jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en el presente y el futuro incierto.    ~    Comentarios Comments (10)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los diez grandes avances de la Física en 2014

“Un lejano quásar, a más de 10.000 millones de años luz de la Tierra, descubierto por astrónomos de la Universidad de California, ha servido para iluminar un fragmento de la gigantesca red de filamentos de materia que conectan las galaxias entre sí como una gran «telaraña cósmica». Es la primera vez que se consigue visualizar una parte de esta estructura, predicha por las teorías cosmológicas pero que nunca se había observado hasta ahora. [Así te dimos a conocer la investigación]

«Este quasar está iluminando el gas a escalas que van mucho más allá de cualquier otra cosa que hayamos visto hasta ahora, dándonos el primer retrato de los filamento”s de materia que se extienden entre galaxias», explicaban los científicos.

Preparando el futuro

Los diez grandes avances de la Física en 2014

 

“Un equipo del Lawrence Livermore National Laboratory hizo público en febrero que acaba de conseguir, por vez primera, que un reactor de fusión nuclear produzca más energía de la que consume. Se trata de un paso clave en el camino de lograr «ganancias de combustible» mayores que la unidad, algo fundamental en el objetivo de poder usar en el futuro una fuente energética inagotable y limpia, la misma que utilizan las estrellas.”

 

Interacciones magnéticas entre dos electrones

 

Resultado de imagen de El magnetismo entre dos electrones een imagen GIPs

 

“Físicos del Instituto Weizmann de Ciencia en Israel han medido la interacción extremadamente débil entre los imanes más pequeños, dos electrones individuales, algo muy difícil de observar. Para ello, tuvieron que neutralizar el ruido magnético, que era un millón de veces más fuerte que la señal que tenían detectar.”

 

Cada día que pasa, los físicos experimentales consiguen nuevos logros que nos llevan a un mayor conocimiento del funcionamiento de la naturaleza en su más infinitesimal expresión.

 

Antes ficciones, ahora, realidad

 

Los diez grandes avances de la Física en 2014

 

“Investigadores de la Universidad de California Riverside (EE.UU.) crearon un nuevo tipo de dispositivo de memoria holográfica que mejora considerablemente las limitaciones de almacenamiento, al leer datos de manera paralela en vez de lineal, como lo hacen los sistemas convencionales. De esta forma, es capaz de almacenar múltiples imágenes en la misma zona utilizando luz y ángulos diferentes.”

Tenemos por delante (y no a muy largo plazo) un futuro inimaginable.

 

Siempre queriendo saber: Una explosión Supernova en el Laboratorio

 

Los diez grandes avances de la Física en 2014

 

“Un equipo de la Universidad de Oxford en Reino Unido utilizó una de las instalaciones de láser más poderosas del mundo para crear pequeñas versiones de explosiones de supernovas en el laboratorio. En concreto, la supernova simulada es Casiopea A, que ha desconcertado a los astrónomos debido a su estructura nudosa irregular que sugiere la presencia de campos magnéticos muy fuertes.”

El resultado fueron fuertes campos magnéticos similares a los observados en Casiopea A. La técnica también podría ser utilizado para simular una amplia gama de procesos astrofísicos, según los investigadores.

 

Comprimen datos cuánticos por primera vez

 

Los diez grandes avances de la Física en 2014

 

“Físicos de la Universidad de Toronto (Canadá) demostraron por primera vez que es posible comprimir datos cuánticos en una serie de qubits idénticos, uno de los retos a los que se enfrentarán los ordenadores del futuro, que se esperan mucho más rápidos y eficaces. La técnica podría allanar el camino para un uso más eficaz de memorias cuánticas.”

 

La experiencia nos dice que, será mejor apartar la palabra imposible, ya que, a la vista de los descubrimientos que se van realizando en el ámbito de la mecánica cuántica… ¡cualquier cosa que podamos imaginar, será posible!

