Feb
11
La Inmensidad del Universo y, la “pequeñez” de los seres…
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (1)
En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. Hay algo inusual en esto. Según toos los datos que tenenos la edad de la Tierra data de hace unos 4.500 millones de años, y, los primeros signos de vida que han podido ser localizados fosilizados en rocas antiguas, tienen unos 3.800 millones de años, es decir, cuando la Tierra era muy joven ya apareció en ella la vida.
El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el Hidrógeno, Nitrógeno, Oxígeno, CARBONO…
Parece que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.
La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual. Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.
La imagen del cielo de Canarias nos puede servir para mostrar una atmósfera acogedora para la vida
Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.
A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.
Es cierto que la realidad puede ser mucho más imaginativa de lo que nosotros podamos imaginar. ¿Habrá mundos con formas de vida basadas en el Silicio? Aunque me cuesta creerlo, también me cuesta negarlo toda vez que, la Naturaleza nos ha demostrado, muchas veces ya, que puede realizar cosas que a nosotros, nos parecen imposibles y, sin embargo, ahí está el salto cuántico… Por ejemplo.
Los biólogos, por ejemplo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.
Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.
Para nosotros ha pasado mucho tiempo, y, sin embargo, para el Universo ha sido solo un instante
Si miramos retrospectivamente cuanto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo. Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.
Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.
Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos. Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.
Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN PUEDEN VERSE AFECTADOS DE MANERA ADVERSA. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.
Las constantes de la naturaleza ¡son intocables!
Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.
Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por M3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.
La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.
Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más. De todas las maneras, nsootros somos una parte esencial del universo: La que siente y observa, la que genera ideas y llega a ser consciente de que es, ¡la parte del universo que trata de comprender!
emilio silvera
Feb
11
¡La Humanidad! ¿Sabrá conservar lo que tiene?
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (4)
Dicen que la mitad de las especies terrestres desaparecieron hace 200 millones de años por un conjunto de gigantescas erupciones de los gigantescos volcanes que poblaban el planeta por aquel entonces. Un estudio apunta que los dinosaurios herbívoros podrían haber tenido algo que ver con el calentamiento del planeta. Abruptos cambios climáticos hicieron imposible para algunas criaturas adaptarse y se extinguieron.
La extinción abrió el camino de los dinosaurios para evolucionar y dominar el planeta durante los siguientes 135 millones años, antes de que ellos también fueran eliminados más tarde por un cataclismo planetario.
Se cree que esto es lo que pasará cuando el supervolcán ubicado en el Parque Nacional Yellowstone conocido como la Caldera Yellowstone, y que ha estado esperando para erupcionar los últimos miles de años, se decida a explosionar.
En los últimos años, muchos investigadores han sugerido que la llamada extinción del fin del Triásico y al menos otros cuatro episodios conocidos de exticiones fueron causados al menos en parte por megavolcanes y el resultante cambio climático. Sin embargo, no fueron capaces de relacionar estrechamente en el tiempo los depósitos dejados por las erupciones a los accidentes biológicos.
Este estudio, publicado en Science , proporciona el enlace más ajustado todavía, con una fecha precisa para la extinción del final del Triásico, 201.564.000 años atrás, exactamente al mismo tiempo que un flujo masivo de lava. “Esto no puede saciar todas las preguntas sobre el mecanismo exacto de la propia extinción. Sin embargo, la coincidencia en el tiempo con el vulcanismo es más o menos acorazada”, dijo el coautor Paul Olsen, geólogo del Observatorio de la Tierra Lamont-Doherty de la Universidad de Columbia que investiga el límite desde la década de 1970.
“Parece muy probable que ayer hubo vida en otros planetas, en los que hoy no la hay. La idea de que la propia vida existente en el planeta Tierra fuera la que modeló las condiciones medioambientales, para ajustarlas a sus propias necesidades aparece ya en 1875, en un artículo publicado en la Scientific American. Ciertamente, existen indicios suficientes que apuntan a que la Tierra es lo que es, gracias a la vida que existió en ella”.
Los científicos creen ahora que la primera gran extinción fue causada por una explosión Supernova que acabó con la mayoría de las especies, otras causas podrían estar en razones distintas y que las extinciones se produjeran en varias fases y que probablemente el responsable fue un periodo glacial o la disminución de la cantidad de oxígeno disponible para la supervivencia de las especies.
