viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Curvatura del Espacio-Tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Los elefantes 'hablan' a pisadas - The New York TimesLas moscas ven el mundo como en MatrixLas neuronas = Células nerviosas - Instituto Médico DermatológicoEjercita tu mente a través del cálculo mentalPor qué sólo los seres humanos pueden hablar (y no tiene que ver con la  inteligencia) - BBC News Mundo
En realidad ¿qué sabemos de otras especies? Nuestra imposibilidad de comunicarnos con ellas nos aleja de saber en qué mundo viven, y, aunque en algunas hemos detectado inteligencia y hasta sentimientos, lo cierto es que viven en otro mundo muy alejado del nuestro. Siempre será un gran secreto el que la Naturaleza nos escogiera a nosotros como especie dominante.
Recordando el pasado y agradeciendo entre líneas las lágrimas y las  lecciones aprendidas — Steemit
Frases de vivir el presente para aprender a disfrutar cada momento -  Innatia.comMundos Fantásticos Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres  De Derecho. Image 70717495.
Recordamos el Pasado, vivimos el Presente e imaginamos el Futuro. El Pasado nos sirve para saber lo que pasó, para no repetir errores y aprender de los aciertos, en el Presente, el Tiempo dinámico que tenemos para realizar nuestros sueños y que no debemos dejar escapar, y, el Futuro, ese Tiempo que está por venir, en el  que nunca podremos  estar, sólo podemos imaginarlo.

Así representan algunos como sería el camino para burlar la velocidad de la luz y desplazarnos por el espacio-tiempo a distancias inmensas mucho más rápido y recorriendo espacios más cortos. Es el famoso agujero de gusano o el doblar el espacio trayendo hacia tí el lugar que deseas visitar.

La noción de espacio-tiempo, ¿Es una ilusión? (VIDEO) | SophimaniaEspacio-tiempo curvo y los secretos del Universo : Blog de Emilio Silvera V.El experimento: la paradoja del espacio-tiempoEl tiempo y el espacio(filosofia)

Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

Los modelos de universo que pudieran ser, en función de la Densidad Crítica (Ω) sería plano, abierto o cerrado. La Materia tiene la palabra. Los cosmólogos llaman Omega Negro a la materia del Universo.

Soy omega: La semilla del caos - NaukasLa formación de nuestro universo: ¿herencia o entorno? | Sociedad | EL PAÍS

La curvatura del espacio–tiempo es la propiedad del espacio–tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividadgeneral de Einstein, nos explica y demuestra que el espacio–tiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.

Los Modelos Cosmológicos son variados y todos, sin excepción, nos hablan de una clase de universo que está conformado en función de la materia que en él pueda existir, es decir, eso que los cosmólogos llaman el Omega negro. La Materia determinará en qué universo estamos.

En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espacio–tiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson–Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio–tiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein–de Sitter tiene densidad crítica exacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.

                        Métricas de Friedman-Robertson-Walke

La geometría del espacio-tiempo en estos modelos de universos está descrita por la métrica de Robertson-Walker y es, en los ejemplos precedentes, curvado negativamente, curvado positivamente y plano, respectivamente (Alexander AlexandrovichFriedmann). Y, las tres epresentaciones gráficas de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.

Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividadespecial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.

gemelos en el tiempo

“El tiempo en esta teoría deja de ser absoluto como se proponía en la mecánica clásica. O sea, el tiempo para todos los observadores del fenómeno deja de ser el mismo. Si tenemos un observador inmóvil haciendo una medición del tiempo de un acontecimiento y otro que se mueva a velocidades relativistas, los dos relojes no tendrán la misma medición de tiempo.