 

El rayo tractor acústico

 

Resultado de imagen de El rayo tractor acústico

 

 

“Investigadores de la Universidad Dundee en Reino Unido y de la de Wesleyan en Illinois (EE.UU.) crearon el primer rayo tractor acústico, que puede atraer un objeto disparándole ondas ultrasónicas. La técnica podría tener una amplia gama de aplicaciones en la medicina, como la manipulación de objetos, fluidos y tejidos dentro del cuerpo, o la entrega de fármacos encapsulados a la ubicación exacta en el organismo que requiere tratamiento.”

Los avances se producen en todos los ámbitos y disciplinas del saber Humano, cada rama científica avanza en una carrera sin fin, lo que antes era un “milagro” hoy resulta lo natural y cotidiano y, en un futuro, si pudiéramos estar aquí para verlo, al igual que les pasaría a nuestros abuelos si vieran nuestro mundo presente, el asombro nos dejaría sin habla.

Hilbert llevaba razón cuando dejó en su tumba de Gotinga en Alemania, aquel mensaje:

Tenemos que saber, sabremos.

Fuente: El apartado de Ciencia de ABC

Materia de sombra, Axiones, ¿WIMPs en el Sol?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

« 

 »

Resultado de imagen de Kepler descubre planetas habitables

Es curioso como a veces, la realidad de los hechos observados, vienen a derribar esas barreras que muchos ponen en sus mentes para negar lo evidente. Por ejemplo: Los extraordinarios resultados de la sonda Kepler, que en su primer año de misión encontró 1.235 candidatos a planetas, 54 de ellos en la zona habitable de sus estrellas, ha permitido a los investigadores extrapolar el numero total de mundos que podría haber sólo en la Vía Láctea, nuestra Galaxia. Y ese número ronda los 50.000 millones. De los cuales, además, unos 500 millones estarían a la distancia adecuada de sus “soles” para permitir la existencia de agua en estado líquido, una condición necesaria para la vida.

Resultado de imagen de Kepler descubre planetas habitables

Planetas parecidos a la Tierra, como arriba nos dicen, hay miles de millones y sólo cabe esperar que estén situados en los lugares adecuados para que la vida tenga la oportunidad de surgir acogida por el ecosistema ideal del agua líquida, una atmósfera acogedora y húmeda, temperatura ideal media y otros parámetros que la vida requiere para su existencia.

Un equipo de astrónomos internacionales pertenecientes al Observatorio Europeo Austral (ESO), el más importante del mundo, investiga la formación de un posible nuevo sistema planetario a partir de discos de material que rodea a una estrella joven. Según un comunicado difundido hoy por el centro astronómico que se levanta en la región norteña de Antofagasta (Chile), a través del “Very Large Telescope”(VLT), los científicos han estudiado la materia que rodea a una estrella joven.

Según los astrónomos, los planetas se forman a partir de discos de material que rodean a las estrellas, pero la transición desde discos de polvo hasta sistemas planetarios es rápida y muy pocos son identificados en esta fase. Uno de los objetos estudiados por los astrónomos de ESO, es la estrella T Chamaleontis (T-Cha), ubicada en la pequeña constelación de Chamaleón, la cual es comparable al sol pero en sus etapas iniciales.

Dicha estrella se encuentra a unos 330 años luz de la Tierra y tiene 7 millones de años de edad, lo que se considera joven para una estrella. “Estudios anteriores han demostrado que T Cha es un excelente objetivo para estudiar cómo se forman los sistemas planetarios”, señala el astrónomo Johan Olofsson, del Max Planck Institute of Astronomy de Alemania.

Algunas veces hablando de los extensos y complejos temas que subyacen en la Astronomía, lo mismo hablamos de “materia de sombre” que de “súpercuerdas” y, se ha llegado a decir que existe otro universo de materia de sombra que existe en paralelo al nuestro. Los dos universos se separaron cuando la Gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo cual las convierte en candidatas ideales para la tan traída y llevada “materia oscura”.

Llegamos a los Axiones.