Un apocalípsis volcánico que casi acaba con la vida en la Tierra. Lo cierto es que hasta hace poco, los científicos no se ponían de acuerdo acerca de quién o qué fue el responsable de la masacre mundial. Se barajaban media docena de causas y, recientemente, avances en las técnicas de datación y nueva evidencia geológica han proporcionado lo que parece ser la prueba más firme: nuestro planeta sufrió una intensísima actividad volcánica hace casi un millón de años. El gran volumen de gases de efecto invernadero provocado por los millones de kilómetros cúbicos de lava expulsados (se habla de 3 billones de toneladas de carbono, suficientes para desencadenar un cambio climático masivo), generaron un calentamiento global que derivó en tal desastre.
La Gran Mortandad
Este es el nombre informal que recibe también la tercera gran extinción y es que casi acabó con la vida en la Tierra: fue la mayor extinción ocurrida en nuestro planeta. En este período murió el 70% de los vertebrados terrestres y el 90% de las especies en los océanos.
“La extinción masiva del Pérmico-Triásico (PT), llamada también de manera informal la Gran Mortandad, fue una extinción masiva ocurrida hace aproximadamente 250 millones de años y define el límite entre los períodos Pérmico y Triásico. Ha sido la mayor extinción ocurrida en la Tierra. En ella desaparecieron aproximadamente el 95 % de las especies marinas y el 70% de los vertebrados terrestres. Con tan poca biodiversidad resultante, la vida tardó mucho tiempo en recuperarse. Numerosas ramas evolutivas del árbol de la vida fueron cercenadas, dejando muy pocos representantes disponibles para repoblar el planeta.3 Durante largo tiempo la Tierra solo fue un páramo desértico dominado por los hongos.”Lo cierto es que nadie sabe, a ciencia cierta, las causas de tal catástrofe y, la ciencia sólo ha podido conjeturar sobre lo que pasó.
Quinta extinción masiva: entre el período Cretácico y Terciario
“La quinta extinción masiva, que tuvo lugar entre los períodos Cretácico y Terciario, 65 millones de años atrás, es la más famosa de todas porque en esta desaparecieron los dinosaurios. Aquí sí parece haber una causa probable: el impacto contra la Tierra de un asteroide de grandes proporciones que provocó el cráter de Chicxulub, en la Península de Yucatán. Un gran porcentaje de los géneros biológicos desapareció, incluyendo los reptiles gigantes.”
Desde la “materia oscura” hasta la extinción de las especies, la humanidad siempre ha estado haciendo preguntas que la Ciencia ha tratado de responder, y, como la ignorancia es grande, cuando no sabemos contestar, teorizamos y nos valemos de las conjeturas para tratar de contestar a las preguntas planteadas que, no en pocas ocasiones, nos sobrepasan.
Lo cierto es que nos encontramos solos ante tanta grandeza y, a veces, queriendo ser sinceros con nosotros mismos, reconocemos nuestra fragilidad (que no insignificancia), en cualquier momento un objeto venido del Espacio, o, nosotros mismos con nuestro irresponsable comportamiento de querer obtener beneficios como sea, podemos poner en marcha la Sexta y última extinción.
¡Cuidado con la Inteligencia Artificial!
emilio silvera
Feb
10
La NASA captura el último aliento de una estrella moribunda
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
La NASA fotografió a una estrella moribunda en sus últimos momentos de vida.
El débil y efímero resplandor que emana de la nebulosa planetaria ESO 577-24 permanece durante muy poco tiempo, alrededor de 1,000 años. Esto es un abrir y cerrar de ojos en términos astronómicos.
El VLT (Very Large Telescope) de ESO captó esta burbuja de brillante gas ionizado: el último aliento de la estrella moribunda cuyos restos tras la explosión son visibles en el centro de esta imagen.
A medida que la capa gaseosa de esta nebulosa planetaria se expanda y crezca, apagándose, irá desapareciendo lentamente hasta que dejemos de verla.
La protagonista de esta imagen es una capa evanescente de gas brillante que se expande en el espacio: la nebulosa planetaria ESO 577-24. Esta nebulosa planetaria son los restos de una estrella gigante muerta que ha expulsado sus capas externas, dejando atrás una pequeña estrella muy caliente.
Este remanente se irá apagando y enfriando gradualmente. Por lo que, acabará sus días como el mero fantasma de lo que una vez fue una inmensa estrella gigante roja.
Las gigantes rojas son estrellas en las etapas finales de sus vidas que han agotado el combustible de hidrógeno en sus núcleos y han comenzado a contraerse bajo el asfixiante puño de la fuerza de la gravedad.
