domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La era cuántica

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

gran-muralla-galaxias

Los científicos para lograr conocer la estructura del universo a su escala más grande, deben retroceder en el tiempo, centrando sus teorías en el momento en que todo comenzó. Para ello, como  todos sabéis, se han formulado distintas teorías unificadoras de las cuatro fuerzas de la naturaleza, con las cuales se han modelado acontecimiento y condiciones en el universo primitivo casi a todo lo largo del camino hasta el principio.

Adiós big bang, hola big silence?

Pero cómo se supone que debió haber habido un «antes», aparece una barrera que impide ir más allá de una frontera que se halla fijada a los 10-43 segundos después del Big Bang, un instante conocido como «momento de Planck», en homenaje al físico alemán Max Planck.

Big Bang models back to Planck timeEl tiempo podría tener la estructura de un cristal

Esta barrera existe debido a que antes del momento de Planck, durante el período llamado la «era de Planck o cuántica», se supone que las cuatro fuerza fundamentales conocidas de la naturaleza eran indistinguibles o se hallaban unificadas , que era una sola fuerza.

Relatividad General y Física Cuántica - una unión imposibleLa Teoría Cuántica, una aproximación al universo probable

Aquella única fuerza unificada se desgajo en las cuatro ahora conocidas y la Gravedad caminó sola

La bella teoria: Gravedad cuántica, continuando la revolución de ...Teoría de cuerdas VS gravedad cuántica de bucles – Universo CuánticoGravedad cuántica, pesando lo muy pequeño (Segunda parte) - NaukasGravedad cuántica | •Ciencia• Amino

La cuántica y la Gravedad se muestran irreconciliables, están en “universos” diferentes

Aunque los físicos han diseñado teorías cuánticas que unen tres de las fuerzas, una por una, a través de eras que se remontan al momento de Planck, hasta ahora les ha sido prácticamente imposible armonizar las leyes de la teoría cuántica con la gravedad de la relatividad general de Einstein, en un sólo modelo teórico ampliamente convincente y con posibilidades claras de ser contrastado en experimentos de laboratorio y, mucho menos, con observaciones.

 

Si hablamos de singularidades en agujeros negros, debemos dejar la R.G. y acudir a la M.C.

 

Intrincada búsqueda: ¡La Gravedad cuántica! : Blog de Emilio ...Gravedad Cuántica, pesando lo muy pequeño (Primera parte) - Naukas

 

Si ahora queremos cuantizar, es decir encontrar la versión cuántica, la gravedad escrita como RG lo que tenemos que hacer es encontrar la teoría cuántica para la métrica.  Sin embargo, esto no conduce a una teoría apropiada, surgen muchos problemas para dar sentido a esta teoría, aparecen infinitos y peor que eso, muchos cálculos no tienen ni tan siquiera un sentido claro.  Así que hay que buscar otra forma de intentar llegar a la teoría cuántica.

El universo podría estar compuesto de varias dimensiones diminutasTeoría de supercuerdas - Wikipedia, la enciclopedia libre

Qué es la teoría de cuerdas? – Ciencia de SofáLA MADRE DE LAS SUPERCUERDAS - ppt descargar

Es posible, como postulan algunas teorías, qie existan dimensiones diminutas compactadas en el límite de Planck. Esas dimensiones extras, posibilitan teorías que, con 11 dimensiones se llegue a unificar la cuántica con la Gravedad, Es decir, en la Teoría de Cuerdad subyace una teoría cuántica de la Gravedad.

Como tantas veces hemos comentado, los trabajos que se han realizado sobre poder construir una teoría cuántica de la gravedad nos llevan a un número sorprendente de implicaciones. Por un lado, sólo se ha podido conceptuar a la gravedad cuántica, siempre y cuando, el universo tenga más de cuatro dimensiones. Además, se llega a considerar que en la era de Planck, tanto el universo como la gravedad pudieron ser una sola cosa compacta estructurada por objetos cuánticos infinitamente diminutos, como los que suponemos que conforman las supercuerdas. A esta escala, el mismísimo espaciotiempo estaría sometido a imprescindibles fluctuaciones muy semejantes a las que causan las partículas al nacer y desaparecer de la existencia en el espaciotiempo ordinario. Esta noción ha conducido a los teóricos a describir el universo de la era cuántica como una especie de extremadamente densa y agitada espuma que pudo haber contenido las vibrantes cuerdecillas que propugnan los cosmólogos cuerdistas.