Resultado de imagen de Axiones

¿Un nuevo tipo de partícula? El axión fue postulado a finales de los años setenta para resolver un problema teórico vinculado a las simetrías de la …

Resultado de imagen de El Axión una partícula no encontrada

El estado actual de la cuestión es que los cosmólogos creen saber que hay una gran cantidad de “materia oscura” en el Universo y, han conseguido eliminar la candidatura de cualquier tipo de partícula ordinaria que conocemos. En tales circunstancias no se puede llegar a otra conclusión que la materia oscura debe de existir en alguna forma que todavía no hemos visto y cuyas propiedades ignoramos totalmente. Sin embargo, se atreven a decir que, la Gravedad, es el efecto que se produce cuando la “materia oscura” pierde consistencia… , o algo así.  ¡Cómo son!

A los teóricos nada les gusta más que aquella situación en la cual puedan dejar volar libremente la imaginación sin miedo a que nada tan brusco como un experimento u observación acabe con su juego. En cualquier caso, han producido sugerencias extraordinarias acerca de lo que podría ser la “materia oscura” del universo.

              Lo que hay en el Universo…no siempre lo podemos comprender.

Otro de los WIMPs favoritos se llama axión. Como el fotino y sus compañeros, el axión fue sugerido por consideraciones de simetría. Sin embargo, a diferencia de las partículas, sale de las Grandes Teorías Unificadas, que describen el Universo en el segundo 10ˉ³5, más que de las teorías totalmente unificadas que operan en el tiempo de Planck.

Resultado de imagen de simetría que llamamos CPT.

Durante mucho tiempo han sabido los físicos que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la película hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reversa del tiempo (pasar la película al revés).

Resultado de imagen de Simetría CPT

Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es éste el caso. El mundo visto en un espejo se desvía un tanto al mundo visto directamente, y lo mismo sucede al mundo visto cuando la película pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el inverso en cada uno de estos casos se cancelan una a la otra cuando miramos las tres inversiones combinadas.

Resultado de imagen de simetría que llamamos CPT.

Aunque esto es verdad, también es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por anti-partículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?

La respuesta a esta cuestión parece que puede estar en la posible existencia de esa otra partícula apellidada axión. Se supone que el Axión es muy ligero (menos de una millonésima parte de la masa del electrón) e interacciona sólo débilmente con otra materia. Es la pequeña masa y la interacción débil lo que explica el “casi” que preocupa a los teóricos.

Cuando nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de momento, es imposible verificarla.

Resultado de imagen de Ramanujan y sus funciones modulares

El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.

Dispersas entre oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.

Resultado de imagen de ¿Podéis imaginar la existencia de un Universo en permanente sombra?

Resultado de imagen de ¿Podeis imaginar la existencia de un Universo en permanente sombra?

             ¿Podéis imaginar la existencia de un Universo en permanente sombra?

La idea de un universo en sombra nos proporciona una manera sencilla de pensar en la materia oscura. El universo dividido en materia y materia se sombra en el Tiempo de Planck, y cada una evolucionó de acuerdo con sus propias leyes. Es de suponer que algún Hubble de sombra descubrió que ese universo de sombra se estaba expandiendo y es de suponer que algunos astrónomos de sombras piensan en nosotros como candidatos para su materia oscura.

¡Puede que incluso haya unos ustedes de sombras leyendo la versión de sombra de este trabajo!

Partículas y Partículas Supersimétricas

¿Partículas y partículas supersimétricas? ¿Dónde están?

Partículas son las que todos conocemos y que forman la materia, la supersimétricas, fotinos, squarks y otros, las estamos buscando sin poder hallarlas.

Estas partículas son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados, pero son mucho más pesadas. Se nombran en analogía con sus compañeras: el squark es el compañero supersimétrico del quark, el fotino del fotón, etc. Las más ligeras de estas partículas podrían ser la materia oscura. Si es así, cada partícula probablemente pesaría al menos cuarenta veces más que el protón.