Mediante la transformación de Lorentz nuevamente llegamos a comprobar esto. Se coloca un reloj ligado al sistema S y otro al S’, lo que nos indica que {\displaystyle x=0}{\displaystyle x=0}. Se tiene las transformaciones y sus inversas en términos de la diferencia de coordenadas:

{\displaystyle \Delta t=\gamma \left(\Delta t'+{\frac {v\Delta x'}{c^{2}}}\right)}
{\displaystyle \Delta x=\gamma (\Delta x'+v\Delta t')\,}
Si despejamos las primeras ecuaciones obtenemos
{\displaystyle \Delta t'=\gamma \Delta t\qquad (\,} para sucesos que satisfagan {\displaystyle \Delta x=0)\,}
De lo que obtenemos que los eventos que se realicen en el sistema en movimiento S’ serán más largos que los del S. La relación entre ambos es esa \gamma . Este fenómeno se lo conoce como dilación del tiempo.”
Gráfico que explica la contracción de Lorentz.

Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, era ya un  anciano jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. Parece mentira que la velocidad con la que podamos movernos nos puedan jugar estas malas pasadas.

Otra curiosidad de la relatividad especial es la que expresó Einstein (en relación a la materia.energía) mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

Durante diez dias del mes de enero de 1999 astrofísicos italianos y estadounidenses efectuaron un experimento que llamaron Boomerang. El experimento consistió en el lanzamiento de un globo con instrumentos que realizó el mapa mas detallado y preciso del fondo de radiación de microondas (CMB) obtenido hasta el momento. Su conclusión: el universo no posee curvatura positiva o negativa, es plano.

Densidad Crítica : Blog de Emilio Silvera V.

La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein–de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.

 Los cosmólogos y astrofísicos, en sus obervaciones, notaron que las galaxias se alejaban las unas de las otras a mayor velocidad de la que correspondería en función de la materia que se puede ver en el Universo, había algo que las hacía correr más de la cuenta, así que, el primero en poner nombre all fenómeno que se ha dado en llamar  “materia oscura” fue el astrofísico suizo Fritz Zwicky, del Instituto Tecnológico de California (Caltech) en 1933. Con su invento (intuición), dejó zanjado el tema que traía de cabeza a todos los cosmólogos del mundo, encantados con que al fín, las cuentas cuadraran.

“El astrónomo Fritz Zwicky (1898 – 1974) de origen suizo, pero pasando casi toda su vida en Pasadena, USA, publicó en 1936 un trabajo sobre el cúmulo de galaxias en Coma, que contiene unas 1000 galaxias. Él determinó las luminosidades de las galaxias, y aplicando una relación conocida entre luminosidad y masa,”

Mencionamos ya la importancia que tiene para diseñar un modelo satisfactorio del universo, conocer el valor de la masa total de materia que existe en el espacio. El valor de la expansión o de la contracción del universo depende de su contenido de materia. Si la masa resulta mayor que cierta cantidad, denominada densidad crítica, las fuerzas gravitatorias primero amortiguarán y luego detendrán eventualmente la expansión. El universo se comprimirá en sí mismo hasta alcanzar un estado compacto y reiniciará, tal vez, un nuevo ciclo de expansión. En cambio, si el universo tiene una masa menor que ese valor, se expandirá para siempre. Y, en todo esto, mucho tendrá que decir “la materia oscura” que al parecer está oculta en alguna parte.

El  símbolo Ω (parámetro de densidad) lo utilizan los cosmólogos para hablar de la densidad del universo.

Ω =r /rcritindicando que el universo está muy próximo a la densidad crítica o Ω =1. La densidad crítica calculada es

ρc,0 = 9,47 x 10-27 kg/m3

 

Tenemos así que para Ω>1 tenemos que el universo se contraería en un futuro Big Crunch, para Ω<1 e universo debería expandirse indefinidamente (Big Rip) y para Ω=1 el universo se debería expandir pero deteniéndose su expansión asintóticamente.

Fondo Cósmico de MicroondasLas ondas gravitacionales primigenias resultaron ser polvo. | Criptogramas

Además Las observaciones del fondo de microondas como las WMAP dan unas observaciones que coinciden con lo cabría esperar si la densidad total del universo fuera igual a la densidad crítica.

Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.

