jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La perfección! ¿No serán simples rumores?

Autor por Emilio Silvera    ~    Archivo Clasificado en Belleza sí    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Palabra Breve: La belleza está en todas partes.

Que bello paisaje para ir de paseo no creen? - Mambykumelkalen Instagram posts - Gramho.com

                                        Si sabemos verla, la Belleza está por todas partes

Percy Bysshe Shelley - Wikipedia, la enciclopedia libre

Espíritu de belleza, que has consagrado

Con tus propios matices todo aquello sobre lo que brillas

Del pensamiento o la forma Humanos, ¿adonde has ido?

¿Por qué has desaparecido y abandonado nuestra existencia,

Paul Valéry - Autores

Este oscuro Valle de lágrimas, vacío y desolado

El Universo está construido según un plan

cuya profunda simetría está presente de algún

modo en la estructura interna de nuestro intelecto.

El primero pretende ser un himno a la Belleza intelectual de Shelley y, en el segundo Paul Valery, nos transmite la idea de que, la belleza, forma parte de nuestro intelecto humano que, no simplemente valora lo material sino que, de alguna manera, deja un lugar para la excelencia del mundo.

Resultado de imagen de henri poincaré

    El Joven Henry Poincaré

Algunas veces, los físicos teóricos, como los artistias (uno se siente tentado a decir: como otros artistas) se seguían en su trabajo por preocupaciones estéticas tanto como racionales. “Para hacer ciencia, es necesario algo más que la pura lógica”, escribió Poincaré, quien identificaba este elemeto adicional como la intuición, que supone “el sentido de la belleza matemática”. Heisenberg hablaba de “la simplicidad y belleza” de los esquemas matemáticos que la Naturaleza nos presenta.

Usted también debe hacer sentido esto -le dijo a Einstein, la casi temible simplicidad e integridad de la relación que la Naturaleza repentinamente extiende ante nosotros”. Paul Dirac, el físico teórico ingles y enorme matemático, cuya descripción relativista del electrón está a la altura de las obras maestras de Einstein y Bohr, llegó hasta sostemer que “más importante que nuestras ecuaciones se ajusten a los experimentos es que sean bellas”.

La estética es, evidentemente,  subjetiva, y la afirmación de que los físicos buscan la belleza en sus teorías tiene sentido sólo si podemos definir la Belleza. Afortunadamente, esto se puede hacer, en cierta medida, pues la estética científica está iluminada por ese sol central de la simetría.

La simetría es un concepto venerable y en modo alguno inescrutable, que tiene muchas implicaciones en la ciencia y el arte, mucho después de que el físico chino – norteamericano Chen Ning Yang ganase el Premio Nobel por su trabajo en el desarrollo de una teoría de campos basada en la simetría, aún afirmaba que “no comprendo todavía todo el alcance del concepto de simetría”.

Debajo de las manifestaciones visibles y audibles de simetría hay profundas invariancias matemáticas. Los esquemas espirales que se encuentran en el interior del nautilu, en la superficie de los girasoles, por ejemplo, pueden ser presentados por aproximación medianter la serie de Fibonacci, una operación aritmética en la que cada miembro es igual a la suma de los dos precedentes (, 1, 2, 3, 5, 8, 13, 21, 34, …). La razón creada dividiendo cada número de la serie por el número que le sigue se aproxima al valor 0,618.

No es casual  que esta sea la fórmula de la “sección aurea”, una proporción geométrica que aparece en el Partenón, La Mona Lisa y El nacimiento de Venus de Boticelli, y es la base de la octava que se emplea en la músuca occidental desde el tiempo de Bach.

Qué es la sucesión de Fibonacci? Todo sobre la fórmula de la ...

“La espiral de Fibonacci: una aproximación de la espiral áurea generada dibujando arcos circulares conectando las esquinas opuestas de los cuadrados ajustados a los valores de la sucesión;1​ adosando sucesivamente cuadrados de lado 0, 1, 1, 2, 3, 5, 8, 13, 21 y 34.

La sucesión comienza con los números 0 y 1,​ a partir de estos, «cada término es la suma de los dos anteriores», es la relación de recurrencia que la define.”

