miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El vacío superconducto – La máquina de Higgs-Kibble

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (11)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Higgs-Kibble II

 

Qué aspecto tienen las partículas? – Ciencia de Sofá

 

Lo único que no resulta ser lo mismo cuando se mira a través del microscopio (o, en la jerga de la física teórica, cuando se realiza una transformación de escala) es la masa de la partícula. Esto se debe a que el alcance de la fuerza parece mayor a través del microscopìo y, por lo tanto, la masa de la partícula parece ser menor. Nótese que esta situación es la opuesta a la que se presenta en vida corriente donde un grano de arena parece mayor -¿más pesado, por lo tanto?- cuando se observa con un microscopio.

Fotos de la arena a nivel microscópico

                                          Granos de arena vistos al microscopio

Una consecuencia de todo esto es que en una teoría de Yang-Mills el termino de masa parece desaparecer cuando se realiza una transformación de escala, lo que implica que a través del microscopio se recupera la invariancia gauge. Esto es lo que causa la dificultad con la que se enfrentó Veltman. ¿Se puede observar directamente el potencial vector de Yang-Mills? Parece que puede observa4rse en el mundo de las cosas grandes, pero no en el mundo de lo pequeño. Esto es una contradicción y es una raz´`on por la que ese esquema nunca ha podido funcionar adecuadamente.

En 2009, la empresa canadiense D-Wave Systems, conjuntamente con la NASA, desarrolló un ordenador cuántico de 128 cubits. Rainer contiene 128 dispositivos físicos (pequeños aros de metal niobidio) que a muy baja temperatura actúan como sistemas cuánticos con dos niveles (es decir, cubits) como consecuencia de la superconductividad.

¡Había una salida! Pero ésta procede de una rama muy diferente de la física teórica, la física de los metales a muy bajas temperaturas. A esas temperaturas, los “fenómenos cuánticos” dan lugar a efectos muy sorprendentes, que se describen con teorías cuánticas de campos, exactamente iguales a las que se utilizan en la física de partículas elementales. La física de partículas elementales no tienen nada que ver con la física de bajas temperaturas, pero las matemáticas son muy parecidas.

La primera imagen de la estructura orbital un átomo de hidrógeno ...

                                         La primera imagen del átomo de Hidrógeno

En algunos materiales, el “campo” que se hace importante a temperaturas muy bajas podría ser el que describe cómo los átomos oscilan alrededor de sus posiciones de equilibrio, o el que describe a los electrones en este tipo de material. A temperaturas muy baja nos encontramos con los “cuantos” de esos campos. Por ejemplo, el “fonón” es el cuanto del sonido. Su comportamiento recuerda al fotón, el cuanto de la luz, salvo que los números son muy diferentes: los fonones se propagan con la velocidad del sonido, a cientos o quizá miles de metros por segundo, y los fotones lo hacen a la velocidad de la luz que es de 300.000 km/s, ¡aproximadamente un millón de veces más deprisa! Las partículas elementales en las que estamos interesados generalmente tienen velocidades cercanas a las de la luz.

tiempo

El fonon es la partícula elemental del sonido, como el foton lo es en la luz...

Uno de los “fenómenos cuánticos” más espectaculares que tienen lugar en los materiales muy fríos es la llamada sup-erconductividad, fenómeno consistente en el hecho de que la resistencia que presenta ese material al paso de la corriente eléctrica se hace cero. Una de las consecuencias de ese estado es que el material no admite la más mínima diferencia de potencial eléctrico, porque ésta sería inmediatamente neutralizada por una corriente eléctrica “ideal”. El material tampoco admite la presencia de campos magnéticos porque, de acuerdo con las ecuaciones de Maxwell, la creación del campo magnético está asociada con una corriente eléctrica inducida, que al no encontrar resistencia neutralizaría completamente el campo magnético. Por lo tanto, en el interior de un superconductor no se puede crear ni un campo electrónico ni magnético. Esta situación sólo cambia si las corrientes inducidas son muy elevadas, como ocurre cuando se somete el superconductor a los campos de imanes muy potentes y que perturban el material. No siendo capaz de resistir una fuerza tan brutal, pierde la súper-conductividad y se rinde permitiendo la existencia de un campo magnético en su interior.