No dejamos de enviar ingenios al espacio para tratar de medir la Densidad Crítica y poder saber en qué clase de universo nos encontramos: Plano, cerrado o abierto.

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

Se reproduce la curvatura del espacio-tiempo dentro de un chip -  PUBLICACIONES DYNA

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. En la imagen se quiere representar tal efecto.

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

El universo en el hombre | ArchivoRevista Ideele

Esta fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea.

Un sistema solar en el que los planetas aparecen cohexionados alrededor del cuerpo mayor, la estrella. Todos permanecen unidos gracias a la fuerza de Gravedad que actúa y los sitúa a las adecuadas distancias en función de la masa de cada uno de los cuerpos planetarios.

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

El universo en el hombre | ArchivoRevista IdeeleDescubren un “puente” de ondas de radio entre cúmulos de galaxias |  National GeographicLos universos paralelos más probables también son inalcanzablesLa vía láctea: Grupos y cúmulos de galaxias

No pocas veces hemos querido utilizar la fuerza electromagnética para crear escudos a nuestro alrededor, o, también de las naves viajeras, para evitar peligros exteriores o ataques. Es cierto que, habiéndole obtenido muchas aplicaciones a esta fuerza, aún nos queda mucho por investigar y descubrir para obtener su pleno rendimiento.

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

Relación de indeterminación de Heisenberg - Wikipedia, la enciclopedia libreEl Principio de IncertidumbrePrincipio de Incertidumbre de Heisenberg - YouTube

Para saber dónde se encuentra una partícula hay que iluminarla. Pero no se puede utilizar cualquier tipo de luz: hay que usar luz cuya longitud de onda sea por lo menos, inferior a la partícula que se desea iluminar. Pero sucede que cuanto más corta es la longitud de onda, más elevada es la frecuencia, de modo que esa luz transporta una muy elevada energía. Al incidir sobre la partícula ésta resulta fuertemente afectada.
El científico puede finalmente averiguar donde esta la partícula, pero a cambio de perder toda información acerca de su velocidad. Y a la inversa, si consigue calcular la velocidad, debe renunciar a conocer su posición exacta.

emite3.gif (3517 bytes)EL FÍSICO LOCO: Cuerpo Negro. Ley de Wien. Ley de Stefan-Boltzmann

La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida. No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.

Se denomina cuerpo negro a aquel cuerpo ideal que es capaz de absorber o emitir toda la radiación que sobre él incide. Las superficies del Sol y la Tierra se comportan aproximadamente como cuerpos negros.

Teoría cuántica | Radiación del cuerpo negro - YouTube

La radiación del cuerpo negro

La teoría cuántica es un ejemplo de talento que debemos al físico alemán Max Planck (1.858 – 1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E = hv o ħ = h/2π) y v es la frecuencia de la radiación. Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell.  En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.

Los objetos radiactivos que nos rodean, entre ellos las bananas

                                           La radiación está presente en todos los objetos y cuerpos

Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”, que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).

Existen en el Universo configuraciones de fuerzas y energías que aún no podemos comprender. La vastedad de un Universo que tiene un radio de 13.700 millones de años, nos debe hacer pensar que, en esos espacios inmensos existen infinidad de cosas y se producen multitud de fenómenos que escapan a nuestro entendimiento. Son fuerzas descomunales que, como las que puedan emitir agujeros negrosgigantes, estrellas de neutrones magnetars y explosiones de estrellas masivas en supernovas que, estando situadas a miles de millones de años luz de nuestro ámbito local, nos imposibilita para la observación y el estudio a fondo y sin fisuras, y, a pesar de los buenos instrumentos que tenemos hoy, siguen siendo insuficientes para poder “ver” todo lo que ahí fuera sucede.