A medida que una gigante roja se contrae, la inmensa presión reaviva el núcleo de la estrella, lanzando hacia el vacío del exterior sus capas más externas en forma de potentes vientos estelares.
El núcleo incandescente de la estrella moribunda emite una radiación ultravioleta lo suficientemente intensa como para ionizar estas capas expulsadas y hacer que brillen.
El Sol, cuando muera y deje de fusionar elementos, podría producir alguna de estas imágenes
El resultado es lo que vemos como una nebulosa planetaria: el fugaz testimonio final de una estrella anciana al final de su vida.
Esta deslumbrante nebulosa planetaria fue descubierta dentro del sondeo National Geographic Society — Palomar Observatory Sky Survey en la década de 1950. Asimismo, se registró en el Catálogo Abell de nebulosas planetarias en 1966.
“Una enana blanca es un remanente estelar que se genera cuando una estrella de masa menor que 1/9 – 1/10 masas solares ha agotado su combustible nuclear. De hecho, se trata de una etapa de la evolución estelar que atravesará el 97% de las estrellas que conocemos, incluido el Sol. Las enanas blancas son, junto a las enanas rojas, las estrellas más abundantes del universo.”
“Las enanas blancas están compuestas por átomos en estado de plasma; como en su núcleo ya no se producen reacciones termonucleares, la estrella no tiene ninguna fuente de energía que equilibre el colapso gravitatorio, por lo que la enana blanca se va comprimiendo sobre sí misma debido a su propio peso. La distancia entre los átomos en el seno de la misma disminuye radicalmente, por lo que los electrones tienen menos espacio para moverse (en otras palabras, la densidad aumenta mucho, hasta órdenes de 106 g/cm3, una tonelada por centímetro cúbico y aún más). A estas densidades entran en juego el principio de indeterminación de Heisenberg y el principio de exclusión de Pauli para los electrones, los cuales se ven obligados a moverse a muy altas velocidades, “
En cien años será un cadáver estelar
“Enana blanca en formación y nebulosa planetaria en expansión. Este gas está impulsado por un superviento del que absorbe su radiación ultravioleta más intensa en la región interior y la reemite en la zona exterior en forma de radiaciones de menor frecuencia, ya en el visible, provocando hermosas combinaciones de colores y formas.”
“Para tomar conciencia de la lentitud del enfriamiento de las enanas blancas, cabe tener presente que el universo continúa expandiéndose, y se estima que en cuestión de 1019 a 1020 años, las galaxias se desvanecerán, ya que las estrellas de las que están formadas se dispersarán por el espacio intergaláctico. Pues bien, se piensa que las enanas blancas sobrevivirán a este hecho, aunque bien es cierto que una colisión fortuita entre enanas blancas podría dar lugar a una estrella capaz de producir reacciones de fusión nuclear (fusionando helio o carbono en vez de hidrógeno), o a una enana blanca muy masiva que diera lugar a una supernova de tipo Ia Se cree que el tiempo de vida de una enana blanca es similar al tiempo de vida media del protón, que se estima desde los 1032 a los 1049 años según algunas teorías de la gran unificación”
A unos 1,400 años luz de la Tierra, el resplandor fantasmal de ESO 577-24 es visible sólo a través de un telescopio potente. A medida que la estrella enana se enfríe, la nebulosa continuará expandiéndose en el espacio, desapareciendo lentamente hasta que dejemos de verla.
Esta imagen de ESO 577-24 se creó como parte del programa Joyas Cósmicas de ESO, una iniciativa que produce imágenes de objetos interesantes, enigmáticos o visualmente atractivos utilizando telescopios ESO, con un fin educativo y divulgativo.
Feb
10
¿Es igual el Universo en todas partes?
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
« Enigmas que no sabemos desvelar
Aquella primera inocente concepción
Más tarde llegaron descubrimientos que asombraron al mundo
Cualquier nave extraterrestre que pudiera caer en la Tierra, estaría hecho de los mismos materiales que aquí tenemos, es decir, los que se fabrican en las estrellas, en las explosiones supernovas y en las colisiones de estrellas de neutrones y otros objetos como las mismas galaxias que se fusionan creando nuevas estrellas, nuevos mundos y nuevos elementos que, siempre serán los que recoge la Tabla Periódica de Elementos que conocemos. Otra cuestión serían las aleaciones y mezclas de estos elementos se puedan hacer.