 

Toda la fecunda diversidad de esta simetría particular, expresada en infinidad de modos, desde conchas marinas y las piñas hasta el Clave bien  temperado, deriva, por lo tanto, de una sola invariancia, la de la serie de Fibonacci. La comprensión de que una sola simetria abstracta podría tener tantas frustíferas y diversas manifestaciones deleitó a los sabios del Renacimiento, quines la citaban como prueba de la eficacia de las matemáticas y de la sutileza de los designios de la Naturaleza sabia. Desde entonces, otras muchas simetrías abstractas han sido identificadas en la naturaleza -algunas intactas y otras , “rotas” o estropeadas-, y sus efectos parecen incluso extenderse hasta los cimientos mismos de la materia y la energía.

Partenonhombre de Vitruvio (Leonardo) - Cruz - Planta Catedralmanos y simetría

El Partenón de Atenas. La Grecia clásica , fuente de simetría y canon. presente en todas las imágenes de arriba

La palbra simetría en griego, significa “la misma medida” (sun significa “juntos”, como en sinfonía, una unión de sonidos, metrón, “medición”); así, su etimología nos informa que la simetría para los griegos también significa la “debida proporción” , lo que sugiere que la repetición involucrada debe ser armoniosa y placentera; esto indica que una relación simétrica debe ser juzgada por un criterio estético superior. Pero en la ciencia del siglo XX se puso de relieve el primer aspecto de la vieja  definición: se dice que hay simetría cuando una cantidad medible permanece invariante (lo que significa que no cambia) bajo una transformación (que significa una alteración).

Nosotros, casi todos, hemos conocido la simetría en sus manifestaciones geométricas, o, en el Arte. Cuando decimos, por ejemplo, que una esfera tiene una simetrtía de rotación, lo que tratamos de indicar es que poseer unas características -en este caso, su perfil circular- que permanece invariante en las transformaciones producidas al hacerla rotar. Puede hacerlo rotar la esfera en cualquier eje y cualquier grado sin que cambie su perfil, lo cual hace que sea más simétirca, por ejemplo, que un cilibro, que tiene una simetría similarsólo cuando rota alrededor de su eje largo; si rota alrededor de su eje corto, el cilindro se reduce a un círculo.

Korai

Las simetrías son comunes en las esculturas, empezamdo por el desnudo humano, que es (de modo aproximado) bilateralmente simétrico cuando se le contempla de frente o de atrás, y en arquitectura como en los planos de suelo en forma de cruz de las catefrales medievales, y aparecen en todas partes desde el tejido hasta el baile de figuras.

Hay muchas simetrías en la música de Bach, en un pasaje de la Tocata y Fuga en Mi menor (mo he podido encontrar la partitura) traslada arrina y abajo del pentagrama pequeños trios de notas como tiendas de campaña. Excepto con la ocasional diferencia de alguna que otra nota, la construcción tiene una simetría de traslación. Si quitamos un trío cualquiera y lo pusiéramos sobre otro, encajaría perfectamente.

Nos encontramos simetrías en el Universo, en el mundo que habitamos, también en nosotros y, nuestras Mentes, no son una excepción y en ellas subyace una simetría más profunda que trasciende a lo material.

emilio silvera

Cuantas maravillas y, ¡La Mente entre ellas!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

DUALIDAD ONDA - PARTÍCULA EN LA LUZ JUAN PABLO OSPINA LÓPEZ COD ...

¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

¡La Luz! Esa maravilla conformada por fotones
LAS MEJORES IMÁGENES DE ASTRONOMÍA: IMÁGENES 1
        Radiantes estrellas nuevas que brillan con la luz de la “juventud” en el azul ultravioleta de fotones

                      Se puede bajar en PDF

No sería descabellado decir  que las simetrías que vemos a nuestro alrededor, desde un arco iris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría decadimensional original. Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia. Por ejemplo, la fuerza de Gravedad generada por la presencia de la materia, determina la geometría del espacio-tiempo.

