiar qué sucede en la naturaleza y qué principio (o leyes) la gobiernan, y contaba por entonces con una larga lista de teorías, datos y héroes científicos, no se había convertido todavía en una gran empresa, en la “profesión” que terminaría siendo.

La “profesionalización” e “institución” de la ciencia, entendiendo por tal que la práctica de la investigación científica se convirtiese en una profesión cada vez más abierta a personas sin medios económicos propios, que se ganaban la vida a través de la ciencia y que llegasen a atraer la atención de gobiernos e industrias, tuvo su explosión a lo largo de 1800, y muy especialmente gracias al desarrollo de dos disciplinas, la química orgánica y el electromagnetismo. Estas disciplinas, junto a las matemáticas, la biología y las ciencias naturales (sin las cuales sería una necedad pretender que se entiende la naturaleza, pero con menos repercusiones socio-económicas), experimentaron un gran desarrollo entonces, tanto en nuevas ideas como en el número de científicos importantes: Faraday, Maxwell, Lyell, Darwin y Pasteur, son un ejemplo. Sin olvidar a otros como Mendel, Helmholtz, Koch, Virchow, Lister o Kelvin, o la matemática de Cauchy, de Gauss, Galois, Fourier, Lobachevski, Riemann, Klein, Cantor, Russell, Hilbert o Poincaré. Pero vamos a pararnos un momento en Faraday y Maxwell.

                                        Faraday

Para la electricidad, magnetismo y óptica, fenómenos conocidos desde la antigüedad, no hubo mejor época que el siglo XIX. El núcleo principal de los avances que se produjeron en esa rama de la física (de los que tanto se benefició la sociedad –comunicaciones telegráficas, iluminación, tranvías y metros, etc.–) se encuentra en que, frente a lo que se suponía con anterioridad, se descubrió que la electricidad y el magnetismo no eran fenómenos separados.

El punto de partida para llegar a este resultado crucial fue el descubrimiento realizado en 1.820 por el danés Hans Christian Oersted (1777 – 1851) de que la electricidad produce efectos magnéticos: observó que una corriente eléctrica desvía una aguja imanada. La noticia del hallazgo del profesor danés se difundió rápidamente, y en París André-Marie Ampère (1775 – 1836) demostró experimentalmente que dos hilos paralelos por los que circulan corrientes eléctricas de igual sentido, se atraen, repeliéndose en el caso de que los sentidos sean opuestos.

Resultado de imagen de Ampere y la electricidad

Poco después, Ampère avanzaba la expresión matemática que representaba aquellas fuerzas. Su propósito era dar una teoría de la electricidad sin más que introducir esa fuerza (para él “a distancia”).

Pero el mundo de la electricidad y el magnetismo resultó ser demasiado complejo como para que se pudiera simplificar en un gráfico sencillo, como se encargó de demostrar uno de los grandes nombres de la historia de la ciencia: Michael Faraday (1791 – 1867), un aprendiz de encuadernador que ascendió de ayudante de Humphry Davy (1778 – 1829) en la Royal Intitution londinense.

En 1821, poco después de saber de los trabajos de Oersted, Faraday, que también dejó su impronta en la química, demostró que un hilo por el que pasaba una corriente eléctrica podía girar de manera continua alrededor de un imán, con lo que vio que era posible obtener efectos mecánicos (movimiento) de una corriente que interacciona con un imán. Sin pretenderlo, había sentado el principio del motor eléctrico, cuyo primer prototipo sería construido en 1.831 por el físico estadounidense Joseph Henry (1797 – 1878).

Lo que le interesaba a Faraday no eran necesariamente las aplicaciones prácticas, sino principalmente los principios que gobiernan el comportamiento de la naturaleza, y en particular las relaciones mutuas entre fuerzas, de entrada, diferentes. En este sentido, dio otro paso importante al descubrir, en 1.831, la inducción electromagnética, un fenómeno que liga en general los movimientos mecánicos y el magnetismo con la producción de corriente eléctrica.

Este fenómeno, que llevaría a la dinamo, representaba el efecto recíproco al descubierto por Oersted; ahora el magnetismo producía electricidad , lo que reforzó la idea de que un lugar de hablar de electricidad y magnetismo como entes separados, sería más preciso referirse al electromagnetismo.