La vieron caer y corrieron hasta el lugar. La escena era la que se podía esperar despuès de la caída de una nave en plena montaña. Los pocos testigos que por el lugar estaban, llamaron a las autoridades que enviaron, de inmediato, a personal especializado en este tipo de investigaciones.¡
“Mira, un trazo de la nave caída, ¿de qué materiales estará hecha? Nunca he visto algo así! ¿De dónde vendrán estos seres, de qué estará conformado su mundo? Esto preguntaba uno de los investigadores al otro que con él, recogía muestras dequella extraña nave caída y que, según el seguimiento hecho en su acercamiento a la Tierra, venía de más allá de los confines del Solar y, quién sabe de dónde pudieron partir. Sin embargo, el material que recogían, debería ser el mismo que está repartido por todo el Universo.
Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. , en última instancia ¿es en verdad inerte la materia?
¿No es el agua una maravilla de la Naturaleza? Sin ella la vida estaría ausente
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que como transuránicos o transuránidos.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más de ruptura, sobre pasando a la emisión de partículas alfa.
¡Parece que la materia está viva! A partir de la “materia “inerte” surgieron ç, en unas especiales condiciones, las primeras células vivas replicantes que dieron comienzo a la fascinante historia que nos trajo aquí.
Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su clásico: no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí para poder construir conjuntos tan bellos como el que abajo podemos admirar.
¡No por pequeño, se es insignificante!
Recordemosló, todo lo está hecho de cosas pequeñas. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo). Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la griega que significa “luz”.
El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.
Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales. Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
Es la más débil de las cuatro fuerzas. Sin embargo, mantiene unidas las galaxias en los cúmulos
La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.
Las débiles ondas de los gravitones, que producen del profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad ). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.
De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es o, su carga es o, y su espín de 2. Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.
Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.
La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del -temporal que viaja a la velocidad de la luz transportada por los gravitones.
Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante residen las maravillas del Universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) un papel clave en la entropía de un agujero negro.
Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e ineliminables de un (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.
Andamos a la caza del vacío, del gravitón, de las ondas gravitatorias…
Ordinariamente, definimos el vacío como el en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultraalto.
Cámara de alto vacío
Cámara de vacío ultra alto
De ese “vacío” nos queda muchísimo por . Al parecer, todos los indicios nos dicen que está abarrotado de cosas, y, si es así, no es lo que podemos llamar con propiedad vacío, ese extraño lugar es otra cosa, pero, ¿qué cosa es?
Antes se denominaba éter fluminigero (creo) a toda esa inmensa región. Más tarde, nuevas teorías vino a desechar su existencia. Pasó el tiempo y llegaron nuevas ideas y nuevos , y, se llegó a la conclusión de que el Universo entero estaba permeado por “algo” que algunos llamaron los océanos de Higgs. Ahí, se tiene la esperanza de al esquivo Bosón que le da la masa a las demás partículas, y, el LHC del CERN, es el encargado de la búsqueda para que el Modelo Estándard de la Física de Partículas se afiance más.
Andamos un poco a ciega, la niebla de nuestra ignorancia nos hace caminar alargando la mano para evitar darnos un mamporro. Pero a pesar de todo, seguimos adelante y, es más la fuerza que nos empuja, la curiosidad que nos aliente que, los posibles peligros que tales aventuras puedan conllevar.
Ni sabemos todo lo que hay, ni tenemos la capacidad de plantear preguntas de esas posibles maravillas
Está claro que, dentro del Universo, existen “rincones” en los que no podemos sospechar las maravillas que esconden, ni nuestra avezada imaginación, puede hacerse una idea firme de lo que allí pueda existir. Incansables seguimos la búsqueda, a cada nuevo descubrimiento nuestro corazón se acelera, nuestra curiosidad aumenta, nuestras ganas de seguir avanzando van creciendo y, no pocas veces, el físico que, apasionado está inmerso en uno de esos trabajos de búsqueda e investigación, pasa las horas sin sentir el paso del tiempo, ni como ni duerme y su mente, sólo tiene puesto los sentidos en ese final soñado en el que, al fín, aparece el tesoro perseguido que, en la mayor parte de las veces, es una nueva partícula, un parámetro hasta ahora desconocido en los comportamientos de la materia, un nuevo principio, o, en definitiva, un nuevo descubrimiento que nos llevará un poco más lejos.
nuevas respuestas no dará la opción de plantear nuevas preguntas.
emilio silvera
Feb
10
¡El Origen del Universo! ¿Cómo puedo saberlo yo?
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
¿Dónde estabas tú cuando yo puse los cimientos de la Tierra? Dilo si tienes entendimiento.