Dado el enorme poder de sus simetrías, no es sorprendente que la teoría de supercuerdas sea radicalmente diferente de cualquier otro de física.  De hecho, fue descubierta casi por casualidad. Muchos físicos han comentado que si este accidente fortuito no hubiese ocurrido, entonces la teoría no se hubiese descubierto hasta bien entrado el siglo XXI. Esto es así porque supone una neta desviación de todas las ideas ensayadas en este siglo. No es una extensión natural de tendencias y teorías populares en este siglo que ha pasado; permanece aparte.

Por el contrario, la teoría de la relatividad general de Einstein tuvo una evolución normal y lógica. En primer lugar, su autor, postula el principio de equivalencia. Luego reformuló principio físico en las matemáticas de una teoría de campos de la gravitación basada en los campos de Faraday y en el tensor métrico de Riemann. Más tarde llegaron las “soluciones clásicas”, tales el agujero negro y el Big Bang. Finalmente, la última etapa es el intento actual de formular una teoría cuántica de la gravedad. Por lo tanto, la relatividad general siguió una progresión lógica, un principio físico a una teoría cuántica.

 

                        Geometría → teoría de campos → teoría clásica → teoría cuántica.

Contrariamente, la teoría de supercuerdas ha estado evolucionando hacia atrás su descubrimiento accidental en 1.968. Esta es la razón de que nos parezca extraña y poco familiar, estamos aún buscando un principio físico subyacente, la contrapartida del principio de equivalencia de Einstein.

La teoría nació casi por casualidad en 1.968 cuando dos jóvenes físicos teóricos, Gabriel Veneziano y Mahiko Suzuki, estaban hojeando independientemente libros de matemáticas. Figúrense ustedes que estaban buscando funciones matemáticas que describieran las interacciones de partículas fuertemente interactivas. Mientras estudiaban en el CERN, el Centro Europeo de Física Teórica en Ginebra, Suiza, tropezaron independientemente con la función beta de Euler, una función matemática desarrollada en el S. XIX por el matemático Leonhard Euler. Se quedaron sorprendidos al que la función beta de Euler ajustaba casi todas las propiedades requeridas para describir interacciones fuertes de partículas elementales.

File:Beta function on real plane.png

      Función beta. Representación de la función valores reales positivos de x e y.

Según he leído, durante un almuerzo en el Lawrence Berkeley Laboratory en California, con una espectacular vista del Sol brillando sobre el puerto de San Francisco, Suzuki le explicó a Michio Kaku mientras almorzaban la excitación de , prácticamente por casualidad, un resultado parcialmente importante. No se suponía que la física se pudiera hacer de ese modo casual.

Tras el descubrimiento, Suzuki, muy excitado, mostró el hallazgo a un físico veterano del CERN. Tras oír a Suzuki, el físico veterano no se impresionó. De hecho le dijo a Suzuki que otro físico joven (Veneziano) había descubierto la misma función unas semanas antes. Disuadió a Suzuki de publicar su resultado. Hoy, esta función beta se conoce con el de modelo Veneziano, que ha inspirado miles de artículos de investigación iniciando una importante escuela de física y actualmente pretende unificar todas las leyes de la física.

            Gabriele Veneziano es un físico italiano          Mahiko Suzuki

En 1.970, el Modelo de Veneziano-Suzuki (que contenía un misterio), fue parcialmente explicado cuando Yoichiro Nambu, de la Universidad de Chicago, y Tetsuo Goto, de la Nihon University, descubrieron que una cuerda vibrante yace detrás de sus maravillosas propiedades. Así que, como la teoría de cuerdas fue descubierta atrás y por casualidad, los físicos aún no conocen el principio físico que subyace en la teoría de cuerdas vibrantes y sus maravillosas propiedades. El último paso en la evolución de la teoría de cuerdas (y el primer paso en la evolución de la relatividad general) aún está pendiente de que alguien sea capaz de darlo.

    Así, Witten dice:

“Los seres humanos en el planeta tierra nunca dispusieron del marco conceptual que les llevara a concebir la teoría de supercuerdas de manera intencionada, surgió por razones del azar, por un feliz accidente. Por sus propios méritos, los físicos c del siglo XX no deberían haber tenido el privilegio de estudiar esta teoría muy avanzada a su tiempo y a su conocimiento. No tenían (ni tenemos mismo) los conocimientos y los prerrequisitos necesarios para desarrollar dicha teoría, no tenemos los conceptos correctos y necesarios.”