¡El Universo! Todo lo que existe.

emilio silvera

El pensamiento asombroso: ¡Las ideas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ruta de los Guzmán en Huelva

¿Cuantas veces, siendo un niño no me habré sentado en esos bancos de hierro, siempre friós? En el Paseo de Santa Fe, un lateral de la Iglesia de San Pedro al fondo. Al final a la izquierda el viejo edificio de ladrillos que hoy en día sigue en pie, y, frente por frente, un edificio antiguo que ya no existe y el solar es ocupado ahora por la Hacienda Pública, esa de la que dicen que “somos todos”, aunque es de algunos más que de otros. Pero, dejémonos de nostalgias y hablemos de Física y de sus personajes.

 

 

 

               Ludwig Boltzmann será el protagonista de hoy

Hay ecuaciones que son aparentemente insignificantes por su reducido número de exponentes que, sin embargo, ¡dicen tantas cosas…! En la mente de todos están las sencillas ecuaciones de Einstein y de Planck sobre la energía-masa y la radiación de cuerpo negro. Esa es la belleza de la que hablan los físicos se refieren a “ecuaciones bellas”.

                       Maxwell

Las ecuaciones de Maxwell…,  “y se hizo la luz”

La identidad de Euler: Algunos dijeron de su ecuación: “la expresión matemática más profunda jamás escrita”, “misteriosa y sublime”, “llena de belleza cósmica”, “una explosión cerebral”.

Newton y su segunda ley que, aunque no funcione cuando nos acercamos a velocidades relativistas, rompió la marcha la Gravedad.

Pitágoras y “su” teorema, también debe estar presente lo está su teorema en las construcciones de todo el mundo y… mucho más.

Schrödinger y su función de onda que tampoco se queda atrás (aunque la ecuación de Newton, si hablamos de velocidades relativistas…)

Velocidad de la luz desde la Tierra a la Luna, situada a más de 380.000 km.

                     Causalidad física

“Previo a esta teoría, el concepto de causalidad estaba determinado: para una causa existe un efecto. Anteriormente, gracias a los postulados de Laplace, se creía que para todo acontecimiento se debía obtener un resultado que podía predecirse. La revolución en este concepto es que se “crea” un cono de luz de posibilidades (Véase gráfico arriba).

Se observa este cono de luz y ahora un acontecimiento en el cono de luz del pasado no necesariamente nos conduce a un solo efecto en el cono de luz futuro. Desligando así la causa y el efecto. El observador que se sitúa en el vértice del cono ya no puede indicar qué causa del cono del pasado provocará el efecto en el cono del futuro.”

“La relatividad especial postula una ecuación para la energía, la cual llegó a ser la ecuación más famosa del planeta, E = mc2. A esta ecuación también se la conoce como la equivalencia entre masa y energía. En la relatividad, la energía y el momento de una partícula están relacionados mediante la ecuación:

 

{\displaystyle E^{2}-p^{2}c^{2}=m^{2}c^{4}}

Bueno, E = mc2, nos lleva a profundidades de la materia antes jamás vistas y nos permite sacar conclusiones como que, en un  gramo de materia está encerrada toda la energíaconsumida por la Humanidad durante un minuto. ¡Masa y Energía son la misma cosa! Einstein, con esa ecuación de arriba de la relatividad especial, vino a cambiar el mundo y…,            cuando quince años más tarde desarrolló la segunda parte, relatividad general, a partir de entonces, nació la verdadera cosmología. ¡Nos habla de tantas cosas!

Resultado de imagen de La ecuación de Dirac

No sería justo dejar nombrar la ecuación de Dirac

“La ecuación de Dirac describe las amplitudes de probabilidad para un electrón solo. Esta teoría de una sola partícula da una predicción suficientemente buena del espín y del momento magnético del electrón, y explica la mayor parte de la estructura fina observada en las líneas espectrales atómicas. También realiza una peculiar predicción de que existe un conjunto infinito de estados cuánticos en que el electrón tiene energía negativa. Este extraño resultado permite a Dirac predecir, por medio de las hipótesis contenidas en la llamada teoría de los agujeros, la existencia de electrones cargados positivamente. Esta predicción fue verificada con el descubrimiento del positrón, el año 1932.”