Los físicos especulan que el cosmos ha crecido a desde una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía.

Qué es Espacio-Tiempo? » Su Definición y Significado [2020]

¡Si pudiéramos viajar al momento inicial para ver lo que pasó!

 

Según los primeros trabajos sobre la teoría cuántica de la gravedad, el propio espaciotiempo varió en su topografía, dependiendo de las dimensiones del universo niño. Cuando el universo era del tamaño de un núcleo atómico (ver imagen de abajo), las condiciones eran relativamente lisas y uniformes; a los 10-30 cm (centro) es evidente una cierta granulidad; y a la llamada longitud de Planck, todavía unas 1.000 veces más pequeño (abajo), el espacio tiempo fluctúa violentamente.

Algo diferente :Teoria Cuántica de Campos : 243 Sydney

Se han xonseguidos teorías cuánticas de campo pero… De la Gravedad se resiste

Los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Los físicos no están seguros si el problema es técnico o conceptual. No obstante, incluso prescindiendo de una teoría completa de gravedad cuántica, se puede deducir que los efectos de la teoría cuántica, habrían sido cruciales durante los primeros 10-43 segundos del inicio del universo, cuando éste tenía una densidad de 1093 gramos por centímetro cúbico y mayor.

Afirman Detección de Gravedad Cuántica en la Tierra |

(El plomo sólido tiene una densidad de aproximadamente diez gramos por centímetro cúbico.) Este período, que es el que corresponde a la era de Planck, y a su estudio se le llama cosmología cuántica. Como el universo en su totalidad habría estado sujeto a grandes incertidumbres y fluctuaciones durante la era de Planck o era cuántica, con la materia y la energía apareciendo y desapareciendo de un vacío en grandes cantidades, el concepto de un principio del universo podría no tener un significado bien definido. En todo caso, la densidad del universo durante este período es de tal magnitud que escapa a nuestra comprensión. Para propósitos prácticos, la era cuántica podría considerarse el estado inicial, o principio, del universo. En consecuencia, los procesos cuánticos ocurridos durante este período, cualquiera sea su naturaleza, determinaron las condiciones iniciales del universo.

Big Bang, imagen conceptual. Ilustración del equipo que representa ...Cuaderno de bitácora: EL ORIGEN DEL UNIVERSO: Apuntes en el ...Los 10 mayores misterios de la física de nuestro tiempo ...

Cuando nos situados en un Tiempo inicial del Universo, cuando comenzó el Tiempo,  cuando se supone que comenzó todo lo que nos llevó al Tiempo presente… Sólo podemos imaginar lo que pudo pasar y, construir teorías que (más o menos) se pùedan acercar a lo que realmente pido ocurrir.

Ocho cosas insólitas que quizás no sepa sobre el Big BangLa gran explosión inicial Icarito

De aquella fluctuación cuántica que llamamos Big Bang, surgió una inimaginable cantidad de material que estaba concentrado en una singularidad a muy alta temperatura que, al expandirse se fuye enfriando y permitió la liberación de las partículas, el desconfinamiento de los fotones y que el Universo opaco se transformara en transparente con la aparición de la luz.

Los 200 millones de años de la oscuridad más sorprendente del Universo

En realidad el Universo estuvo unos doscientos años en la más completa oscuridad, y, la liberación de los fotones lo hizo de opaco a transparente ayudado de la expansión, se formaron las primeras estrellas, el Espacio-Tiempo se creo con la expansión de la materia y, el Universo caminó hacia lo que hoy podemos contemplar.

El universo estaba a 3.000° K hace doce mil quinientos millones de años; a 10 mil millones de grados (1010° K) un millón de años antes, y, tal vez, a 1028° K un par de millones más temprano. Pero, y antes de ese tiempo ¿qué pasaba? Los fósiles no faltan, pero no sabemos interpretarlos. Mientras más elevada se va haciendo la temperatura del universo primigenio, la situación se va complicando para los científicos. En la barrera fatídica de los 1033° K –la temperatura de Planck–, nada funciona. Nuestros actuales conocimientos de la física dejan de ser útiles. El comportamiento de la materia en estas condiciones tan extremas deja de estar a nuestro alcance de juicio. Peor aún, hasta nuestras nociones tradicionales pierden su valor. Es una barrera infranqueable para el saber de la física contemporánea. Por eso, lo que se suele decir cómo era el universo inicial en esos tempranos períodos, no deja de tener visos de especulación.

