Oct
23
¡Que extraña es la Mecánica cuántica!
por Emilio Silvera ~ Clasificado en Noticias ~ Comments (1)
Hasta 1968, y tras una serie de experimentos en el Acelerador Lineal de Stanford (SLAC) no supimos que muchas partículas, entre ellas protones y neutrones, que son los constituyentes principales de los núcleos atómicos, están formados a su vez por tres partículas aún más pequeñas, los quarks. Apenas 4 años antes, el físico norteamericano Murray Gell-Mann ya predijo su existencia, poniendo algo de orden a las decenas de partículas diferentes que aparecían sin aparentre orden ni concierto en los experimentos con aceleradores.
A partir de ese momento, y durante décadas enteras, los físicos se han esforzado por saber cuántos tipos de quarks existen y qué función cumplen exactamente. Hasta ahora se han clasificado seis clases (o sabores) de quarks, que difieren entre sí en el espín, una de las características de toda partícula que describe su rotación intrínseca. Así, tenemos Quark u (up, arriba) Quark d (down, abajo), Quark c (charm, encanto), Quark s (strange, extraño), Quark t (top, cima) y Quark b (bottom, fondo). Todos ellos, tras haber sido predichos teóricamente han ido apareciendo en los laboratorios de los físicos.
Sin embargo, y hurgando en las matemáticas que hay detrás de los quarks, los físicos se han encontrado con que debería de existir un tipo de partícula “diferente”, realmente extraña y que jamás ha aparecido en experimento alguno. Una partícula formada por seis quarks en lugar de por tres, como es lo habitual. Se la conoce como “hexaquark”, y estaría compuesta por quarks de diferentes sabores. De existir realmente, el hexaquark podría explicar el misterio de la materia oscura, esa “otra clase” de materia que no emite absolutamente ningún tipo de radiación y que, por lo tanto, resulta indetectable incluso para los instrumentos más sofisticados. Y por si esto fuera poco, los físicos han descubierto, además, que si el hexaquark tuviera una masa en particular, la partícula podría ser inmortal, y vivir para siempre.
De los seis tipos de quarks conocidos, los “arriba” y “abajo” son los más ligeros, y también los más comunes. En la Física de partículas, en efecto, cuanto más se pese más probabilidades hay de descomponerse en cosas más pequeñas.
Los protones y los neutrones, como se ha dicho, están compuestos por tríos de quarks: dos “arriba” y un “abajo” forman un protón, y dos “abajo” y un “arriba” forman un neutrón. Esa configuración en trío resulta ser la más estable y también la más común de todas.
A pesar de ello, de vez en cuando aparecen en los colisionadores partículas que no cumplen esta norma, y que están formadas solo por dos quarks. Suelen ser muy inestables, apenas duran un instante y enseguida se descomponen en otra cosa diferente. Si los investigadores se esfuerzan mucho en sus experimentos, explica el astrofísico Paul M.Suttter en LiveScience, en ocasiones pueden llegar a conseguir que se unan hasta cinco quarks diferentes y que interactúen brevemente (un pentaquark) antes de descomponerse también. Y hasta ahora, esas han sido todas las combinaciones de quarks que hemos sido capaces de fabricar. Pero la teoría dice que debería de haber algo más.
De hecho, existe una extraña combinación de quarks que jamás ha aparecido en los experimentos: se trata, precisamente, del hexaquark, una extraña combinación de seis quarks que consta de dos quarks “arriba”, dos “abajo”, y dos “extraños”. Las teorías, sin embargo, no predicen una masa concreta para el hexaquark. Ese valor, considera Sutter, dependería de la disposición precisa y de las interacciones de los quarks individuales dentro de esa hipotética partícula.