Física : Blog de Emilio Silvera V.La radiación del cuerpo negro – Física cuántica en la red

Max Planck, en el año 1900, escribió un artículo de ocho páginas que cambió el mundo de la Física, allí quedó sembrada la semilla de la Mecánica Cuántica que más tarde, desarrollaron el mismo Einstein, Schrödinger, Feynman, Heisenberg, Dirac y muchos otros.

The Royal Society en Twitter: "Ludwig Boltzmann, an Austrian ...

¿Qué decir de la maravillosa fórmula de la entropía de Boltzman?

S = k log W

 

Creo que , hablaremos de ella. Boltzman con su e ingenio,  le dio a la Humanidad la herramienta para que pudiera seguir avanzando en el difícil laberinto de la Cienca, es,  sin duda, uno de los físicos más ilustres del siglo XIX.

El científico desarrollado por Boltzmann en su época crítica de transición que puso el colofón a la física “clásica” –cuya culminación podríamos situar en Maxwell– y antecedió (en pocos años) a la “nueva” física, que podemos decir que comenzó con Max Planck y Einstein. Aunque ciertamente no de la importancia de los dos últimos, la labor científica de Boltzmann tiene una gran relevancia, tanto por sus aportaciones directas (creador junto con “su amigo” Maxwell y Gibbs de la mecánica estadística, aunque sea el formulismo de éste último el que finalmente haya prevalecido; esclarecedor del significado de la entropía, etc.) como por la considerable influencia que tuvo en ilustres físicos posteriores a los que sus trabajos dieron la inspiración, como es el caso de los dos mencionados, Planck y Einstein.

Cuando algo nos gusta y nos atrae, cuando es la curiosidad la que fluía nuestros deseos por saber sobre las cosas del mundo, del Universo y las fuerzas que lo rigen, cuando la Física se lleva dentro al poder reconocer que es el único camino que nos dará esas respuestas deseadas, entonces, amigos míos, los pasos te llevan a esos lugares que, por una u otra razón tienen y guardan los vestigios de aquellas cosas que quieres y admiras. Así me pasó cuando visité el Fermilab, la tumba de Hilbert y, también en Viena, donde no pude resistir la tentación de ver, con mis propios ojos esa imagen de arriba y, luego, pensar en lo mucho que significaba la escueta S = k log W que figura en la cabecera de la lápida de Boltzmann como reconocimiento a su ingenio.

Entropia ¿Qué es? Ejemplos Aprende Facil - AreaCienciasEntropía - QUÍMICA

La sencilla ecuación (como todas las que en Física han tenido una enorme importancia, es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para el logaritmo es el siguiente: S es la entropía de un Sistema; W el de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el nombre de constante de Boltzmann y cuyo valor es k = 1,38066 x 10-23 J/K (si el logaritmo se toma en base natural). En breve ecuación se encierra la conexión entre el micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física comocida como Mecánica Estadistica.

La entropía de un sistema es el desgaste que el sistema presenta por el transcurso del tiempo o por el funcionamiento del mismo. Los sistemas altamente entrópicos tienden a desaparecer por el desgaste generado por su proceso sistémico. Es una medida de desorden o incertidumbre de un sistema.

Como todas las ecuaciones sencillas de gran trascendencia en la física, hay un antes y un después de su formulación: sus consecuencias son de un calado tan profundo que han cambiado la de entender el mundo y, en particular, de hacer Física, a partir de ellas.De hecho, en este caso al menos, la sutileza de la ecuación es tal que hoy, más de cien años después de la muerte de su creador, se siguen investigando sus nada triviales consecuencias.

Boltzmann fue un defensor a ultranza del atomismo, polemizando sobre todo con Mach y Ostwald, antiatomistas partidarios de la energética y claros exponentes de la corriente idealista de la física alemana. Tuvo que abandonar su ambiciosa idea de explicar exactamente la irreversibilidad en términos estrictamente mecánicos; pero esta “derrota”, no ocultaré que dolorosa desde el punto de vista , le fue finalmente muy productiva, pues de alguna manera fue lo que le llevó al concepto probabilista de la entropía. Estas primeras ideas de Boltzmann fueron reivindicadas y extendidas, en el contexto de la teoría de los sistemas dinámicos inestables, sobre todo por la escuela de Prigogine, a partir de la década de 1970.