La intuición natural y la habilidad experimental de Faraday hicieron avanzar enormemente el estudio de todos los fenómenos electromagnéticos. De él es, precisamente, el concepto de campo que tanto juego ha dado a la física.

Sin embargo, para desarrollar una teoría consistente del electromagnetismo se necesitaba un científico distinto: Faraday era hábil experimentador con enorme intuición, pero no sabía expresar matemáticamente lo que descubría, y se limitaba a contarlo. No hubo que esperar mucho, ni salir de Gran Bretaña para que un científico adecuado, un escocés de nombre James Clerk Maxwell (1831 – 1879), hiciera acto de presencia.

                Maxwell

Maxwell desarrolló las matemáticas para expresar una teoría del magnetismo-electricidad (o al revés) que sentó las bases físicas de aquel fenómeno y contestaba a todas las preguntas de los dos aspectos de aquella misma cosa, el electromagnetismo. En sus ecuaciones vectoriales estaban todos los experimentos de Faraday, que le escribió una carta pidiéndole que le explicara, con palabras sencillas, aquellos números y letras que no podía entender.

Pero además, Maxwell también contribuyó a la física estadística y fue el primer director del Laboratorio Cavendish, unido de manera indisoluble a la física de los siglos XIX y XX (y también al de biología molecular) con sede en Cambridge.

Su conjunto de ecuaciones de, o en, derivadas parciales rigen el comportamiento de un medio (el campo electromagnético) que él supuso “transportaba” las fuerzas eléctricas y magnéticas; ecuaciones que hoy se denominan “de Maxwell”. Con su teoría de campo electromagnético, o electrodinámica, Maxwell logró, además, unir electricidad, magnetismo y óptica. Las dos primeras, como manifestaciones de un mismo substrato físico, electromagnético, que se comporta como una onda, y la luz, que es ella misma, una onda electromagnética, lo que, en su tiempo, resultó sorprendente.

Más de ciento treinta años después, todavía se podía o se puede apreciar la excitación que sintió Maxwell cuando escribió en el artículo Sobre las líneas físicas de la fuerza, 1.861 – 62, en el que presentó esta idea: “Difícilmente podemos evitar la inferencia de que la luz consiste de ondulaciones transversales del mismo medio que es la causa de los fenómenos eléctricos y magnéticos.”

Resultado de imagen de El taller de Faraday

Descripción: Es un cuadro pintado por Harriet Moorela que ilustra a Faraday en su laboratorio. En la imagen además del espacio en el que trabaja con suelo de madera, una bancada de obra que tambien sirve de horno, varias mesas de madera y estanterías llenas de frascos con productos químicos, se pueden observar varias piezas sueltas, con diferentes tipos de matraces, vasos de precipitados, e incluso un fuelle en el suelo. Michael Faraday fue un físico y químico del siglo XIX.

Todo aquello fue posible gracias a las bases sentadas por otros y a los trabajos de Faraday como experimentador infatigable, que publicaba sus resultados en artículos y los divulgaba en conferencias en la sede de la Royal Institution londinense. Todos estos artículos y conferencias fueron finalmente publicados en el libro que llamaron Philosophical transactions de la Royal Society, y Experimental researches in chemistry and physics (Richard Taylor y William Francis, Londres, 1.859; dos grandes científicos unidos por la historia de la ciencia que nos abrieron puertas cerradas que nos dejaron entrar al futuro).

No quiero seguir por este camino de personajes y sus obras ya que están enmarcados y recogidos en mi libreta (primera parte de personajes), así que desviaré mis pensamientos hacia otras diversas cuestiones de mi interés, y espero que también del vuestro. Antes dejaba la reseña de algún refrán o pensamiento sobre la amistad, y en realidad también podemos ver la cara amable de esta forma de sentimiento-aprecio-amor que llamamos amistad.

Nosotros, los seres humanos, nunca vemos a nuestros semejantes como objetos o cuerpos neutros, sino que los miramos como personas con una riqueza interior que refleja su estado de ánimo o forma de ser, y de cada uno de ellos nos llegan vibraciones que, sin poderlo evitar, nos transmiten atracción o rechazo (nos caen bien o nos caen mal).