Cargador inalámbrico levita a tu teléfono mientras lo cargas
        El metal flotante gracias a su suerconductividad

¿Pero, qué tiene que ver un superconductor con las partículas elementales? Bien, un material superconductor se puede entender como un sistema en el cual el campo electromagnético es un campo de muy corto alcance. Está siendo apantallado y, sin embargo, es un campo de Maxwell, un campo gauge. ¡Esto es lo que hace interesante un superconductor para alguien que quiera describir la interacción débil entre partículas como una teoría gauge! ¡Qué característica tan bella de la física teórica! Se pueden comparar dos mundos completamente diferentes simplemente porque obedecen a las mismas ecuaciones matemáticas.

¿Cómo funciona un superconductor? La verdadera causa de este fenómeno peculiar la descubrieron John Bardeen, Leon N. Cooper y John R. Schrieffer por lo que recibieron el premio Nobel en 1972). Los electrones de un trozo sólido de material tienen que reunir al mismo tiempo dos condiciones especiales para dar lugar a la superconductividad: la primera es apareamiento y la segunda condensación de Bose.

“Apareamiento” significa que los electrones forman pares y actúan en pares, y los que producen la fuerza que mantiene los pares unidos son los fonones. En cada par, los electrones rotan alrededor de su propio eje, pero en direcciones opuestas, de manera que el par (llamado “par de Cooper”), en su conjunto, se comporta como si no tuviera rotación (“momento angular”). Así, un par de Cooper se comporta como una “partícula” con espín 0 y carga eléctrica.

La “condensación de Bose” es un fenómeno típicamente mecánico-cuántico. Sólo se aplica a partículas con espín entero (bosones). Al igual que los lemmings, los bosones se agrupan juntos en el estado de menor energía posible, Recuérdese que a los bosones les gusta hacer a todos la misma cosa. En este estado todavía se puede mover, pero no pueden perder más energía y, en consecuencia, no sufren ninguna resistencia a su movimiento. Los pares de Cooper se mueven libremente, de manera que pueden crear corrientes eléctricas que no encuentran ninguna resistencia. Un fenómeno parecido tiene lugar en el helio líquido a muy bajas temperaturas. Aquí los átomos de helio forman una condensación de Bose y el líquido que forman puede fluir a través de los agujeros más pequeños sin la más mínima resistencia.

GRUPO DE CONDENSADOS DE BOSE-EINSTEIN6. Condensado Férmico - Estados de AgregacionCondensado de Bose-Einstein: ¿Los Condensados de Bose-Einstein se ...Condensado de Bose-Einstein: Galeria

                      Condensado de Bose-Einstein

Como los electrones por separado tienen espín ⅟₂ no pueden sufrir una condensación de Bose. Las partículas cuyo espín es igual a un entero más un medio (fermiones) tienen que estar en estados cuánticos diferentes debido al principio de exclusión de Pauli. Esta es la razón por la que la superconductividad sólo se puede producir cuando se forman pares. Sí, comprendo que estas afirmaciones le sugerirán varias preguntas y me disculpo por adelantado, pero de nuevo he traducido fórmulas a palabras, lo que implica que el razonamiento pueda parecer poco satisfactorio. ¡Simplemente tome esto como una cierta “lógica cuántica” difícil de manejar! Fueron el belga François Englert, el americano Robert Brout y el inglés Peter Higgs los que descubrieron que la superconductividad podría ser importante para las partículas elementales. Propusieron un modelo de partículas elementales en el cual partículas eléctricamente cargadas, sin espín, sufrían una condensación de Bose. Esta vez, sin embargo, la condensación no tenía lugar en el interior de la materia sino el vacío. Las fuerzas entre las partículas tenían que ser elegidas de tal manera que se ahorrara más energía llenando el vacío de estas partículas que dejándolo vacío. Estas partículas no son directamente observables, pero podríamos sentir el estado, en cuyo espacio y tiempo están moviéndose las partículas de Higgs (como se las conoce ahora) con la mínima energía posible, como si el espacio tiempo estuviera completamente vacío.