 

Actualmente, como ha quedado dicho en este mismo , Edwar Witten es el físico teórico que, al frente de un equipo de físicos de Princeton, lleva la bandera de la teoría de supercuerdas con aportaciones muy importantes en el desarrollo de la misma. De todas las maneras, aunque los resultados y avances son prometedores, el camino por andar es largo y la teoría de supercuerdas en su conjunto es un edificio con muchas puertas cerradas de las que no tenemos las llaves acceder a su interior y mirar lo que allí nos aguarda.

Ni con colección de llaves podremos abrir la puerta que nos lleve a la Teoría cuántica de la gravedad que, según dicen, subyace en la Teoría M, la más moderna versión de la cuerdas expuesta por E. Witten y que, según contaron los que estuvieron presentes en su presentación, Witten les introdujo en un “universo” fascinante de inmensa belleza que, sin embargo, no puede ser verificado por el experimento.

El problema está en que nadie es lo suficientemente inteligente para resolver la teoría de campos de cuerdas o cualquier otro enfoque no perturbativo de teoría. Se requieren técnicas que están actualmente más allá de nuestras capacidades. Para encontrar la solución deben ser empleadas técnicas no perturbativas, que son terriblemente difíciles. Puesto que el 99 por ciento de lo que conocemos sobre física de altas energías se basa en la teoría de perturbaciones, esto significa que estamos totalmente perdidos a la hora de encontrar la verdadera solución de la teoría.

¿Por qué diez dimensiones?

Uno de los secretos más profundos de la teoría de cuerdas, que aún no es bien comprendido, es por qué está definida sólo en diez, once y veintiséis dimensiones. Si calculamos cómo se rompen y se vuelven a juntar las cuerdas en el espacio N-dimensional, constantemente descubrimos que pululan términos absurdos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos indeseados aparecen multiplicados por (N-10). Por consiguiente, para hacer que desaparezcan estas anomalías, no tenemos otra elección cuántica que fijar N = 10. La teoría de cuerdas, de hecho, es la única teoría cuántica conocida que exige completamente que la dimensión del espacio-tiempo esté fijada en un único, el diez.

Por desgracia, los teóricos de cuerdas están, por el momento, completamente perdidos explicar por qué se discriminan las diez dimensiones.  La respuesta está en las profundidades de las matemáticas, en un área denominada funciones modulares.

Al manipular los diagramas de lazos1 de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el 10 aparecen en los lugares más extraños. Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del este. Quizá si entendiéramos mejor el trabajo de este genio indio, comprenderíamos por qué vivimos en nuestro universo actual.

Qué es la teoría de cuerdas? – Ciencia de Sofá

                      Como nunca nadie ha visto las “cuerdas” cada cual la imagina a su manera

Cuando nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de , es imposible verificarla.

Amazon.com: Srinivasa Ramanujan (9788172867584): Sydney Srinivas ...

Una serie particularmente importante ya que ha sido usada para obtener dos mil millones de cifras del número pi

El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.

Dispersas oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. extraña función contiene un término elevado a la potencia veinticuatro.

Ramanujan

                                La magia esconde una realidad

El 24 aparece repetidamente en la obra de Ramanujan. Este es un ejemplo de lo que las matemáticas llaman números mágicos, que aparecen continuamente donde menos se esperan por razones que nadie entiende.   Milagrosamente, la función de Ramanujan aparece también en la teoría de cuerdas. El número 24 que aparece en la función de Ramanujan es también el origen de las cancelaciones milagrosas que se dan en la teoría de cuerdas.  En la teoría de cuerdas, cada uno de los veinticuatro modos de la función de Ramanujan corresponde a una vibración física de la cuerda. Cuando quiera que la cuerda ejecuta sus movimientos complejos en el espacio-tiempo dividiéndose y recombinándose, deben satisfacerse un gran número de identidades matemáticas altamente perfeccionadas. Estas son precisamente las entidades matemáticas descubiertas por Ramanujan. Puesto que los físicos añaden dos dimensiones más cuando cuentan el número total de vibraciones que aparecen en una teoría relativista, ello significa que el espacio-tiempo debe tener 24 + 2 = 26 dimensiones espacio-temporales.