¿Y qué hay de su estabilidad? ¿Se desintegraría de inmediato un hexaquark si apareciera por fin en laboratorio? La respuesta, para Sutter, es un rotundo no. Muy al contrario, explica, los cálculos sugieren que si su masa cae por debajo de un cierto umbral, esa partícula sería absolutamente estable por toda la eternidad. En otras palabras, nunca se descompondrá. Si por el contrario la masa del hexaquark resultara ser algo mayor, pero aún por debajo de cierto umbral, la partícula acabaría por descomponerse, pero en unas escalas de tiempo tan enormes que bien podría considerare como eterna.
Si el hexaquark es tan estable, ¿por qué no se ha visto nunca?
Sutter cree que la respuesta puede ser más simple de lo que creemos. Curiosamente, el rango de masas que debería de tener un hexaquark está por debajo del umbral de lo que pueden crear los colisionadores de partículas, diseñados para estudiar partículas mucho mas pesadas y fugaces. En otras palabras, el hexaquark podría estar ahí, de incógnito a plena vista, y haber pasado inadvertido durante décadas enteras.
Afortunadamente, los aceleradores de partículas no son el único sitio en el que se pueden buscar hexaquarks. Durante los primeros instantes tras el Big Bang, explica Sutter, hubo un auténtico caos de energías nucleares, con temperaturas y presiones lo suficientemente elevadas como para fabricar átomos de hidrógeno y helio a base de juntar quarks. Y en esa fragua primordial también se podrían haber formado una enorme cantidad de hexaquarks, junto al resto de las partículas subatómicas que nos son familiares.
Según los cálculos preliminares de los científicos, si los hexaquarks son algo real y si tienen el rango adecuado de masas, podrían haberse producido en grandes cantidades en el Universo primitivo, y haber sobrevivido después a aquél auténtico infierno. De hecho, los hexaquarks originales podrían seguir existiendo, sin interactuar con nada, sin descomponerse en otras partículas, sin emitir nada y sin hacer nada más que existir y crear, eso sí, efectos gravitatorios adicionales en los lugares donde más se acumulen debido a su masa. ¿Les suena? Porque eso es exactamente lo que se supone que hace la materia oscura.
Evidentemente, y a pesar de lo atractivo de la idea, lo primero que habría que hacer es ver un hexaquark en laboratorio. Cosa que, hasta ahora, no se ha conseguido. Aunque eso, para Sutter, podría estar empezando a cambiar. De hecho, el detector BaBar, del Laboratorio Nacional de Aceleradores SLAC, en California, resulta especialmente adecuado para producir diferentes combinaciones de quarks, algunos de ellos realmente pesados. Y debería de estar en condiciones de producir también hexaquarks, si es que realmente existen.
En un artículo aparecido el pasado 2 de enero en arXiv.org, aparecen los últimos resultados de ese esfuerzo, aunque el hexaquark sigue sin aparecer. Aunque eso, según Sutter, solo es seguro en un 90%, lo que significa que si las posibles combinaciones de quarks más masivas y menos estables se descomponen en hexaquarks estables, lo harían muy raramente, a una tasa de una sola descomposición por cada 10 millones.
¿Descarta eso al hexaquark como posible candidato a materia oscura? No exactamente. Podría ser, en efecto, que las condiciones del Universo primitivo permitieran el surgimiento de suficientes hexaquarks como para dar cuenta de la cantidad estimada de materia oscura. Aunque ese nuevo resultado, sin duda, supone un problema adicional para la idea. Puede que futuras investigaciones consigan confirmar la existencia de esta partícula inmortal. Y resolver, por fin, el molesto enigma de la materia oscura.
Noticia de prensa
Oct
23
¿En qué Universo estamos? ¿Habrá otros más allá del nuestro?
por Emilio Silvera ~ Clasificado en Diversidad ~ Comments (0)
Cosas de Física
¡La Física! Esa maravilla que está presente en todo lo que podemos ver y en aquello donde la vista no llega. La infinitud de las partículas elementales que forman todo cuanto existe en la Naturaleza, no siempre se dejan ver ni hacen posible que podamos observar las maravillas que pueden llevar a cabo,
“El núcleo atómico es la parte central de un átomo, tiene carga positiva, y concentra más del 99,9 % de la masa total del átomo.