Haber encontrado el bosón de Higgs puede resolver el misterio de la composición de masa de todos los objetos. Esta masa está presente en las partículas subatómicas y sin ellas la materia sólida no podría existir. El bosón de Higgs está relacionado a un campo energético, que se llama el campo de Higgs, el mismo que está presente en todo el universo de igual forma como el agua inunda una piscina. Es formando parte de ese campo, que las diversas partículas, como los protones, neutrones, electrones y otras, adquieren su masa. Las partículas más pequeñas encuentran menos dificultades para desplazarse, y las más grandes lo hacen con mayor dificultad. De todas las maneras, quedan muchas por explicar. Fandila nos prguntaba que,dónde adquiere su masa el mismo Bosón de Higgs?

Partícula Higgs-boson y el origen del universo - National ...Bosón de Higgs (Teoría de La Partícula de Dios): Qué Es y Cómo ...

Las partículas de Higgs son los cuantos del “campo de Higgs”. Una característica de este campo es que su energía es mínima cuando el campo tiene una cierta intensidad, y no cuando es nulo. Lo que observamos como espacio vacío no es más que la configuración de campo con la menor energía posible. Si pasamos de la jerga de campos a la de partículas, esto significa que el espacio vacío está realmente lleno de partículas de Higgs que han sufrido una condensación Bose”.

Este espacio vacío tiene muchas propiedades en común con el interior de un superconductor. El campo electromagnético aquí también es de corto alcance. Esto está directamente relacionado con el hecho de que, en tal mundo, el fotón tiene una cierta masa en reposo.

Y aún tenemos una simetría gauge completa, es decir, la invariancia gauge no se viola en ningún sitio. Y así, sabemos cómo transformar un fotón en una partícula “con masa” sin violar la invariancia gauge. Todo lo que tenemos que hacer es añadir estas partículas de Higgs a nuestras ecuaciones.

La razón por la que el efecto de invariancia gauge en las propiedades del fotón es tan diferente ahora es que las ecuaciones están completamente alteradas por la presencia del campo de Higgs en nuestro estado vacío. A veces se dice que “el estado vacío rompe la simetría espontáneamente”. Esto no es realmente correcto, pero el fenómeno está muy relacionado con otras situaciones en las que se produce espontáneamente una rotura de simetría.

Higgs sólo consideró campos electromagnéticos “ordinarios”, pero, desde luego, sabemos que el fotón ordinario en un vacío auténtico no tiene masa en reposo. Fue Thomas Kibble el que propuso hacer una teoría de Yang-Mills superconductora de esta forma, simplemente añadiendo partículas sin espín, con carga de Yang-Mills en vez de carga ordinaria, y suponer que estas partículas podían experimentar una condensación de Bose. Entonces el alcance de las interacciones de Yang-Mills se reduce y los fotones de Yang-Mills se convierten en partículas con espín igual a 1 y masa distinta de cero.

La discontinuidad manifiesta junto con la invariancia de escala (autosemejanza), que presenta la energía de las fluctuaciones del vacío cuántico. Las consecuencias de la existencia del cuanto mínimo de acción fueron revolucionarios para la comprensión del vacío. Mientras la continuidad de la acción clásica suponía un vacío plano, estable y “realmente” vacío, la discontinuidad que supone el cuanto nos dibuja un vacío inestable, en continuo cambio y muy lejos de poder ser considerado plano en las distancias atómicas y menores. El vacío cuántico es de todo menos vacío, en él la energía nunca puede quedar estabilizada en valor cero, está fluctuando sobre ese valor, continuamente se están creando y aniquilando todo tipo de partículas, llamadas por eso virtuales, en las que el producto de su energía por el tiempo de su existencia efímera es menor que el cuanto de acción. Se llaman fluctuaciones cuánticas del vacío y son las responsables de que exista un campo que lo inunda todo llamado campo de punto cero.