Claro que a esta pregunta, lo único que podríamos contestar sería: ¿Quién sabe realmente? La especulación sobre el origen del universo es una vieja actividad humana que está sin resolver, ya que, pretendemos saber algo que no sabemos si llegó a ocurrir, toda vez que incluso, podría ser, que el universo esté aquí desde siempre. Y, si llegó como algo nuevo, tampoco sabemos, a ciencia cierta, cómo y de dónde lo hizo. Pero, nosotros, los humanos, no dejamos de especular con esta cuestión de compleja resolución y dejamos volar nuestra imaginación en forma de conjeturas y teorías que, no siempre son el fiel reflejo de lo que pudo pasar que, de momento, permanece en el más profundo anonimato.
Claro que, la Humanidad y el Universo están tan juntos, tan conectados que, sería imposible que no hablaran de él, y, sobre todo, que no buscaran el saber sobre su comienzo y, hurgar en su dinámica, para poder entender nuestra presencia aquí junto con las estrellas de las que procedemos y de las galaxias que son las villas del Universo que alojan a cientos de miles de millones de mundos ¿habitados? que, como la Tierra, tendrán otras criaturas que también se preguntaran por el principio y el final para poder conocer sus destinos.
¿Sería una fluctuación cuántica la que hizo surgir el Universo?
Algunos nos dicen que el Universo surgió de la “Nada” y, está claro que la “Nada” no puede existir y, si surgió, es porque había, con lo cual, la “Nada” queda invalidada. Pero, si hubo un suceso de creación, ¿que duda nos puede caber de que tuvo que haber una causa? Lo cierto es que, en las distintas teorías de la “creación” del universo, existen muchas reservas.
No obstante tales reservas, unos pocos científicos trataron de investigar la cuestión de cómo pudo haberse originado el Universo, aunque admitiendo que sus esfuerzos quizás eran “prematuros”, como dijo Weinberg con suavidad. En el mejor de los casos, contemplado con una mirada alentadora, el trabajo realizado hasta el momento, parece haber encendido una lámpara en la antesala de la génesis. Lo que allí quedó iluminado era muy extraño, pero era, en todo caso, estimulante. No cabía descubrir algo familiar en las mismas fuentes de la creación.
Hemos podido contemplar como en la Nebulosa del Águila nacen nuevas estrellas masivas. Sin embargo, no hemos llegado a poder saber, con certeza como surgió el Universo entero y de dónde y porqué lo hizo para conformar un vasto espacio-tiempo lleno de materia que evolucionaría hasta poder conformar las estrellas y los mundos en enormes galaxias, y, en esos mundos, pudieron surgir criaturas que, conscientes de SER, llegaron desde un nivel animal rudimentario, hasta los más sofisticados pensamientos que les hicieron preguntarse: ¿Quiénes somos, de dónde venimos, hacia dónde vamos? Y, esas preguntas, realizadas 14.000 millones de años después del comienzo del tiempo, y junto a la pregunta del origen del Universo, todavía, no han podido ser contestadas. Nuestro intelecto evoluciona pero, sus límites son patentes.
Una cosa sí hemos podido descubrir: En el Universo nada pasa por casualidad, todo es debido a la causalidad, es decir, a lo que antes pasó que tiene sus consecuencias lógicas. Precisamente por eso, hay que mirar al Pasado para comprender el Presente.
Una estrella que se forma en la Nebulosa comienza siendo protoestrellas y, cuando entra en la secuencia principal, brilla durante miles de millones de años dutante los cuales crea nuevos elementos a partir del más sencillo, el Hidrógeno. Los cambios de fase que se producen por fusión en el horno nuclear de las estrellas, son los que han permitido que existieran los materiales necesarios para la química de la vida que, al menos hasta donde sabemos, no apareció en nuestro planeta Tierra, hasta hace unos 4.o0o millones de años, y, desde entonces, ha estado evolucionando para que ahora, nosotros, podamos preguntas, por el origen del universo.
Los científicos han imaginado y han puesto sobre la mesa para su estudio, dos hipótesis, la llamada génesis del vacío, y la otra, génesis cuántica y ambas, parecían indicar mejor lo que el futuro cercano podía deparar al conocimiento humano sobre el origen del Universo.