Los progresos que se han obtenido en física teórica se manifiestan a menudo en términos de síntesis de campos diferentes. Varios  son los ejemplos que de ello encontramos en diversos estudios especializados, que hablan de la unificación de las fuerzas fundamentales de la naturaleza.

En física se cuentan con dos grandes teorías de éxito: la cuántica y la teoría de la relatividad general.

 

Qué es la Teoría Cuántica? – Revista Mirada Maga

 

“En 1900 el físico Max Planck presentó un trabajo que, él mismo confesó, en alguna parte debería haber un error en sus hallazgos. Ocurre que se puso a estudiar la luz y averiguar cuáles serían las longitudes de onda cuando la luz cambiaba de color. Sus resultados demostraban que estos cambios se daban a saltos, y estos pasos de una frecuencia a otra no eran continuos, como correspondería si fuera una onda, sino que había “cortes”, y a esos los denominó “paquetes discretos”.

Constante de Planck - Wikipedia, la enciclopedia libre

En 1900 el físico Max Planck presentó un trabajo que, él mismo confesó, en alguna parte debería haber un error en sus hallazgos. Ocurre que se puso a estudiar la luz y averiguar cuáles serían las longitudes de onda cuando la luz cambiaba de color. Sus resultados demostraban que estos cambios se daban a saltos, y estos pasos de una frecuencia a otra no eran continuos, como correspondería si fuera una onda, sino que había “cortes”, y a esos los denominó “paquetes discretos”.

1 - Curso de Relatividad General - YouTubeIntroducción a la relatividad general - Wikipedia, la enciclopedia ...

Cada una de ellas ha demostrado ser muy eficiente en aplicaciones dentro de los límites de su ámbito propio. La teoría cuántica ha otorgado resultados más que satisfactorios en el estudio de las radiaciones, de los átomos y de sus interacciones. La ciencia contemporánea se presenta como un conjunto de teorías de campos, aplicables a tres de las grandes interacciones: electromagnética, nuclear fuerte, nuclear débil. Su poder predictivo es bastante elocuente, pero no universal. Esta teoría es, por ahora, incapaz de describir el comportamiento de partículas inmersas en un campo de gravedad intensa. Ahora, no sabemos si esos fallos se deben a un problema conceptual de fondo o falta de capacidad matemática para encontrar las ecuaciones precisas que permitan la estimación del comportamiento de las partículas en esos ambientes.

La teoría de la relatividad general, a la inversa, describe con gran precisión el efecto de los campos de gravedad sobre el comportamiento de la materia, pero no sabe explicar el ámbito de la mecánica cuántica. Ignora todo acerca de los campos y de la dualidad onda-partícula, y en ella el «vacío» es verdaderamente vacío, mientras que para la física cuántica hasta la «nada» es «algo»…

                         Nada está vacío, ya que,si surgió es porque había

Claro está, que esas limitaciones representativas de ambas teorías no suelen tener mucha importancia práctica. Sin embargo, en algunos casos, esas limitantes se hacen sentir con agresividad frustrando a los físicos. Los primeros instantes del universo son el ejemplo más elocuente.

El científico investigador, al requerir estudiar la temperatura de Planck, se encuentra con un cuadro de densidades y gravedades extraordinariamente elevadas. ¿Cómo se comporta la materia en esas condiciones? Ambas teorías, no dicen mucho al respecto, y entran en serias contradicciones e incompatibilidades. De ahí la resistencia de estas dos teorías a unirse en una sólo teoría de Gravedad-Cuantíca, ya que, cada una de ellas reina en un universo diferente, el de lo muy grande y el de lo muy pequeño.

El Principio de IncertidumbreRelación de indeterminación de Heisenberg - Wikipedia, la ...