Son muchos y diversos los signos sensoriales que, en silencio, nos llegan de los demás y son recogidos por nuestros sensores en una enorme gama de mensajes sensitivos que llamamos indistintamente simpatía, pasión, antipatía, odio, etc.

Resultado de imagen de Los sentimientos por la persona amada

Está claro que cuando el sentimiento percibido es positivo, la satisfacción se produce por el mero hecho de estar junto a la persona que nos lo transmite, que con su sola presencia, nos está ofreciendo un regalo, y si apuramos mucho, a veces lo podríamos llamar incluso “alimento del alma”. Estar junto a quien nos agrada es siempre muy reconfortante, y según el grado de afinidad, amistad o amor, el sentimiento alcanzará un nivel de distinto valor.

Caigo en la cuenta de que, además de la materia,  el espaciotiempo, y las fuerzas de la Naturaleza, aquí existe algo más que, está dentro de nuestras mentes y que, de momento, no podemos comprender. Sin embargo, si podemos sentir los sentimientos o la satisfacción que nos produce el el querer y poder amar,  aprender y descubrir.

¡La Humanidad! ¿Quién la entiende?

emilio silvera

Nubes moleculares gigantes

Autor por Emilio Silvera    ~    Archivo Clasificado en Nebulosas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Los astrónomos tienen localizadas una buena variedad de Nubes Moleculares Gigantes. Son Nubes masivas de gas y polvo interestelar compuesto fundamentalmente por moléculas. Su diámetro típico es de más de 100 años-luz y las masas varian entre unos pocos cientos de miles hasta diez millones de masas solares. Las NMGs (Nebulosas moleculares gigantes) consisten mayoritariamente  en moléculas de Hidrógeno (H2, 73% en masa), átomos de Helio (He, 25%), partículas de polvo 1%, Hidrógeno atómico neutro (H I, menos del 1%) y un rico cóctel de moléculas interestelares (menos  del 0,1 %).

http://4.bp.blogspot.com/-_-GM3dYLW1c/UUnJUPRQPuI/AAAAAAAAMII/-egqkBd1Do8/s1600/m42_wittich_960.jpg

Arriba podemos contemplar la grandiosa Nebulosa Molecular Orión. Nuestra Galaxia contiene más de 3 000 NMGs, estando las más masivas situadas cerca de la radiofuente Sagitario B2 en el Centro Galáctico. Comprenden la mitad de la masa de toda la materia interestelar, aunque ocupan menos del 1% de su volumen. La densidad de gas promedio es de unas pocas miles de moléculas por cm3.

Las Nebulosas Moleculares Gigantes se encuentran mayoritariamente en los Brazos Espirales de las galaxias de disco, y son el lugar de mayor nacimioento de estrellas masivas. Este tipo de Nebulosas perduran durante más de 30 millones de años, tiempo durante el cual, sólo una pequeña fracción de su masa es convertida en estrellas. La Nebulosa Molecular Gigante más próxima a nosotros se encuentra en Orión, y está asociada a la Nebulosa de Orión que más arriba podéis ver con sus claros y llamativos colores rojo, azulado y el espeso marrón oscuro molecular, todo ello, adornado por estrellas que brillan ionizando extensas regiones con sus potentes radiaciones ultravioletas.

Arriba una imagen de  NGC 7822 que se asemeja a una gran boca abierta llena de estrellas nuevas. Dentro de la nebulosa, bordes brillantes y formas oscuras se destacan en este paisaje colorido. Oxígeno atómico, hidrógeno y azufre en tonos azul, verde y rojo. Aquí se forman estrellas de manera continuada y van transformando el lugar con los fuertes vientos solares y la radiación de estrellas masivas. Con un diametro de 60 años-luz, la Nebulosa perdura en el espacio interestelar como si de un laboratorio natural se tratara, creando nuevos objetos y transformando la materia. Ahí se mezclan los gases Hidrógeno, Helio, Carbono, Nitrógeno, Oxígeno y otras pequeñas porciones de otros elementos que, forman moléculas que, a veces, alcanzar el nivel necesario para convertirse en los ladrillos necesarios para la vida.

http://www.caelumobservatory.com/mlsc/sh2136.jpg

   Hermosa Nube Molecular en la Constelación de Cefeo donde ya se han creado cientos de miles de estrellas. Las Nebulosas son el producto residual de las estrellas gigantes y masivas cuando llegan al final de sus vidas y explotan en Súper-Novas, las capas exteriores de la estrella salen eyectadas hacia el espacio interestelar para formar la Nebulosa mientras que, la parte principal de la masa, implosiona, es decir, se contrae sobre sí misma bajo el peso de su propia masa para formar una estrella de neutrones o un agujero negro.