comprender este misterioso factor de dos (que añaden los físicos), consideramos un rayo de luz que tiene dos modos físicos de vibración. La luz polarizada puede vibrar, por ejemplo, o bien horizontal o bien verticalmente. Sin embargo, un campo de Maxwell relativista Aµ cuatro componentes, donde µ = 1, 2, 3, 4. Se nos permite sustraer dos de estas cuatro componentes utilizando la simetría gauge de las ecuaciones de Maxwell.  Puesto que 4 – 2 = 2, los cuatro campos de Maxwell originales se han reducido a dos. Análogamente, una cuerda relativista vibra en 26 dimensiones.  Sin embargo, dos de estos modos vibracionales pueden ser eliminados rompemos la simetría de la cuerda, quedándonos con 24 modos vibracionales que son las que aparecen en la función de Ramanujan.

f(a,b) = \sum_{n=-\infty}^\infty
a^{n(n+1)/2} \; b^{n(n-1)/2}

“En matemática, la función theta de Ramanujan generaliza la forma de las funciones theta de Jacobi, a la vez que conserva sus propiedades generales. En particular, el producto triple de Jacobi se puede escribir elegantemente en términos de la función theta de Ramanujan. La función toma nombre de Srinivasa Ramanujan, y fue su última gran contribución a las matemáticas.”

 

¡La Ciencia! ¿Cómo podríamos definirla?

Como un revoltijo de hilos entrecruzados que son difíciles de seguir, así son las matemáticas de la teoría de cuerdas

Cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el 8. Por lo tanto, el número crítico para la supercuerda es 8+2=10. Este es el origen de la décima dimensión que exige la teoría. La cuerda vibra en diez dimensiones porque requiere estas funciones de Ramanujan generalizadas para permanecer auto consistente. Dicho de otra manera, los físicos no tienen la menor idea de por qué 10 y 26 dimensiones se seleccionan como dimensión de la cuerda. Es como si hubiera algún tipo de numerología profunda que se manifestara en estas funciones que nadie comprende. Son precisamente estos números mágicos que aparecen en las funciones modulares elípticas los que determinan que la dimensión del espacio-tiempo sea diez.

En el análisis final, el origen de la teoría decadimensional es tan misterioso como el propio Ramanujan. Si alguien preguntara a cualquier físico del mundo por qué la naturaleza debería existir en diez dimensiones, estaría obligado a responder “no lo sé”. Se sabe en términos difusos, por qué debe seleccionarse alguna dimensión del espacio tiempo (de lo contrario la cuerda no puede vibrar de una cuánticamente autoconsistente), pero no sabemos por qué se seleccionan estos números concretos.

Ghhardy@72.jpg

               Godfrey Harold Hardy

G. H. Hardy, el mentor de Ramanujan,  trató de estimar la capacidad matemática que poseía Ramanujan.   Concedió a David Hilbert, universalmente conocido y reconocido uno de los mayores matemáticos occidentales del siglo XIX, una puntuación de 80.   A Ramanujan le asignó una puntuación de 100.  Así mismo, Hardy se concedió un 25.

Por desgracia, ni Hardy ni Ramanujan parecían interesados en la psicología a los procesos de pensamiento mediante los cuales Ramanujan descubría estos increíbles teoremas, especialmente cuando diluvio material brotaba de sus sueños con semejante frecuencia.   Hardy señaló:

“Parecía ridículo importunarle sobre como había descubierto o ese teorema conocido, cuando él me estaba mostrando media docena cada día, de nuevos teoremas”.

 

Srinivasa Ramanujan y la teoría de cuerdas | Miki's Blog ...

                                                 Ramanujan

Hardy recordaba vivamente:

-”Recuerdo una vez que fui a visitarle cuando estaba enfermo en Putney.  Yo había tomado el taxi 1.729, y comenté que el numero me parecía bastante feo, y que esperaba que no fuese mal presagio.”

– No. -Replicó Ramanujan postrado en su cama-. Es un número muy interesante; es el número más pequeño expresable una suma de dos cubos en dos formas diferentes.

(Es la suma de 1 x 1 x 1  y 12 x 12 x 12, y la suma de 9 x 9 x 9  y  10 x 10 x 10).

Era capaz de recitar en el acto teoremas complejos de aritmética cuya demostración requeriría un ordenador moderno.

En 1.919 volvió a casa, en la India, donde un año más tarde murió  enfermo.

El legado de Ramanujan es su obra, que consta de 4.000 fórmulas en cuatrocientas páginas que llenan tres volúmenes de notas, todas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario o, lo que es más frustrante, sin ninguna demostración.  En 1.976, sin embargo, se hizo un nuevo descubrimiento.   Ciento treinta páginas de borradores, que contenían los resultados del último año de su vida, fueron descubiertas por casualidad en una caja en el Trinity Collage.   Esto se conoce ahora con el de “Cuaderno Perdido” de Ramanujan.

Comentando cuaderno perdido, el matemático Richard Askey dice:

“El de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”.  Lo que él consiguió era increíble.  Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.

 

Por mi parte creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna,   la única capaz de unir la mecánica quántica y la Gravedad.

        Fórmula de Ramanujanpara  determinar los decimales de pi

Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca vísto, él trabajaba otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie.   Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro.   Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.

Como saben los físicos, los “accidentes” no aparecen sin ninguna razón.  Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente.  Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego.  Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.

                                       Nuestro mundo asimétrico hermosas simetrías

Aquí es precisamente donde entra el trabajo de Ramanujan.  Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan.  ¡Increíble!   Pero, cierto.

Aunque el perfeccionamiento matemático introducido por la teoría de cuerdas ha alcanzado alturas de vértigo y ha sorprendido a los matemáticos, los críticos de la teoría aún la señalan su punto más débil.  Cualquier teoría, afirman, debe ser verificable.   Puesto que ninguna teoría definida a la energía de Planck de 1019 miles de millones de eV es verificable, ¡La teoría de cuerdas no es realmente una teoría!

El principal problema, es teórico más que experimental.  Si fuéramos suficientemente inteligentes, podríamos resolver exactamente la teoría y encontrar la verdadera solución no perturbativa de la teoría.  Sin embargo, esto no nos excusa de encontrar algún medio por el que verificar experimentalmente la teoría, debemos esperar señales de la décima dimensión.

Volviendo a Ramanujan…

Es innegable lo sorprendente de su historia, un muchacho pobre con escasa preparación y arraigado como pocos a sus creencias y tradiciones, es considerado como una de los mayores genios de las matemáticas del siglo XX. Su legado a la teoría de números, a la teoría de las funciones theta y a las series hipergeométricas, además de ser invaluable aún sigue estudiándose por muchos prominentes matemáticos de todo el mundo. Una de sus fórmulas más famosas es la que aparece más arriba en el lugar número 21 de las imágenes expuestas y utilizada para realizar aproximaciones del Pi con más de dos millones de cifras decimales. Otra de las sorprendentes fórmulas descubiertas por Ramanujan es un igualdad en que era “casi” un número entero (la diferencia era de milmillonésimas). De hecho, durante un tiempo se llegó a sospechar que el número era efectivamente entero. No lo es, pero este hallazgo sirvió de base la teoría de los “Cuasi enteros”. A veces nos tenemos que sorprender al comprobar hasta donde puede llegar la mente humana que, prácticamente de “la nada”, es capaz de sondear los misterios de la Naturaleza para dejarlos al descubierto ante nuestros asombros ojos que, se abren como platos ante tales maravillas.

Publica: emilio silvera

Para saber más: “HIPERESPACIO”, de Michio Kaku,( 1996 CRÍTICA-Grijalbo Mondadori,S.A. Barcelona) profesor de física teórica en la City University de Nueva York. Es un especialista a nivel mundial en la física de las dimensiones superiores ( hiperespacio). Despide el libro con unas palabras preciosas:
”Algunas personas buscan un significado a la vida a través del beneficio, a través de las relaciones personales, o a través de experiencias propias. Sin embargo, creo que el estar bendecido con el intelecto para adivinar los últimos secretos de la naturaleza da significado suficiente a la vida”.