La Génesis de vacío: El problema central de la cosmología es explicar como algo surge de la “nada”. Por “algo” entendemos la totalidad de la materia y la energía, el espacio y el tiempo: el Universo que habitamos. Pero la cuestión de lo que significa NADA es más sutil. En la ciencia clásica, “nada” era un vacío, el espacio vacío que hay entre dos partículas de materia. Pero esta concepción siempre planteaba problemas, como lo atestigua la prolongada indagación sobre si el espacio estaba lleno de éter, y en todo caso no sobrevivió al advenimiento de la física cuántica.
El vacío cuántico nunca es realmente vacío, sino que rebosa de partículas “virtuales”. Las partículas virtuales pueden ser concebidas como la posibilidad esbozada por el principio de indeterminación de Heisenberg de que una partícula “real” llegue en un tiempo determinado a un lugar determinado.
Como las siluetas que salen de pronto en un campo de tiro policial, representan no sólo lo que es sino también lo que podría ser. Desde el punto de vista de la física cuántica, toda partícula “real” está rodeada por una corona de partículas y antipartículas virtuales que borbotean del vacío, interaccionan unas con otras y luego desaparecen.
Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.
Aún estamos buscando al escurridizo gravitón
Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Estaba en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son para los electrones como consecuencia del Principio de Exclusión de Pauli.
Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutrones mantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.
Una cosa sí sabemos, las reglas que gobiernan la existencia de las partículas virtuales se hallan establecidas por el principio de incertidumbre y la ley de conservación de la materia y de la energía.
En un nuevo estudio, un grupo de físicos ha propuesto que la gravedad podría disparar un efecto desbocado en las fluctuaciones cuánticas, provocando que crezcan tanto que la densidad de energía del vacío del campo cuántico podría predominar sobre la densidad de energía clásica. Este efecto de predominancia del vacío, el cual surge bajo ciertas condiciones específicas pero razonables, contrasta con la ampliamente sostenida creencia de que la influencia de la gravedad sobre los fenómenos cuánticos debería ser pequeña y subdominante.
Claro que, hablar aquí del vacío en relación al surgir del universo, está directamente asentado en la creencia de algunos postulados que dicen ser posible que, el universo, surgiera de una Fluctuación de vacío producida en otro universo paralelo y, desde entonces, funciona de manera autónoma como un nuevo universo de los muchos que son en el más complejo Multiverso.
Inmediatamente después de que la llamada espuma cuántica del espacio-tiempo permitiera la creación de nuestro Universo, apareció una inmensa fuerza de repulsión gravitatoria que fue la responsable de la explosiva expansión del Universo primigenio (inflación(*)).Las fluctuaciones cuánticas del vacío, que normalmente se manifiestan sólo a escalas microscópicas, en el Universo inflacionario en expansión exponencial aumentaron rápidamente su longitud y amplitud para convertirse en fluctuaciones significativas a nivel cosmológico.
En el Modelo corriente del big bang que actualmente prevalece y que, de momento, todos hemos aceptado al ser el que más se acerca a las observaciones realizadas, el universo surgió a partir de una singularidad, es decir, un punto de infinita densidad y de inmensa energía que, explosionó y se expansionó para crear la materia, el espacio y el tiempo que, estarían gobernados por las cuatro leyes fundamentales de la naturaleza:
Fuerzas nucleares débil y fuerte, el electromagnetismo y la Gravedad. Todas ellas, estarían apoyadas por una serie de números que llamamos las constantes universales y que hacen posible que nuestro universo, sea tal como lo podemos contemplar. Sin embargo, existen algunas dudas de que, realmente, fuera esa la causa del nacimiento del Universo y, algunos postulan otras causas como transiciones de fase en un universo anterior y otras, que siendo más peregrinas, no podemos descartar.
Nosotros, estamos confinados en el planeta Tierra que es un mundo suficientemente preparado para acoger nuestras necesidades físicas, pero, de ninguna manera podrá nunca satisfacer nuestras otras necesidades de la Mente y del intelecto que produce imaginación y pensamientos y que, sin que nada la pueda frenar, cual rayo de luz eyectado desde una estrella masiva refulgente, nuestros pensamientos vuelan también, hacia el espacio infinito y con ellos, damos rienda suelta a nuestra más firme creencia de que, nuestros orígenes están en las estrellas y hacia las estrellas queremos ir, allí, amigos míos, está nuestro destino.
El Universo es grande, inmenso, casi infinito pero, ¿y nosotros? Bueno, al ser una parte de él, al ser una creación de la Naturaleza, estamos formando parte de esta inmensidad y, precisamente, nos ha tocado desempeñar el papel de la parte que piensa, la parte que observa, la parte que hace preguntas y quiere saber… ¿Tendrá eso algún significado?
emilio silvera