Todo se desenvuelve alrededor de la noción de localización. La teoría cuántica limita nuestra aptitud para asignar a los objetos una posición exacta. A cada partícula le impone un volumen mínimo de localización. La localización de un electrón, por ejemplo, sólo puede definirse alrededor de trescientos fermis (más o menos un centésimo de radio del átomo de hidrógeno). Ahora, si el objeto en cuestión es de una mayor contextura másica, más débiles son la dimensión de este volumen mínimo. Se puede localizar un protón en una esfera de un décimo de fermi, pero no mejor que eso. Para una pelota de ping-pong, la longitud correspondiente sería de unos 10-15 cm, o sea, bastante insignificante.La física cuántica, a toda partícula de masa m le asigna una longitud de onda Compton: lc = h / 2p mc

Por su parte, la relatividad general igualmente se focaliza en la problemática del lugar que ocupan los objetos. La gravedad que ejerce un cuerpo sobre sí mismo tiende a confinarlo en un espacio restringido. El caso límite es aquel del agujero negro, que posee un campo de gravedad tan intenso que, salvo la radiación térmica, nada, ni siquiera la luz, puede escapársele. La masa que lo constituye está, según esta teoría, irremediablemente confinada en su interior.

En lo que hemos inmediatamente descrito, es donde se visualizan las diferencias entre esos dos campos del conocimiento. Uno alocaliza, el otro localiza. En general, esta diferencia no presenta problemas: la física cuántica se interesa sobre todo en los micro-objetos y la relatividad en los macroobjetos. Cada cual en su terreno.

La bella teoria: Sobre lo clásico y lo cuánticoEl Peladillo Cuántico: Breve Guía de Cosmología Física moderna (I ...

Sin embargo, ambas teorías tienen una frontera común para entrar en dificultades. Se encuentran objetos teóricos de masa intermedia entre aquella de los micro-objetos como los átomos y aquella de los macro-objetos como los astros: las partículas de Planck. Su masa es más o menos la de un grano de sal: 20 microgramos. Equivale a una energía de 1028 eV o, más aún, a una temperatura de 1033° K. Es la «temperatura de Planck».

Ahora bien, si queremos estimar cuál debería ser el radio en que se debe confinar la masita de sal para que se vuelva un agujero negro, con la relatividad general la respuesta que se logra encontrar es de que sería de 10-33 cm, o sea ¡una cien mil millonésima de mil millonésima de la dimensión del protón! Esta dimensión lleva el nombre de «radio de Planck». La densidad sería de ¡1094 g/cm3! De un objeto así, comprimido en un radio tan, pero tan diminuto, la relatividad general sólo nos señala que tampoco nada puede escapar de ahí. No es mucha la información.

Si recurrimos a la física cuántica para estimar cuál sería el radio mínimo de localización para un objeto semejante al granito de sal, la respuesta que encontramos es de un radio de 10-33 cm. Según esta teoría, en una hipotética experiencia se lo encontrará frecuentemente fuera de ese volumen. ¡Ambos discursos no son coincidentes! Se trata de discrepancias que necesitan ser conciliadas para poder progresar en el conocimiento del universo. ¿Se trata de entrar en procesos de revisión de ambas teoría, o será necesaria una absolutamente nueva? Interrogantes que solamente el devenir de la evolución de la física teórica las podrá responder en el futuro.

Teoría de Supercuerdas : Blog de Emilio Silvera V.

De todas las maneras, en lo que se refiere a una Teoría cuántica de la Gravedad, tendremos que esperar a que se confirmen las teorías de supergravedad, supersimetría, cuerdas, la cuerda heterótica, supercuerdas y, la compendiada por Witten Teoría M. Aquí, en estas teorías (que dicen ser del futuro), sí que están apasiblemente unidas las dos irreconcialbles teorías: la cuántica y la relativista, no sólo no se rechazan ni emiten infinitos, sino que, se necesitan y complementan para formar un todo armónico y unificador.

¡Si pudiéramos verificarla!

Pero, contar con la energía de Planck (1019 GeV), no parece que, al menos de momento, sea de este mundo. Ni todos los aceleradores de partículas del mundo unidos, podrían llegar a conformar una energía semejante.

emilio silvera



  1. Al no saber…¡teorizamos! : Blog de Emilio Silvera V., el 18 de diciembre del 2012 a las 6:07

    […] exacta. A cada partícula le impone un volumen mínimo de localización. La localización de un electrón, por ejemplo, sólo puede definirse alrededor de trescientos fermis (más o menos un centésimo de […]

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting