Astronomía
Un nuevo planeta revive la esperanza de encontrar vida fuera del Sistema Solar.
IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (1)
Efecto túnel a través del espacio y del tiempo
En definitiva, estamos planteando la misma cuestión propuesta por Kaluza, cuando en 1.919 escribió una carta a Einstein proponiéndole su teoría de la quinta dimensión para unificar el electromagnetismo de James Clark Maxwell y la propia teoría de la relatividad general, ¿dónde está la quinta dimensión?, pero ahora en un nivel mucho más alto. Como Klein señaló en 1.926, la respuesta a esta cuestión tiene que ver con la teoría cuántica. Quizá el fenómeno más extraordinario (y complejo) de la teoría cuántica es el efecto túnel.
El efecto túnel se refiere al hecho de que los electrones son capaces de atravesar una barrera, al parecer infranqueable, hacia una región que estaría prohibida si los electrones fuesen tratados como partículas clásicas. El que haya una probabilidad finita de que un electrón haga un túnel entre una región clásicamente permitida a otra que no lo está, surge como consecuencia de la mecánica cuántica. El efecto es usado en el diodo túnel. La desintegración alfa es un ejemplo de proceso de efecto túnel.
Antes preguntábamos, en relación a la teoría de Kaluza-Klein, el destino o el lugar en el que se encontraba la quinta dimensión.
“En la teoría de Kaluza-Klein original, a una entidad geométrica de dimensión d convencionales, se les asocia una entidad de dimensionalidad d+1: Un “punto” de espacio-tiempo de cuatro dimensiones es una curva cerrada (d = 1), y la trayectoria (d=1) de dos partículas que colisionan puede estudiarse sobre dos tubos que se unen (d=2).”
“La teoría de Kaluza-Klein es una generalización de la teoría de la relatividad general. Fue propuesta por Theodor Kaluza (1919), y refinada por Oskar Klein (1926), y trata de unificar la gravitación y el electromagnetismo, usando un modelo geométrico en un espacio-tiempo de cinco dimensiones.”
La respuesta de Klein a esta pregunta fue ingeniosa al decir que estaba enrollada o compactada en la distancia o límite de Planck, ya que, cuando comenzó el Big Bang, el universo se expandió sólo en las cuatro dimensiones conocidas de espacio y una de tiempo, pero esta dimensión no fue afectada por la expansión y continua compactada en cuyo valor es del orden de 10-35 metros, distancia que no podemos ni tenemos medios de alcanzar, es 20 ordenes de magnitud menor que el protón que está en 10-15 metros.
Pues las dimensiones que nos faltan en la teoría decadimensional, como en la de Kaluza-Klein, también están compactadas en una recta o en un círculo en esa distancia o límite de Planck que, al menos por el momento, no tenemos medios de comprobar dada su enorme pequeñez, menor que un protón. De hecho sería 0,00000000000000000000000000000000001 metros, lo que pone muy difícil que lo podamos ver.
¿Cómo pueden estar enrolladas unas dimensiones?
por Shalafi ~ Clasificado en AIA-IYA2009 ~ Comments (2)
Los cambios se estaban produciendo a una velocidad cada vez mayor. Al siglo de Newton también pertenecieron, entre otros, el matemático Fermat.
Römer, quien midió la velocidad de la luz
Grimaldi, que estudió la difracción
Torricelli, que demostró la existencia del vacío y otros secretos de la Naturaleza
Pascal y Boyle, que definieron la física de los fluidos…La precisión de los telescopios y los relojes aumentó notablemente, y con ella el número de astrónomos deseosos de establecer con exactitud la posición de las estrellas y compilar catálogos estelares cada vez más completos para comprender la Vía Láctea.
La naturaleza de los cuerpos celestes quedaba fuera de su interés: aunque se pudiera determinar la forma, la distancia, las dimensiones y los movimientos de los objetos celestes, comprender su composición no estaba a su alcance. A principios del siglo XIX, William Herschel (1738-1822), dedujo la forma de la Galaxia, construyó el mayor telescopio del mundo y descubrió Urano. Creía firmemente que el Sol estaba habitado.
Al cabo de pocos años, nacía la Astrofísica, que a diferencia de la Astronomía (ya llamada -“clásica o de posición”-), se basaba en pruebas de laboratorio. Comparando la luz emitida por sustancias incandescentes con la recogida de las estrellas se sentaban las bases de lo imposible: descubrir la composición química y la estructura y el funcionamiento de los cuerpos celestes. Estaba mal vista por los astrónomos “serios” y se desarrolló gracias a físicos y químicos que inventaron nuevos instrumentos de análisis a partir de las demostraciones de Newton sobre la estructura de la luz.
por Emilio Silvera ~ Clasificado en Nuevos mundos ~ Comments (0)
Un nuevo planeta revive la esperanza de encontrar vida fuera del Sistema Solar.
Un equipo multinacional de investigadores -incluidos dos españoles- identifica a Proxima b, que orbita a la estrella roja más cercana a nuestro mundo.
El descubrimiento de un nuevo exoplaneta siempre es noticia pero, en esta ocasión, las alarmas han saltado de más. Rueda de prensa, información distribuida bajo el embargo más estricto -aunque los rumores comenzaron hace más de una semana- y un concepto que lo cambia todo: la posibilidad de vida extraterrestre.
Antes de hacer la maleta con destino a la nueva estrella -que, por cierto, está a 4,2 años luz-, un poco de calma. Del exoplaneta Próxima b, descubierto por un equipo internacional de científicos -entre ellos, dos españoles- no se sabe casi nada, pero el hallazgo es “muy importante”, como describe a EL ESPAÑOL David Barrado, investigador del Centro de Astrobiología (CAB) del Instituto Nacional de Técnica Aereo-espacial (INTA) del CSIC.
Las razones: se parece a la Tierra y orbita alrededor de una estrella muy particular, la más cercana al Sistema Solar, llamada Próxima Centauri. Ésta forma parte de una galaxia triple, que cuenta con tres estrellas análogas al Sol:ella misma y las llamadas Alpha Centauri A y B. “Son como una pareja y el amante”, bromea Barrado. Ése, el amante, el más pequeño y menos luminoso de los tres y el más alejado de los dos principales, pero más cercano a nosotros, es hoy portada de la revista científica más importante, Nature. Porque como nuestro Sol, aunque muy distinto, tiene su propia Tierra, a la que ha costado mucho encontrar.
“Conseguir tener éxito en la búsqueda del planeta terrestre más cercano más allá del Sistema Solar ha sido una experiencia única en la vida. Esperamos que estos hallazgos inspiren a futuras generaciones para seguir mirando más allá de las estrellas. La búsqueda de vida en Proxima b es lo siguiente”, declara Guillem Anglada, uno de los dos españoles que han participado en el experimento.
Para encontrar al nuevo exoplaneta, los autores de la investigación utilizaron el espectrómetro HARPS del Observatorio Europeo Austral (ESO) de La Silla, en Chile. Durante el primer semestre de 2016, los científicos se fijaron cuidadosamente en Proxima Centauri, en concreto analizando las variaciones de líneas espectrales, comenta Barrado.
“Su posición suele ser estable y vieron que variaba de manera periódica durante periodos de 11 días”, explica el investigador. Ése es precisamente el tiempo que tarda el nuevo exoplaneta en orbitar a Proxima Centauri, una de las principales diferencias con su hermana en el Sistema Solar, ya que nuestro planeta se toma 365 días para recorrer el Sol.
Portada de Nature
Otras diferencias residen en la cercanía del planeta a su estrella, razón que explica precisamente esta diferencia en el tiempo que tarda en orbitarlo.
La estrella es del tipo enana roja -las más frecuentes en la galaxia- y, por tanto, diferente al Sol. Tampoco se parece a nuestro astro rey en la masa -es menos masiva- y en la energía que emite, mucho menor que la del Sol. “Si se comparan los tamaños, se parecería más a Júpiter que al Sol, pero Próxima Centauri provoca energía y por eso ilumina al planeta que se acaba de descubrir”, añade el investigador del CAB.
Pero si la similitud que se intuye -aún se desconocen muchas cosas del nuevo exoplaneta- con respecto a la Tierra es importante, lo es aún más la posibilidad de que albergue vida, un hecho que, a día de hoy se desconoce. Lo que se sabe, sin embargo, es que está situada en la llamada zona de habitabilidad del planeta, como la Tierra lo está en el del Sol. “Es un concepto teórico que se caracteriza porque a ese rango de distancias un hipotético planeta va a recibir una cantidd de luz o radiación o energía que permitiría que el agua estuviera líquida”, señala Barrado.