La personalidad de Boltzmann era bastante compleja. Su de ánimo podía pasar de un desbordante optimismo al más negro pesimismo en cuestión de unas pocas horas. Era muy inquieto; él decía – medio en serio, medio en broma – que eso se debía a haber nacido en las bulliciosas horas finales de los alegres bailes del Martes de Carnaval, previas a los “duelos y quebrantos” (entonces) del Miércoles de Ceniza.

Henriette y Ludwig, Los Boltzmann | Los Mundos de Brana

                     Boltzmann at age 31 with his wife, Henrietta, in 1875

Su lamentable final, su suicidio en Duino (Trieste) el 5 de septiembre de 1906, muy probablemente no fue ajeno a esa retorcida personalidad, aunque su precaria salud física fue seguramente determinante a la hora de dar el trágico paso hacia el lado oscuro.

Uno de los problemas conceptuales más importantes de la física es cómo compatible la evolución irreversible de los sistemas macroscópicos (el segundo principio de la termodinámica) con la mecánica reversible (las ecuaciones de Hamilton o la ecuación de Schrödinger) de las partículas (átomos o moléculas) que las constituyen. que Boltzmann dedujo su ecuación en 1872, este problema ha dado lugar a muy amplios debates, y el origen de la irreversibilidad es, aún hoy en día, controvertido.

LA ECUACION DE SCHRÖDINGERLa ecuación de Schrödinger - YouTube13 - Mecánica Teórica [Ecuaciones de Hamilton] - YouTube

En una de sus primeras publicaciones, Boltzmann obtuvo en 1866 una expresión de la entropía, que había sido definida un año antes por Clausius, basado en conceptos mecánicos. Las limitaciones de este eran que su aplicación se restringía al estudio de los gases y que el sistema era periódico en el tiempo. Además, Boltzmann no pudo deducir de su definición de entropía la irreversibilidad del segundo principio de la termodinámica de Clausius. En 1868, basándose en las ideas probabilísticas de Maxwell, obtuvo la distribución de equilibrio de un gas de partículas puntuales bajo la acción de una fuerza que deriva de un potencial (distribución de Maxwell-Boltzmann).

En el Universo, considerado como sistema cerrado, la entropía crece y…

En 1.872 publicó la denominada ecuación de Boltzmann para cuya deducción se basó, aparentemente, en ideas mecánicas. ecuación contiene, sin embargo, una hipótesis no mecánica (estadística) o hipótesis del caos molecular, que Boltzmann no apreció como tal, y cuya mayor consecuencia es que, cualquiera que sea la distribución inicial de velocidad de un gas homogéneo diluido fuera del equilibrio, ésta evoluciona irreversiblemente hacia la distribución de velocidad de Maxwell. A raíz de las críticas de Loschmidt (paradoja de la reversibilidad) y Zermelo (paradoja de la recurrencia), Boltzmann acabó reconociendo el carácter estadístico de su hipótesis, y en 1877 propuso una relación entre la entropía S de un sistema de energía constante y el de estados dinámicos W accesibles al sistema en su espacio de fases; esto es, la conocida ecuación S = kB ln W, donde kB es la constante de Boltzmann. En esta nota, se hace una breve descripción de la ecuación de Boltzmann y de la hipótesis del caos molecular.

Ley de los gases ideales - Física de nivel básico, nada complejo..