Resultado de imagen de MOléculas orgánicas halladas en Orión

Descubren objetos de masa planetaria en Orión. Particularmente interesantes son las moléculas orgánicas que se encuentran de manera generalizada en las nubes interestelares densas de nuestra Vía Láctea. Alcoholes, éteres, e incluso algún azúcar simple (como el glicoaldehído) poseen abundancias significativas en tales nubes. La detección de la glicina, un aminoácido simple, en el espacio interestelar se viene intentando desde hace varios años. Pero aunque se tienen indicios muy positivos sobre su presencia en el espacio -algunos meteoritos la tienen presente-, su detección todavía ha de ser confirmada de manera inequívoca. La posibilidad de que existan aminoácidos en el espacio puede tener consecuencias de gran importancia para nuestra comprensión del origen de la vida. Aminoácidos simples, como la glicina, son los ladrillos con los se construyen las cadenas de proteínas y éstas, a su vez, son los constituyentes del ADN.

emilio silvera

Espacio-tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 »

 

http://blog.educastur.es/galileo/files/2009/10/curvatura.jpgResultado de imagen de Curvatura del Espacio Tiempo

           Curvatura del Espacio-Tiempo

Hay que entender que el espacio-tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo.

De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia. La relatividad especial nos explica otras cosas, complementando así, una teoría completa y precisa de la Naturaleza del Universo.

 

Nuestra línea de universo resume toda nuestra historia, desde que nacemos hasta que morimos.  Cuanto más rápido nos movemos más se inclina la línea de Universo.  Sin embargo, la velocidad más rápida a la que podemos viajar es la velocidad de la luz.  Por consiguiente, una parte de este diagrama  espacio – temporal está “prohibida”; es decir, tendríamos que ir a mayor velocidad que la luz para entrar en esta zona prohibida por la relatividad especial de Einstein que, nos dice que nada en nuestro Universo puede viajar a velocidades superiores a C.

La curvatura del espacio-tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividadgeneral de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).

 Resultado de imagen de Curvatura del Espacio Tiempo

Einstein lo dedujo en una fórmula matemática que relaciona la geometría del espaciotiempo con la distribución de masa y energía: esta fórmula se conoce como ecuación de Einstein y es el centro medular de la teoría de la relatividad general.

La equivalencia aceleración-gravitación llevó a Einstein, de forma genial, a la concepción de la fuerza de la gravedad como una curvatura del espacio-tiempo. La visualización de este hecho la podemos observar en la figura: una superficie elástica (semejante al espacio-tiempo) se curva bajo la acción de objetos pesados (las grandes masas, de intensos campos gravitatorios), de forma que las trayectorias (geodésicas) que pueden seguir los objetos pequeños cuando están cerca de los grandes se acercan a los mismos. Einstein formuló una ecuación que muestra el grado de curvatura del espacio-tiempo en función de la cantidad de masa, relaciona masa con curvatura: materia (o energía) con deformación del espacio-tiempo.

 Resultado de imagen de Curvatura del Espacio Tiempo

Así, en un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.

En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espacio-tiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson-Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio-tiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein-de Sitter tiene densidad crítica exacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.

  • universo de Einstein-de Sitter Wm= 1, Wl= 0
  • Universo cerrado Wm= 2, Wl= 0
  • modelo favorito actualmente con Wl= 0.75, Wm= 0.25
  •  Wl= 0, Wm= 0
  • universo de de Sitter sin Big Bang Wl= 1, Wm= 0

Representación gráfica de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.

Resultado de imagen de Las tres formas de Universo

Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividadespecial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.

 

“Vemos que el tiempo es diferente para cada sistema de referencia. Ya que buscamos las ecuaciones que  permitan que la velocidad de la luz sea invariante del movimiento relativo de los observadores y, puesto que sabemos que la velocidad es la distancia dividida entre el tiempo, debemos ajustar las mediciones del tiempo y la distancia para los observadores en movimiento relativo.”

Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, era ya un viejo jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero.

Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

Uno de los gráficos anteriores, que es una muestra de las tres posibles maneras en que puede estar conformado nuestro universo, dependerá finalmente, de la densidad critica, es decir, de la masa que realmente contenga el universo. Claro que, según dicen, hay por ahí una materia desconocida que denominamos “oscura” y que, al parecer, conforma la mayor parte de la materia del universo.

“Es un tipo de masa invisible que posee gran atracción gravitatoria. El descubrimiento lo realizó, por medios de rayos X, el laboratorio Chandra perteneciente a la NASA. (Pongamos en cuarentena lo de “descubrimiento”).

 

Los astrónomos dicen que han encontrado las mejores pruebas hasta la fecha sobre la “Materia Oscura”, la misteriosa sustancia invisible que se cree constituye la mayor parte de la masa del universo. En la imagen de arriba han querido significar, diferenciándola en colores, las dos clases de materia, la bariónica y la oscura que, en este caso, sería la azulada -según dicen-. Sin embargo, la imagen no refleja la proporción que dicen existe entre la una y la otra.

 

             En el Universo, como ocurre en los átomos, casi todo son espacios vacíos

La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein-de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.

Resultado de imagen de Distribución de la materia en el Universo

Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.

Arriba tenemos uan visión del enorme cúmulo de galaxias Abell 2218, ubicado en la constelación de Draco a unos dos mil millones de años-luz de la Tierra.

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias y supercúmulos de galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espaciotiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

http://csociales.files.wordpress.com/2009/07/tierra-y-luna4.jpg

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

Esta fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea.

 

                  La fuerza de gravedad hace posible la cohexión del Sistema Solar

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

Resultado de imagen de La gravitación cuántica es cosa de futuroResultado de imagen de La gravitación cuántica es cosa de futuroResultado de imagen de La gravitación cuántica es cosa de futuro

                                       Tener en nuestras manos la Gravitación Cuántica, es cosa del futuro

La teoría cuántica es un ejemplo de talento que debemos al físico alemán Max Planck (1.858 – 1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E = hv o ħ = h/2π) y v es la frecuencia de la radiación. Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell.  En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.

Resultado de imagen de Toda la materia del UNiverso está conectadaResultado de imagen de Toda la materia del UNiverso está conectada

¿Será cierto que toda la materia del Universo está -en realidad- conectada?

“Para ser hombres y mujeres conscientes del universo, hay que aceptar una realidad cósmica fundamental: todo está interconectado.”

De todas las maneras, los misterios cuánticos serán desvelados por nuestras mentes poderosas de la misma manera que hemos podido traspasar otras barreras del saber. Llegará ese tiempo futuro en el cual, dejará de ser un misterio esa compleja unión de la Gravedad de Eintein con la Cuántica de Planck. Claro que, como decía por alguna parte, el futuro estará cargado de nuestro presente y, si no hacemos ahora lo que debemos…mal pintarán las cosas.

emilio silvera

Estructuras fundamentales de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en La Naturaleza...El Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                                    Una molécula de Agua y otra de Amoníaco

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

La cosmología  sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Resultado de imagen de Las célula vista al microscopio electrónicoResultado de imagen de Las célula vista al microscopio electrónico

Ya ahí tenemos pruebas de historia.  Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macro-moléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.

Resultado de imagen de Descubren los Quarks confinados en los hadrones

Los Quarks están confinados en el núcleo del átomo formando protones y neutrones. La Fuerza nuclear fuerte los retiene que no se puedan separar los unos de los otros y se produce lo que llaman libertad asintótica; más juntos la fuerza decrece y se eleva cuando tratan de separarse.

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad y ahora están en nosotros y en todos los objetos del universo, chicos o grandes, todo lo material está hecho de Quarks y Leptones desde una bacteria hasta una galaxia. Por supuesto, también nuestro cerebro y las neuronas que crean pensamientpos.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

Resultado de imagen de Energía en el núcleo del átomo

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.

Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.

Resultado de imagen de Se formó la materia

En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.

Estas y otras muchas maravillas son las que nos permitirán, en un futuro relativamente cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes.

emilio silvera