Está formado por protones y neutrones (denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte,y detallada la cual permite que el núcleo sea estable, a pesar de que los protones se repelen entre sí (como los polos iguales de dos imanes). La cantidad de protones en el núcleo (número atómico), determina el elemento químico al que pertenece. “
Los efectos de esta fuerza solo se aprecian a distancias muy pequeñas, del tamaño de los núcleos atómicos, y no se perciben a distancias mayores a 1 fm. A esta característica se la conoce como de corto alcance, en contraposición con las de largo alcance como la gravedad o la interacción electromagnética, que son estrictamente de alcance infinito.
Nos hablan de las partículas subatómicas y de las fuerzas fundamentales que interaccionan con la materia, como se producen las complejas uniones de energía-materia para construir átomos, moléculas y cuerpos que, infinitesimales o muy grandes, conforman un universo dinámico, en el que todo está contenido, desde la materia “inerte” Hasta la Vida.
“A pesar de la frecuencia con la que aparecen en novelas y películas de ciencia ficción, los universos paralelos no eran, hasta ahora, más que una especulación científica. Sin embargo, matemáticos de la Universidad de Oxford han demostrado que existen en realidad. Los universos paralelos existen. Así de contundentes son los resultados del último estudio efectuado por científicos de la Universidad de Oxford, en el que demuestran matemáticamente que el concepto de estructura de árbol de nuestro universo es real. Esta propiedad del universo es la que sirve de base para crear nuestra realidad.
Busca la puerta de entrada a otro Universo
La teoría de los universos paralelos fue propuesta por primera vez en 1950 por el físico estadounidense Hugh Everett, en la que intentaba explicar los misterios de la mecánica cuántica que resultaban completamente desconcertantes para los científicos. Expresado de una manera muy simplificada, lo que propuso Everett fue que cada vez que se explora una nueva posibilidad física, el universo se divide. Para cada alternativa posible se “crea” un universo propio.”
Científicos de la NASA dicen haber hallado evidencias de que puedan existir universos vecinos. Desde hace tiempo los científicos sospechan que, lo mismo que existen cúmulos de estrellas y de galaxias… ¡Podrían existir de universos.
Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del nuestro que, se comporta como si existiera más materia de la que realmente hay debido a que, la fuerza de gravedad de esos “universos” vecinos, incide de manera real en este Universo nuestro. Como podréis comprobar, los distintos estudios sobre el tema, nos dan también, diferentes resultados y, confirmar la Inflacción, las ondas gravitatorias y la existencia del multiverso… ¡Nos queda lejos aún! Sin embargo, algunos se dejan llevar por el entusiasmo.
Los estudios del MAPW han derivado en deducciones que nos dicen: “El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.
La fuerza de Gravedad generada por la materia de otros universos, podría estar tirando del nuestro y viceversa. Esto podría explicar la expansión observada sin necesidad de la “materia oscura”
Ωbh2 = 0,002267 + o,000558/ – 0,000059
Ωch2 = 0,1131 ± 0.0034
ΩΛ = 0,726± 0.015
ns = 0,960 ± 0,013
τ = 0,084 ± 0.016
σ8 = 0,812 ± 0.026
Los tres ingenios que estudian el problema planteado
Estos son los valores de los parámetros cosmológicos obtenidos a partir de los datos combinados de 5 años de observación de WMAP, medidas de distancia de supernovas tipo I y la distribución de galaxias Omega b, c, lambda que son las densidades de materia bariónica, materia oscura y energía oscura respecto a la densidad crítica (la correspondiente a un espacio euclideo) h = 0,71 es el parámetro de Hubble que mide la razón de expansión del universo, τ es la profundidad óptica, y ns y σ8 son el índice espectral y la amplitud del espectro de las fluctuaciones de la materia, respectivamente.