   El comportamiento de los gases siempre dio a los físicos en qué pensar

La ecuación de Boltzmann describe la evolución temporal de un gas diluido de N partículas puntuales de masa m contenidas en un volumen V que interaccionan a través de un potencial de par central repulsivo V(r) de corto alcance a. Como simplificación adicional, considérese que sobre las partículas no actúan campos externos. Si f1(r,v,t) indica la densidad de partículas que en el tiempo t tienen un vector de posición r y velocidad v, que está normalizada en :

∫dr ∫dvƒ1(r,v,t) = N

Su evolución temporal es la suma de dos contribuciones. En ausencia de interacción, las partículas que en el tiempo t tienen vector de posición r y velocidad v se encuentran, después de un intervalo de tiempo Δt, en r + v Δt y tiene la misma velocidad.

f1(r + vΔt,v,t + Δt) = f1(r,v,t)

en el límite Δt → 0 (2) se escribe:

1 f1(r,v,t) = – v∂r f1(r,v,t)

Que es una ecuación invariante bajo el cambio t → – t y v → – v. La evolución es, por tanto, mecánica.

    Todo, con el paso del tiempo, se destruye y transforma

Se cumplieron más de cien años desde la muerte de Boltzmann y su sigue siendo recordado. No pienso que Boltzmann creyera en la existencia real de los átomos, pero sí en su utilidad e incluso en su necesidad para comprender las leyes macroscópicas y la evolución irreversible de los fenómenos macroscópicos desde una base más fundamental que el nivel fenomenológico. Pero había quien (con autoridad) no creía ni en la existencia ni en su utilidad. Este debate no era ajeno a las tendencias ideológicas, religiosas y usos sociales de aquella época porque, en general, la ciencia es parte de la cultura y depende del momento histórico que viven los científicos, al fin y al cabo, seres humanos como los demás, influenciables por su entorno en una gran medida.

Modelos atómicos basados en la Física ClásicaEcuación de estado y modelo molecular de un gas - Física de nivel ...

Por el siglo XIX, e incluso , ya se hablaba de “átomos”* y una rudimentaria teoría cinética de los gases gozaba de aceptación y utilidad científica (recordemos los trabajos de Benoulli, Dalton, Laplace, Poisson, Cauchy, Clausius, Krönig… y Maxwell). fue Boltzmann quien definitivamente profundizó en la cuestión, para el estudio del equilibrio y, sobre todo, intentando explicar mecánicamente (mecano-estadísticamente) la evolución termodinámica irreversible y la descripción de los procesos de transporte ligados a ella. Y, nuevamente (por su enorme importancia) no podemos dejar de mencionar la muy singular labor que hicieron Gibbs, Einstein, Planck, Fermi y otros. Sin la motivación ideológica de Boltzmann, Gibbs elaboró una bellísima, útil y hoy dominante formulación (cuerpo de doctrina) de la termodinámica y física estadística.

                     Lorentz

Fue Lorentz quien primero utilizó la ecuación de Boltzmann y lo hizo describir la corriente eléctrica en sólidos dando un paso significativo por encima del pionero Drude. Lorentz introdujo un modelo opuesto al browniano donde partículas ligeras como viento (electrones) se mueven chocando entre sí y con árboles gordos (tales como iones en una red cristalina); un modelo del que se han hecho estudios de interés tanto físico como matemático. Enskog (inspirándose en Hilbert) y Chapman (inspirándose en Maxwell) enseñaron cómo integrar la ecuación de Boltzmann, abriendo vías a otras diversas aplicaciones (hidrodinámica, propagación del sonido, difusión másica, calor, fricción viscosa, termoelectricidad, etc.). Recordemos que Boltzmann encontró como solución de equilibrio de su ecuación una distribución de velocidades antes descubierta por Maxwell (hoy, como reseñé anteriormente, de Maxwell-Boltzmann), por lo que concluyó que así daba base microscópica mecánica (teorema H mecano-estadístico) al segundo principio de la termodinámica (estrictamente, evolución de un sistema aislado hacia su “desorden” máximo).