Materia de sombra, si existe, no hemos sabido dar con ella y, sin embargo, existen indicios de que está ahí

En algunas versiones de las llamadas teorías de super-cuerdas hay todo un universo de materia de sombra que existe paralelo con el nuestro. Los dos universos se separaron cuando la gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo que las convierte en candidatas ideales para la materia oscura.

Habiendo inventado la “materia oscura” para explicar lo que no pueden, se inventan también, las partículas que la conforma: Axiones, unas partículas supersimétricas que buscará el LHC.

El Axión es una partícula muy ligera (pero presumiblemente muy común) que, si existiera, resolvería un problema antiguo en la teoría de las partículas elementales. Se estima que tiene una masa menor que una millonésima parte de la del electrón y se supone que impregna el universo de una manera semejante al fondo de microondas. La materia oscura consistiría en agregaciones de axiones por encima del nivel general de fondo.

Criostato CDMS

Construímos inmensos aparatos de ingeniosas propiedades tecnológicas para tratar de que nos busquen las WIMPs

¿WIMPs en el Sol?

A lo largo de todo el trabajo se ha dado a entender que todas estas partículas candidatas a materia oscura de la que hemos estado hablando, son puramente hipotéticas. No hay pruebas de que ninguna de ellas se vaya a encontrar de hecho en la naturaleza. Sin embargo sería negligente si no mencionase un argumento –un diminuto rayo de esperanza- que tiende a apoyar la existencia de WIMPs de un tipo u otro. Este argumento tiene que ver con algunos problemas que han surgido en nuestra comprensión del funcionamiento y la estructura del Sol.

Resultado de imagen de ¿WIMPs en el Sol?

Creemos que la energía del Sol viene de reacciones nucleares profundas dentro del núcleo. Si éste es el caso en realidad, la teoría nos dice que esas reacciones deberían estar produciendo neutrinos que en principio son detectables sobre la Tierra. Si conocemos la temperatura y composición del núcleo (como creemos), entonces podemos predecir exactamente cuántos neutrinos detectaremos. Durante más de veinte años se llevó a cabo un experimento en una mina de oro de Dakota del Sur para detectar esos neutrinos y, desgraciadamente, los resultados fueron desconcertantes. El número detectado fue de sólo un tercio de lo que se esperaba. Esto se conoce como el problema del neutrino solar.

Resultado de imagen de Neutrinos solares

El problema de los neutrinos solares se debió a una gran discrepancia entre el número de neutrinos que llegaban a la Tierra y los modelos teóricos del interior del Sol. Este problema que duró desde mediados de la década de 1960 hasta el 2002, ha sido recientemente resuelto mediante un nuevo entendimiento de la física de neutrinos, necesitando una modificación en el modelo estándar de la física de partículas, concretamente en las neutrinos“  Básicamente, debido a que los neutrinos tienen masa, pueden cambiar del tipo de neutrino que se produce en el interior del Sol, el neutrino electrónico, en dos tipos de neutrinos, el muónico y el tauónico, que no fueron detectados. (Wikipedia).

La segunda característica del Sol que concierne a la existencia de WIMPs se refiere al hecho de las oscilaciones solares. Cuando los astrónomos contemplan cuidadosamente la superficie solar, la ven vibrar y sacudirse; todo el Sol puede pulsar en períodos de varias horas. Estas oscilaciones son análogas a las ondas de los terremotos, y los astrónomos llaman a sus estudios “sismología solar”. Como creemos conocer la composición del Sol, tenemos que ser capaces de predecir las propiedades de estas ondas de terremotos solares. Sin embargo hay algunas duraderas discrepancias la teoría y la observación en este campo.