Algunos físicos proponen una controvertida teoría en la que un extraño tipo de materia, el Singlet de Higgs, se movería hacia el pasado o el futuro en el LHC. ¡Qué imaginación! Claro que, puestos a imaginar…

Bien sabido es que mientras más profundizamos en el conocimiento de los secretos del mundo que nos rodea, más interrogantes y misterios sin resolver se nos muestran. Cada vez que abrimos una puerta, llegamos a una habitación que tiene otras muchas por abrir. Es la búsqueda incesante del hombre, su insoslayable afán por saber el por qué, el cómo y el cuándo de todas las cosas.

¿Estaremos entrando en una especie de locura?

Bueno…

Por su parte, el científico británico Peter Higgs, de 80 años, que dio su nombre a la llamada “partícula divina” en 1964, afirmó que cree que su Bosón seríaá hallado gracias al Gran Colisionador. “Creo que es bastante probable” dijo pocas horas después de que entrara en funcionamiento el gigantesco acelerador. Y, según parece, se está saliendo con la suya.

Monografias.com

De todas las maneras,  estaría bien saber, a ciencia cierta, cómo es el campo de Higgs del que toman la masa todas las partículas, y conocer, mediante que sistema se transfieren la masa, o, si cuando las partículas entran en el campo de Higgs e interracionan con él, es el efecto frenado el que les otorga la masa como nos dice nuestro amigo Ramón Marques en su teoría.

emilio silvera

Trabajo de José C Gómez

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

aas236-aas.ipostersessions.com/Default.aspx?s=C2-34-2A-5A-7E-46-E7-08-E9-0E-FB-BC-DD-09-E6-51

Calculo de la emisión de fotones  dentro de la geometría del Espacio-Tiempo para un átomo de Hidrógeno, que realiza nuestro contertulio Hydrogen energies and spectrumLosé C. Gómez para que lo podamos ver todos los amigos del lugar.

“El átomo de hidrógeno sólo puede emitir o absorber fotones con una energía bien definida. … El átomo de hidrógeno también puede absorber energía que le permite de pasar de un nivel inferior de energía a un nivel superior, por ejemplo absorbiendo un fotón.”

Arriba tenéis el enlace del trabajo que os recomiendo.

Saludos.

 

Si la respuesta es…¡El Universo! ¿Cuál es la pregunta?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo Hiperdimensional    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las dos estrellas alumbran a este mundo que, está siendo sometido a doble fuerza de gravedad que les viene del exterior, y, además, tiene que soportar la suya propia, la que genera su masa… ¿Cómo podrían vivir los posibles habitantes de mundos así. Lo cierto es que sería bonito ,ver la salida y la puesta del Sol de dos estrellas distintas desde tu mundo.

La NASA descubre un nuevo planeta con dos soles, como Tatooine en ...

Tatooine, el icónico planeta del universo Star Wars en el que Luke Skywalker ve el atardecer de dos soles.

La NASA descubre un nuevo planeta con dos soles, como Tatooine en ...

La NASA ha descubierto mundo9s que también tenían dos “soles”

El pensamiento “generalizado” hoy en día en la mayoría de los astrónomos, astrofísicos y demás científicos afines a la ciencia del Universo, es que, pueden existir miles de planetas habitados dentro de nuestra propia Galaxia, la Vía Láctea. Ahora sabemos que el Universo no conoce límite alguno ni en el espacio ni en el Espacio-tiempo que, según todos los indicios, ha estado expandiéndose durante 13.700 millones de años que, es un período de tiempo más que suficiente para que las estrellas que han exisitido desde entonces, tuvieran el tiempo necesario para producir todos los elementos que conocemos y que hicieron posible el surgir de la vida aquí en la Tierra y…probablemente, en “otras Tierras” que en la Galaxia Vía Láctea estén, y, de la misma manera, en los miles de millones de galaxias que pueblan el vasto universo que hemos llegado a conocer.

Blog de la Iglesia Adventista de Portales: ¿Hay vida en otros mundos?