La entropía como creadora de ordenLa entropía como creadora de orden

Está claro que ningún físico que se precie de serlo puede visitar Viena sin visitar el parque Zentralfriedhof ver la tumba de Boltzmann. Yo sí me pasé por allí. Me senté junto a la tumba; el lugar estaba desierto, y cerrando los ojos traté de conectar con la conciencia del genio. La sensación, extraña y agradable, seguramente fue creada por mi imaginación, pero creo que charlé con él en el interior de mi mente – la fuerza más potente del universo– y aquellos sentimientos, aquel momento, compensaron el esfuerzo del viaje.

En la tumba, sobre una gran lápida de mármol de color blanco con los nombres Ludwig Boltzmann y de los familiares enterrados con él, sobre el busto de Boltzmann, se puede leer la inscripción, a modo de epitafio:

Esta sencilla ecuación es la mayor aportación de Boltzmann y una de las ecuaciones más importantes de la física. El significado de las tres letras que aparecen (aparte la notación del logaritmo) es el siguiente:

  • S es la entropía de un sistema.
  • W es el de microestados posibles de sus partículas elementales.
  • k es una constante de proporcionalidad que hoy recibe el de Constante de Boltzmann, de valor 1’3805 × 10-23 J/K (si el logaritmo se toma en la base natural)

 

CEREBRA LA VIDA: SOBRE NEURONA, GLIA, NEUROTRANSMISORES, SINAPSIS ...nexciencia.exactas.uba.ar » El cerebro y sus derechos

¿Qué secretos se encierran aquí? ¿Cómo nos lleva a estos pensamientos? ¿Llegaremos algún día a conocernos?

Fórmula de entropía de Boltzmann - Wikipedia, la enciclopedia libre

En esta breve ecuación se encierra la conexión entre el micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la física conocida como mecánica estadística.

Como todas las ecuaciones sencilla de gran trascendencia en la física (como la famosa E = mc2), hay un antes y un después de su formulación: sus consecuencias son de un calado tan profundo que cambiaron la de entender el mundo, y en particular, de hacer física a partir de ellas. De hecho, la sutileza de la ecuación es tal que hoy, cien años después de la muerte de su creador, se siguen investigando sus nada triviales consecuencias. Creo que lo mismo ocurrirá con α = 2πe2/ħc que, en tan reducido espacio y con tan pocos símbolos, encierra los misterios del electromagnetismo (el electrón), de la constante de Planck (la mecánica cuántica), y de la luz (la relatividad de Einstein), todo ello enterrado profundamente en las entrañas de un : 137.

Bueno, a pesar de todo lo anterior, Schrödinger nos decía:

“La actitud científica ha de ser reconstruida, la ciencia ha de rehacerse de

 

 

¡Lo grande y lo pequeño! ¡Son tantos los secretos de la Naturaleza!

Siempre hemos tenido consciencia de que en física, había que buscar nuevos paradigmas, nuevos caminos que nos llevaran más lejos. Es bien conocida la anécdota de que a finales del siglo XIX un destacado físico de la época William Thomson (1824-1907) conocido como Lord Kelvin, se atrevió a decir que solo dos pequeñas “nubecillas” arrojaban sombras sobre el majestuoso panorama de conocimiento que había construido la física clásica Galileo y Newton hasta ese momento: el resultado del experimento de Michelson-Morley, el cual había fallado en detectar la existencia del supuesto éter luminífero; y la radiación del cuerpo negro, i.e la incapacidad de la teoría electromagnética clásica de predecir la distribución de la energía radiante emitida a diferentes frecuencias emitidas por un radiador idealizado llamado cuerpo negro. Lo que Lord Kelvin no puedo predecir es que al tratar de disipar esas dos “nubecillas”, la física se vería irremediablemente arrastrada a una nueva física: la física moderna fundada sobre dos revoluciones en ciernes: la revolución relativista y la revolución cuántica con dos  científicos como protagonistas: Planck y Albert Einstein. Sin embargo, ha pasado un siglo y seguimos con esas dos únicas guías para el camino y, resultan insuficientes para llegar a la meta que… ¡Está tan lejos!

emilio silvera