No mucho que los astrónomos han señalado que si la Galaxia está en realidad llena de materia oscura en la forma de WIMPs, entonces, durante su vida, el Sol habría absorbido un gran de ellos. Los WIMPs, por tanto, formarían parte de la composición del Sol, una parte que no se había tenido en cuenta hasta ahora. Cuando los WIMPs son incluidos en los cálculos, resultan dos consecuencias: primero, la temperatura en el núcleo del Sol resulta ser menor de lo que se creía, de forma que son emitidos menos neutrinos, y segundo, las propiedades del cuerpo del Sol cambian de tal modo que las predicciones de las oscilaciones solares son exactas.

           Hasta nos atrevemos a exponer una imagen que nos muestra la distribución de los WIMPs

Este resultado es insignificante en lo que se refiere a la existencia de WIMPs, pero como no debemos despreciar las coincidencias halladas, lo más prudente será esperar a nuevos y más avanzados experimentos (SOHO y otros). Tanto el problema del neutrino como las oscilaciones se pueden explicar igualmente bien por otros efectos que no tienen nada que ver con los WIMPs. Por ejemplo, el de oscilaciones de neutrinos podría resolverse si el neutrino solar tuviera alguna masa, aunque fuese muy pequeña, y diversos cambios en los detalles de la estructura interna  del Sol podrían explicar las oscilaciones. No obstante estos fenómenos solares constituyen la única indicación que tenemos de que uno de los candidatos a la materia oscura pueda existir realmente.

Resultado de imagen de supersimetría

Toda esta charla sobre supersimetría y teoría últimas da a la discusión de la naturaleza de la materia oscura un tono solemne que no tiene ningún parecido con la forma en que se lleva en realidad el debate entre los cosmólogos. Una de las cosas que más me gusta de este campo es que todo el mundo parece ser capaz de conservar el sentido del humor y una distancia respecto a su propio , ya que, los buenos científicos saben que, todos los cálculos, conjeturas, hipótesis y finalmente teorías, no serán visadas en la aduana de la Ciencia, hasta que sean muy, pero que muy bien comprobadas mediante el experimento y la observación y, no una sino diez mil veces antes de que puedan ser aceptadas en el ámbito puramente científico.

 

                           Buscan partículas supersimétricas

Posiblemente, el LHC nos pueda decir algo al respecto si, como no pocos esperan, de sus colisiones surgen algunas partículas supersimétricas que nos hablen de ese otro mundo oscuro que, estando en este, no hemos sabido encontrar hasta este momento. Otra posibilidad sería que la tan manoseada materia oscura no existiera y, en su lugar, se descubriera otro fenómeno o mecanismo natural desconocido hasta que, incidiendo en el comportamiento de expansión del Universo, nos hiciera pensar en la existencia de la “materia oscura” cubrir el hueco de nuestra ignorancia.

Resultado de imagen de Extinción de los dinosaurios

Hace algún tiempo, en esas reuniones periódicas que se llevan a cabo entre científicos de materias relacionadas: física, astronomía, astrofísica, comología…, alguien del grupo sacó a relucir la idea de la extinción de los dinosaurios y, el hombre se refirió a la teoría (de las muchas que circulan) de que el Sol, en su rotación alrededor de la Vía Láctea, se salía periódicamente fuera del plano de la Galaxia. Cuando hacía esto, el polvo existente en ese plano podía cesar de proteger la Tierra, que entonces quedaría bañada en rayos cósmicos letales que los autores de la teoría pensaban que podían permeabilizar el cosmos. Alguien, el fondo de la sala lanzó: ¿Quiere decir que los dinosaurios fueron exterminados por la radiación de fotinos?

La cosa se tomó a broma y risas marcaron el final de la reunión en la que no siempre se tratan los temas con esa seriedad que todos creen, toda vez que, los conocimientos que tenemos de las cosas son muy limitados y tomarse en serio lo que podría no ser… ¡No sería nada bueno!

emilio silvera

¿Qué nuevos caminos nos esperan?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Resultado de imagen de Universo dinámico

Aunque no pocas cosas en el Universo están escenificadas en ciclos que se repiten una y otra vez: Estrellas masivas que al final de sus vidas explotan como supernovas, dejan una enorme y bonita Nebulosa de la que vuelven a surgir nuevas estrellas y mundos y, la estrella se convierte en otra cosa distinta de lo que fue. Así ha venido pasando desde que que el Universo dinámico, con sus leyes y constantes, deja que las cosas transcurran tranquilas y siempre, con el “tiempo presente y vigilante” que, al no querer estar sólo, se acompaña del espacio y, también, de la Entropía.