Uno de los autores del estudio, el investigador del Max Planck Institute for Astronomy Martin Kürster, comenta a este diario: “Sabemos que el planeta tiene la temperatura adecuada para que el agua pueda existir en forma líquida, siempre y cuando el planeta disponga de una atmósfera suficientemente parecida a la terrestre”.
“Como ahora sabemos que la más cercana de las estrellas del tipo enana roja ya tiene un planeta parecido a la Tierra, es muy probable que existan muchos planetas con el potencial de producir vida”, añade el investigador alemán.
Pero ¿es lo mismo tener agua líquida que albergar vida biológica? La respuesta a esta pregunta es negativa, pero lo primero parece ser imprescindible para lo segundo. “Todavía no lo sabemos con certeza”, reconoce Kürster respecto a la presencia de agua líquida en el nuevo planeta.
Según su colega Barrado, y “con mucho optimismo” habrán de pasar “al menos diez años” para responder a esta pregunta.
No obstante, hay ciertas cosas que se pueden intuir con respecto a la presencia de vida en Próxima b. Podría suceder, por ejemplo, que al estar tan cerca de la estrella que orbita, apareciera el “efecto marea”, el mismo fenómeno que se da entre la Tierra y la Luna, que hace que nuestro satélite siempre nos muestre la misma cara. “Es posible que en el nuevo planeta pase lo mismo, lo que implicaría que, de haber agua líquida, sólo estaría en una zona cerca del Ecuador, y en el resto estaría congelada”, especula el astrónomo.
Otra posibilidad en contra de la presencia de vida biológica estaría en la propia naturaleza del Sol de Proxima b. “Las estrellas rojas de tipo espectral N son muy activas, presentan llamaradas como las del Sol con muchas más frecuencia; esto no sólo dificulta la detección de planetas, sino que, al ser tan enérgicas, podría esterilizarlos”, explica. Es decir, que podría darse la situación de que Próxima b tuviera las características necesarias para albergar vida biológica pero su propio sol evitara que esto sucediera.
En cualquier caso, es pronto para afirmar nada de esto. Kürster y el resto de autores no han abandonado, ni mucho menos, a Proxima b. “Ahora estamos buscando tránsitos planetarios, pequeñas atenuaciones de la luz de la estrella que ocurren cuando el planeta en su órbita pasa frente a la estrella bloqueando una parte de su luz”, anuncia. De momento, no saben si estos tránsitos se dan en el nuevo planeta. “Si ocurren, nos darán la oportunidad de estudiar la consistencia de la atmósfera del planeta a través de métodos espectroscópicos”, añade el científico.
Barrado, por su parte, añade que averiguar si hay actividad biológica en el planeta es mucho más difícil y complicado que saber si alberga agua líquida, además de costar “muchísimo dinero”. Eso sí, cree que no es imposible y que se podría lograr usando nuevas tecnologías, técnicas y plataformas “que ya están sobre el tablero de juego pero aún no aprobadas”.
Un trabajo, como indicaba Anglada, suficiente para esta generación y las próximas, siempre que no se tire la toalla.
por Emilio Silvera ~ Clasificado en Física ~ Comments (17)
Decíamos en ocasiones anteriores…
Inmersos en nuestras vidas cotidianas con los problemas que todos arrastramos: Rl trabajo, la hipoteca, el niño que no estudia, el novio de la niña que no tiene porvenir, la abuela cada día está peor, el coche de 14 años jay que cambiarlo….
En realidad, si nos detenemos a pensar detenidamente y en profundidad en el entorno en que nos encontramos, una colonia de seres “insignificantes”, pobladores de un “insignificante” planeta, de un sistema solar dependiente de una estrella mediana, amarilla, del tipo G-2, nada especial y situada en un extremo de un brazo espiral, en la periferia (los suburbios del Sistema Solar) de una de entre miles de millones de galaxias… si pensamos en esa inmensidad, entonces caeremos en la cuenta de que no somos tan importantes, y el tiempo que se nos permite estar aquí es un auténtico regalo.