Ni podemos imaginar lo que pueda estar presente en otros mundos que, como la Tierra, esté en la zona habitable de su estrella y de cobijo a criaturas fascinantes.

I. LA METAGALAXIA

            Inmensas Nebulosas y galaxias espirales que contribuyen a la presencia de vida

Más allá de la metagalaxia, a la que pertenecen todos los sistemas galácticos que conocemos, tienen, necesariamente, que existir otros mundos que, como el nuestro, estén habitados por seres de toda índole y pelaje, inteligentes también. La metagalaxia consta de hipergalaxias, es decir, de grupos de sistemas galácticos. Nuestro sistema galáctico consta cuenta con dos “satélites”: la Gran Nebulosa de Magallanes, distante 38.000 Parsec de nosotros y la Pequeña Nebulosa de Magallanes, a 36.000 Parsecs. La Nebulosa de Andrómeda es un sistema compuesto por cinco galaxias.

Estructura Del Universo

Por lo general existen “puentes” de estrellas entre galaxias que constituyen un grupo. Se podría decir que que los grupos de galaxias estarían unidos por hilos de estrellas de manera tal que, muchas veces, nos cuesta trabajo asegurar a qué galaxia pertenece una estrella determinada.

http://apod.nasa.gov/apod/image/1108/NGC7331_crawford900c.jpg

Tengo la suerte de que, Ken Crawford (Rancho Del Sol Obs.), me envíe regularmente imágines que obtiene en su Observatorio, y, en esta ocasión, recibí la imagen de la gran y bella galaxia espiral NGC 7331 que es a menudo vendida como una análoga a nuestra Vía Láctea. Está situada a 50 millones de años luz de distancia en la norteña constelación de Pegaso. En la imagen podemos vislumbrar otras galaxias que achican su imagen debido a que sus distancias están mucho más alejadas de nosotros.

Astrónomos descubren una galaxia muy antigua cerca de la Vía ...

Hyperion: el proto super cúmulo de galaxias más grande conocido 

Constelación De Virgo: Cómo Ubicar, Principales Estrellas Y Mito ...Virgo | Comprarunaestrella.es Blog

La Constelación de Virgo cuenta con más de 3.000 galaxias, la Cabellera de Berenice con más de 10.000. Las supergalaxias tienen un diámetro de 30 o 40 megaparsecs. No conocemos el número exacto de supergalaxias cuyos conjuntos constituyen las megagalaxias. Y, sin embargo, la metagalaxia es sólo una pequeña fracción del “universo infinito” de un universo que, para nuestro tiempo, se podría decir que existe desde la eternidad y que existirá también eternamente (aunque sabemos que no es así), al menos nos lo puede parecer.

Nuestro Universo está cuajado de maravillas como ésta. La Galaxia de la rueda de la carreta (también conocido bajo el nombre de ESO 350-40) es una galaxia lenticular o anular situada a cerca de 500 millones de años luz de distancia en la constelación del escultor en el hemisferio meridional. Es rodeada de un anillo de 150 000 años de luz de diámetro, compuesto de estrellas jóvenes y brillantes. Esta galaxia era una galaxia idéntica a la Vía láctea antes de que sufra una colisión frontal con una galaxia vecina. Cuando galaxia vecina atravesó la Galaxia Cartwheel, la fuerza de la colisión causó una onda de choque poderosa sobre la galaxia, como una piedra echada en las tranquilas aguas de un estanque. Desplazándose a gran velocidad, este onda de choque barrió el gas y el polvo, creando así un halo alrededor de la parte central de la galaxia quedada indemne. Esto explica la nube azul alrededor del centro, la parte más brillante.

3. Rueda de carreta. La peculiar morfología de esta galaxia-anillo ...

Observando la imagen con su collar de perlas azulado compuesto por brillantes y radiantes estrellas, nos hablan de una ingente producción de elementos complejos que, en el futuro, pasarán a formar parte de los mundos nuevos y, en ellos, con el tiempo, surgirá también la vida nueva de vaya usted a saber qué criaturas.