 

“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin; pues todas las cosas son de la misma clase y la misma forma”.

Marco Aurelio

Claro que él quería significar que todo, desde el comienzo del mundo, ha sido igual, sigue unos patrones que se repiten una y otra vez a lo largo del transcurso de los tiempos: el día y la noche, el hombre y la mujer, el frío y el calor, el río muerto por la sequía o aquel que, cantarino y rumoroso ve correr sus aguas cristalinas hasta que desembocan en el océano. La Bondad y la maldad…Así ha sido siempre y, así continuará siendo.

Canción del Pirata. Espronceda.

Bueno, este podría ser el bajel de la canción del Pirata de Espronceda

Para fugarnos de la tierra

un libro es el mejor bajel;

y se viaja mejor en el poema

que en más brioso corcel.

Whitman

 

 

Todo estado presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro.

Leibniz

 

Niels Bohor, citando a Gohete preguntaba: ¿Cuál es el camino? No hay ningún camino. Está claro el mensaje que tal pregunta y tal respuesta nos quiere hacer llegar, el camino, tendremos que hacerlo nosotros mediante la exploración hacia el futuro en el que está lo que deseamos encontrar. Hay que explorar y arriesgarse para descubrir tenemos que ir más allá de las regiones habituales y conocidas que nos tienen estancados siempre en el mismo lugar. ¡Arrisguémosno!

Ulises de Ítaca se arriesgó a oír el canto de las sirenas amarrado al palo de la vela mayor de su embarcación. Así nos lo contó Homero en la Odisea.

Pero, no cabe duda alguna de que, el acto de exploración modifica la perspectiva del explorador; “Ulises”, Marco Polo y Colón habían cambiado cuando volvieron a su hogar. Lo mismo ha sucedido en la investigación científica de los extremos en las escalas, desde la grandiosa extensión del espacio cosmológico hasta el mundo minúsculo y enloquecido de las partículas subatómicas.

Resultado de imagen de Una bella galaxia espiral

Una bella galaxia espiral de cien mil años-luz de diámetro que podemos comparar con…¿Un átomo?

Resultado de imagen de La Galaxia y el átomo

Entre ambos “universos” existe una descomunal diferencia en los extremos de las escalas. Sin embargo, la inmensa galaxia de arriba no sería posible sin la existencia del infinitesimal átomo de abajo. Todo lo grande está hecho de cosas pequeñas.

Así que, cuando hacemos esos viajes, irremediablemente nos cambian, y, desde luego, desafían muchas de las concepciones científicas y filosóficas que, hasta ese momento, más valorábamos. Algunas tienen que ser desechadas, como el bagaje que se deja atrás en una larga travesía por el desierto. Otras tienen que ser modificadas y reconstruidas hasta quedar casi irreconocibles, ya que, lo que hemos podido ver en esos viajes, lo que hemos descubierto, nos han cambiado por completo el concepto y la perspectiva que del mundo teníamos, ahora conocemos y sabemos.

La exploración del ámbito de las galaxias extendió el alcance de la visión humana en un factor de 1026veces mayor que la escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un parroquianismo en un universo más vasto donde el espacio es curvo y el tiempo se hace flexible.

La exploración del dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución. Esta fue la Física cuántica que, transformó todo lo que abordó.

La teoría cuántica nació en 1900, cuando Max Planck comprendió que sólo podía explicar lo que llamaba la curva del cuerpo negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de energía es continua, y lo reemplazó por la hipotesis sin precedentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades.