El Tiempo Pasado que nunca volverá, simplemente lo llevamos en el recuerdo si lo vivimos y, en la Historia suçi fue el Tiempo de otros.
El Presente, como su nombre indica, es un regalo. Es el Tiempo que tenemos para poder realizar los sueños. Todo lo que no hagamos en el Presente… ¡Nunca podrá existir! Tener un hijo, escribir un libro…
El Futuro, ese Tiempo por venir, el que no existe y está por construir, el que no podemos conocer y sólo imaginarlo podemos. El Futuro es el Tiempo que estamos diseñando en el Presente, y, nunca podremos estar seguro de cómo será. El Azar y lo imprevisto puede cambiar el rumbo y traer un Futuro inesperado.
El futuro es el Tiempo que nunca podremos conocer, cuando llegue, no estaremos aquí, será el Presente de otros. Nosotros estamos confinados en un perpetuo Presente.
Según nos dicen, el Tiempo es relativo, no es igual para todos dependiendo de la situación del que lo observe, y, a veces, incluso puede transcurrir más lento si nuestra actividad lo provoca…
Ese tiempo, corto espacio de tiempo en relación al tiempo cosmológico, es por cierto un espacio suficiente para nacer, crecer, aprender, dejar huella de nuestro paso por este mundo a través de nuestros hijos y a veces (si somos elegidos) por nuestro trabajo, tendremos la oportunidad (casi siempre breve) de ser felices y muchas oportunidades para el sacrificio y el sufrimiento, y así irán pasando nuestras vidas para dejar paso a otras que, al igual que nosotros, continuaran el camino iniciado en aquellas cuevas remotas del pasado, cuando huyendo del frío y de los animales salvajes, nos refugiábamos en las montañas buscando cobijo y calor.
Podemos continuar diciendo ahora…
Han pasado muchos periodos de tiempo desde entonces, y la humanidad, en verdad, aprovechó el “tiempo”. No quiero decir que en todos los ámbitos humanos del comportamiento tengamos que felicitarnos, hay algunos (aún hoy) de los que el sonrojo es inevitable, pero eso es debido a que la parte animal que llevamos en nosotros está de alguna manera presente, y los instintos superan a veces a la racionalidad. Aún no hemos superado el proceso de humanización. Sin embargo, los logros conseguidos no han sido pocos; el “tiempo” está bien aprovechado si pensamos que hace sólo unos miles de años no sabíamos escribir, vagamos por los campos cazando y cogiendo frutos silvestres y no existían organizaciones sociales ni poblaciones. Desde entonces, el salto dado en todos los campos del saber ha sido tremendo.
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (2)
Como tantas veces he explicado, nuestro sol, cada segundo fusiona 4.654.600 toneladas de Hidrógeno, en 4.650.000 toneladas de Helio. Las 4.600 toneladas que se “pierden por el camino”, son precisamente, las que en forma de luz y calor son lanzadas al espacio cósmico, y, una pequeña parte, llega a nuestro planeta para hacer posible la fotosíntesis y la vida.
“La fotosíntesis en fundamental para la vida en el planeta Tierra, debido a: Produce oxígeno, que es liberado a la atmósfera y se obtienen sustancias orgánicas a partir de sustancias inorgánicas, como el agua, las sales minerales y dióxido de carbono.”
Según las temperaturas de cada momento, la estrella irá fusionando helio, carbono, etc. Hasta que, no pudiendo continuar fusionando materiales más complejos, finalmente cede y se queda a merced de la fuerza Gravitatoria, sin embargo antes, haciendo un último esfuerzo de resistencia, se convierte en Gigante roja que tras eyectar material y crear una Nebulosa Planetaria, quedará en el cielo como una Enana Blanca, y si son más masivas, explotar como super-nova formando enormes Nebulosas y pasan a convertirse, según sus masas:
Es allí, en las estrellas, en sus hornos nucleares y en las explosiones de supernovas, donde a miles de millones de grados de temperatura, se crean los elementos más complejos que el hidrógeno y el helio. Aparece el litio, el carbono, el silicio o el nitrógeno y el hierro.
De estos materiales estamos nosotros hechos, y, lógicamente, se fabricaron en las estrellas.