El Universo es una maravilla, y, cualquier objeto que podamos mirar nos podrá llevar al más alto grado de éstaxis. A mí me pasó con la luna Titán que visto a contraluz por la nave Cassini en órbita alrededor de Saturno. La atmósfera dispersa la luz del Sol mostrando un anillo completo mientras se filtra por las capas más altas. En este pequeño mundo de ríos de metano y atmósfera imposible, se han puesto altas esperanzas de que, en un futuro, pudiera surgir allí la vida. Es similar a nuestra Tierra de hace algunos millones de años.

El cúmulo de galaxias MACS J0717 localizado a 5400 millones de años luz, en una imagen lograda combinando datos ópticos del Hubble y en rayos-x del Chandra, muestra a cuatro cúmulos colisionando. Si hemos podido llegar hasta aquí, una voz en nuestra mente pregunta: ¿Hasta dónde podremos llegar?

La galaxia NGC 55, fotogafiada por el observatorio de La Silla utilizando el Wide Field Imager del telescopio de 2.2 metros MPG/ESO. ¿Cuántos mundos estarán ahí presentes? y, ¿tendrá alguno presencia de vida?

Arp 261, un par de galaxias localizadas a 70 millones de años luz, fotografiadas por el instrumento FORS2 del VLT en Cerro Paranal. La riqueza de la imagen nos puede llevar (mediante un estudio profundo) a saber lo mucho que en ella está presente, estrellas surgidas de inmensas nubes de gas interestelar, mundos nuevos llenos e promesas futuras y, otros, más viejos que, pudieran tener los vestigios de Civilizaciones perdidas.

http://chandra.harvard.edu/photo/2009/medusa/medusa.jpg

NGC 4194, la Galaxia Medusa, el resultado de la colisión entre dos galaxias, mostrada con datos ópticos del Telescopio Hubble y datos en rayos-x del Telescopio Chandra. La imagen nos habla de vestigios que están en el universo y nos cuentan dramáticas historias de galaxias que dejaron de existir para convertirse en otra nueva que, conteniendo materiales más compkejos que aquellas primarias, hacen posible el surgir de estrellas cuyos materiales son más sofisticados que el simple hidrógeno, y, de esas estrellas descendientes de algunas generaciones anteriores…qué materiales podrán salir?

Fitxer:Rupes Tenuis perspective view ESA240369.jpg - Viquipèdia, l ...Late increase of the CO 2 ice signature on Rupes Tenuis. Variation ...

SincSolsticio de verano en el Polo Norte de Marte | Stellarscout

Hemos podido admirar, la región de Rupes Tenuis fotografiada por la Mars Express de la ESA, mostrando gran cantidad de nieve sobre el polo marciano. Marte, el planeta hermano, nos tiene que dar muchas sorpresas y, a no tardar mucho (menos de 30 años), podremos por fín cobrar la apuesta del café que hice con algunos amigos sobre si había o no alguna clase de vida en aquel mundo.

Grupo Compacto Hickson 90 |

El trío de galaxias Hickson 90, un grupo compacto localizado en la constelación de Piscis Austrinus a 100 millones de años luz del Sol. Fotografiado por el Telescopio Espacial Hubble. Viendo objetos como los de arriba, podríamos preguntarnos: ¿Cuándo dejará de sorprendernos el Universo? ¡Es tanta su riqueza!

Tycho's Supernova Remnant

La supernova de Tycho, localizada en Cassiopeia y mostrada en una imagen tomada en rayos-x por el telescopio Chandra y en luz infrarroja por el telescopio Spitzer. No por haberla visto muchas veces deja de sorprendernos, esa masa inmensa que, como remanante de los restos de una estrella masiva, nos muestra los filamentos de plasma que crean campos magnéticos a su alrededor sin importar el tiempo transcurrido desde el suceso. En dicha explosión se produjeron miles de toneladas de oro y plantino que regaron el espacio interesrtelar para formar parte, más tarde, de algún mundo perdido.