Resultado de imagen de La constante de Planck

Planck definió a “sus”0 cuantos en términos del “cuanto de acción”, simbolozado por la letra h que ahora, se ha convertido en el símbolo de una constante,  la constante de Planck, h.  Planck no era ningún revolucionario – a la edad de cuarenta y dos años era un viejo, juzgado por patrones de la ciencia matemática y, además, un pilar de la elevada cultura alemana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena parte de la física clásica a la que había dedicado la mayor parte de su carrera. “Cuanto mayores sean las dificultades -escribió-…tanto más importante será finalmente para la ampliación y profundización de nuestros conocimientos en la física.”

Sus palabras fueron prféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una burbuja de jabón, la física cuántica pronto se expandió practicamente a todo el ámbito de la física, y el cuanto de acción de Planck, hllegó a ser considerado una constante de la Naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.

Max Planck es uno de los científicos a los que más veces se le han reconocido sus méritos y, su nombre, está por todas partes: La Constante de Planc, las Unidades de Planck, El cuanto de Planck, la Radiación de Planck, El Teimpo de Planck, la masa de Planck, la Energía de Planck, la Longitud de Planck…Todo bien merecido.

 Pero sigamos con la escala del Universo conocido  observable, la mayor escala que abarca más de 100 mil trillones de kilómetros y hagamos un pequeño esquema que lo refleje:

Radio en metros                                                                   Objetos característicos

1026                                                                                                 Universo observable

1024                                                                                                 Supercúmulos de Galaxias

1023                                                                                                 Cúmulos de Galaxias

1022                                                                                                 Grupo de Galaxias (por ejemplo el Grupo Local)

1021                                                                                                  Galaxia La Vía Láctea

Nube Molecular gigante muy masiva, de gas y polvo compuesta fundamentalmente de moléculas con diámetro típico de 100 a.l. Tienen masa de hasta diez millones de masas solares (moléculas de Hidrógeno (H2) el 73% en masa), átomos de Helio (He, 25%), partículas de polvo (1%), Hidrógeno atómico neutro (H I, menos del 1%) y, un rico coctel de moléculas interestelares. En nuestra galaxia existen al menos unas 3000 Nubes Moleculares Gigantes, estando las más masivas situadas cerca de la radiofuente Sagitario B en el centro Galáctico.

1018                                                                                                  Nebulosas Gigantes, Nubes Moleculares

1012                                                                                                                                                   Sistema Solar

1011                                                                                                  Atmósfera externa de las Gigantes rojas

Aunque a una Unidad Astronómica de distancia (150 millones de Kilómetros de la Tierra), el Sol caliente el planeta y nos da la vida

109                                                                                                  El Sol

108                                                                                                  Planetas Gigantes como Júpiter

107                                                                                                  Estrellas enanas,  planetas similares a la Tierra

105                                                                                                  Asteroides, núcleos de cometas

104                                                                                                  Estrellas de Neutrones

Los seres humanos también son parte del Universo que queremos descubrir.

1                                                                                                      Seres Humanos

10-2                                                                                                Molécula de ADN (eje largo)

10-5                                                                                                Células vivas

   

                                      Células vivas

10-9                                                                                                Molécula de ADN (eje corto)

10-10                                                                                              Átomos

10-14                                                                                             Núcleos de átomos pesados

10-15                                                                                             Protones y Neutrones

10-35                                                                                         Quarks

Longitud de Planck: cuanto de espacio; radio de partículas sin dimensiones = la cuerda.

Es la escala de longitud a la que la descripción clásica de la Gravedad cesa de ser válida y debe ser tenida en cuenta la mecánica cuántica. Está dada por la ecuación de arriba, donde G es la constante gravitacional, ħ es la constante de Planck racionalizada y c es la velocidad de la luz. El valor de la longitud de Planck es del orden de 10-35 m (veinte órdenes de magnitud menorque el tamaño del protón 10-15 m).