La siempre fascinante Eta Carinae está escondida destrás de una de las nebulosas más grandes y brillantes del cielo en una imagen tomada desde La Silla utilizando el ESO/MPG de 2.2 metros. Aquí contemplamos parte de la Nebulosa, la estrella, una de las más grandes conocidas (unas 100 masas solares) parece que está a punto de explotar, y, sus consecuencias, podrían ser impredecibles.

M101

La galaxia espiral M 101, localizada a 22 millones de años luz, en una imagen compuesta por datos del telescopio Chandra, el telescopio Hubble y el telescopio Spitzer. La bella y enorme galaxia está cuajada de estrellas nuevas y otras que no lo son tanto. El conjunto parece una luminaria de feria, la radiación que se expande por toda la galaxia no parece que sea un lugar muy seguro. Prefiero nuestra Vía Láctea.

Unusual Spiral NGC 4921 in the Coma Galaxy Cluster

Atípica y extraña Galaxia. Una nueva imagen del Telescopio Espacial Hubble revela finos detalles de la galaxia espiral NGC 4921 y los objetos circundantes de fondo. La diversidad en el Universo es la norma y, por mucho que podamos pensar en objetos extraños que puedan existir, ahí estarán.

Una imagen que combina luz visible y rayos-x muestra la actividad del agujero negro supermasivo en la galaxia Centaurus A. Los Agujeros Negros que pueden contener miles y millones de masas solares, son tan peligrosos que, nada de lo que deambule por sus alrededores estará seguro. Se engulle toda la materia que caiga en su radio de acción, su fuerza de gravedad es descomunal y, por mucho que queramos correr, nos atrapará. Ya sabeis, ni la luz es capaz de burlar su fuerza de atracción.

NGC 604

¡Increíble región de formación estelar! NGC 604, una zona formación estelar en la galaxia M 33. Imagen capturada en alta resolución por el telescopio espacial de rayos-x Chandra. No podeis ni imaginar la enorme cantidad de estrellas jovenes y masivas que están ahí presentes, sus emisiones de radiación ultravioleta producen fuertes vientos solares que dibujan las formas de las nubes cirundantes formando arabescas figuras de gas ionizado por el ultravioleta que tiñe de azul toda la región.

La variedad está servida, el prolífico Universo nos suministra de toda clase de objetos activos que, mediante transisiciones de fase, pasen a convertirse en otros objetos distintos de lo que en un principio fueron. Nada permanece, todo se transforma. Es es la regla de oro que impone un Universo dinámico creador de materia en el espacio-tiempo infinito que nunca podremos dominar, y, si nos permite seguir en este maravilloso Sistema de Galaxias y mundos, podremos, en el futuro, conocer a nuestros hermanos inteligentes y, si las cosas salen como deberían salir, formaremos una Federación de mundos en la que, por fin, impere la igualdad para todos dentro de un clima de mutuo respeto y en el que, la sabiduría adquirida a través de muchas civilizaciones que fueron, nos habrá dado, ese algo del que ahora carecemos: Racionalidad y Temple, Sabiduría para poder discernir sobre lo que verdaderamente tiene valor y aquello que sólo es el falso brillo de la gloria y el poder que sólo puede traer destrucción y mal para muchos.

Por qué hay vida en el planeta?Biodiversidad marina - EcuRed

La diversidad de aves como un indicador de la calidad de vida en ...Estudio de las especies arbóreas y arbustivas | Club Harrods Gath ...

Clasificación de los seres vivos - Comprensión de la diversidadTres especies de Homo distintas convivieron hace dos millones de años

Y para que este asombroso Universo tenga algún sentido, ha creado una serie de especies de seres vivos que dominan todos los ámbitos  de “los planetas habitables” (lo digo en singular porque, pocas dudas me caben de que, en otros mundos, también la vida está presente.

Esperemos que, observando el Universo y mirando dentro de nuestras Mentes, podamos llegar a comprender que, nuestro destino, no depende de nosotros pero sí, podremos mejorarlo si nuestro comportamiento contribuye a que sea mejor.

¡El Universo! Demasiado grande para seres tan pequeños como nosotros y, sin embargo…. ¡Quién sabe!

emilio silvera

emilio silvera