Me llama la atención y me fascina kla indeterminación que esté inmersa en el mundo cuántico. La indeterminación cuántica no depende del aparato experimental empleado para investigar el mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada compartirían con los más humildes físicos de la Tierra.

Por muy avanzados que pudieran estar, ellos también estarían supeditados al Principio de Incertidumbre o Indeterminación cuántica, y, como nosotros, cuando trataran de encontrar (sea cual fuese las matemáticas o sistemas que emplearan para hallarlo) el resultado de la constante de estructura fina, el resultado sería el mismo: 137, número puro y adimensional.

Todo esto nos ha llevado a la más firme convicción para definir la visión del mundo de la física que nos revelaba que no sólo la materia y la energía sino que también el conocimiento están cuantizados. Cuando un fotón choca con un átomo, haciendo saltar un electrón a una órbita más elevada, el electrón se mueve de la órbita inferior a la superior instantáneamente, sin tener que atravesar el espacio intermedio. Los mismos radios orbitales están cuantizados, y el electrón simplemente deja de existir en un punto para aparecer simultáneamente en otro. Este es el famoso “salto cuántico” que tanto desconcierta, y no es un mero problema filosófico, es una realidad que, de momento, no hemos llegado a comprender.

Por mucho que lo piense, no podrá aprovechar los mecanismos del Salto Cuántico para viajar a otras galaxias, de momento, que se sepa, sólo lo hacen electrones que reciben un fotón energético y desaparecen de su orbital para aparecer, de manera inmediata, en otro más cercano al núcleo del átomo pero, sin tener que recorrer la distancia que separaba ambos puntos, el de partida y el de llegado. ¿Por dónde recorrió el camino? Nadie lo sabe.

Pero, ¿quién sabe? Quizás un día lejano aún en el tiempo, cuando descubramos el secreto que este salto cuántico nos esconde, podremos aprovechar la misma técnica que emplea la Naturaleza con los electrones para hacer posible que se transporten de un lugar a otro sin tener que recorrer las distancias que separan ambos destinos.

Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las … ¡elucubraciones mentales que, en el futuro, podrían ser una realidad! Estaría bien poder trasladarse entre las estrellas por ese medio.

Bueno, pongamos los pies en el suelo, volvamos a la realidad. La revolución cuántica ha sido penosa, pero podemos agradecerle que, nos haya librado de muchas ilusiones que afectaban a la visión clásica del mundo. Una de ellas era que el hombre es un ser aparte, separado de la naturaleza a la que en realidad, no es que esté supeditado, sino que es, parte ella. ¡Somos Naturaleza!

Está claro, como nos decía Immanuel Kant que: “La infinitud de la creación es suficientemente grande como para hacer que un mundo, o una Vía Láctea de mundos, parezca, en comparación con ella, lo que una flor o un insecto en comparación con la Tierra.”

Resultado de imagen de Una puerta estelar

             No creo que para 2.100 tengamos una puerta estelar. La imaginación siempre fue por delante de la realidad. Claro que, negar cualquier posibilidad no parece lógico si miramos hacia atrás en el Tiempo y vemos lo que fuimos y lo que somos.

Algún día podríamos desaparecer en una especie anillo de plasma  (¡Por qué no), abriendo una puerta estelar hacia otros mundos, otras estrellas. Creo que la imaginación se nos ha dado para algo y, si todo lo que podemos imaginar… se puede plasmar en realidad… la conclusión lógica es que sólo necesitamos ¡Tiempo!

Resultado de imagen de La Naturaleza en movimiento constante en imagen GIPs

Sí, amigos míos, la Naturaleza vive en constante movimiento y, nosotros, que formamos parte de ella…También.

 

En tiempos y lugares totalmente inciertos,

Los átomos dejaron su camino celeste,

Y mediante abrazos fortuitos,

Engendraron todo lo que existe.

Maxwell

 

Doy las gracias a Timothy Ferris de cuyo libro, la Aventura del Universo, he podido obtener unos bellos pasajes que aquí, quedan incluídos.

emilio silvera