Además de los parámetros cosmológicos, el estudio de la distribución estadística de las anisotropías en la intensidad de la polarización de la radiación también nos proporciona una información muy valiosa sobre la historia remota del Universo. El Modelo estándar de inflación predice que las fluctuaciones en la densidad de energía se distribuye siguiendo, muy aproximadamente, un campo aleatorio gausiano. Sin embargo el modelo estándar se basa en el caso ideal de existencia de un solo campo cuántico, el inflatón, que evoluciona lentamente hasta el mínimo de potencial.
En el artículo nos dicen:
“El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.”
En los numerosos análisis realizados a los datos de WMAP se han encontrado una serie de “anomalías” cuyo origen está aún por determinar. En el artículo se nos dice:
” El flujo oscuro es controvertido debido a que la distribución de la materia en el Universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del Universo visible -fuera de nuestro “horizonte”- está tirando de la materia en nuestra vecindad”.
Es decir, que de lo que en realidad se trata es, de saber cuanto vale Omega (Ω), o, lo que es lo mismo, la cantidad de materia que contiene el Universo metiendo en ese “saco” tanto a la materia bariónica como a la oscura.
Las anomalías observadas no son debidas ni al ruido ni a residuos contaminantes, lo más probable es que sea debida a defectos topológicos en forma de textura. Seguramente la misión Planck de la ESA nos proporcionará la mejor medida de la anisotropía en la intensidad del Fondo Cósmico de Microondas en todo el cielo con una sensibilidad, resolución y cubrimiento frecuencial sin precedentes.
Las fronteras del conocimiento sobre el Universo se amplían día a día y, a no tardar mucho podremos saber sobre:
- Las características de la época inflacionaria así como de las fluctuaciones primordiales en la densidad que allí se generaron.
- La existencia de ondas gravitatorias primordiales.
- La naturaleza de la materia oscura y la energía oscura y su contribución al contenido material/energético total del Universo.
- La distribución de cúmulos de galaxias seleccionados mediante el efecto Sunyaev-Zeldovich.
- La época de re-ionización”.
Y, muchas cosas más que de momento ignoramos y que, como nos van desvelando las observaciones y estudios realizados, cada día quedan más cerca de nuestro entendimiento gracias al trabajo de muchos y, sobre todo, al ingenio de los seres humanos que, con su inagotable imaginación y, por fin, unificando los conocimientos adquiridos durante largos años, ahora van aprendiendo a dirigir sus esfuerzos en la debida dirección, que nos llevará, a desvelar cosas que no comprendemos para saber, cada vez más profundamente, como funciona el Universo en el que vivimos y por qué de sus comportamientos.
La naturaleza a temperaturas muy bajas tiene una gran cantidad de sorpresas bajo la manga”, comenta Meyer. “No quiero especular sobre cuál resultará ser la explicación de la emisión criogénica, pero no me sorprendería si la estructura de banda de los semiconductores desempeña un papel importante”.
Estructuras desconocidas arrastran las galaxias de nuestro universo
¡Hay tantas cosas que desconocemos! Pudiera incluso ser posible que, esa fuerza misteriosa que tira de nuestras galaxias y, cuya responsabilidad se la adjudicamos a “la materia oscura”, sea, enrealidad, la fuerza de Gravedad que generan cientos de miles de Galaxias situadas en otro universo que, vecino del nuestro, incide de manera directa en el comportamiento de los objetos que el nuestro contiene.
Porque, ¿quién puede asegurar que nuestro Universo es el único universo?
Nosotros decimos, en relación a “nuestro” Universo, que comprende “todo” lo que existe, incluyendo el espacio, el tiempo y la materia. Claro que, al decir “todo lo que existe” nos estamos refiriendo al ámbito del propio Universo, sin pensar en que, más allá de éste nuestro, puedan existir otros iguales o diferentes que, como el nuestro, tenga también espacio, tiempo y materia, y, si es así, ¿Por qué esa materia vecina no puede incidir, con la fuerza de Gravedad que su materia genera, en éste Universo nuestro? Si recordamos bien, se dice que, tanto el alcance de la fuerza electromagnética como el de la Gravitatoria, son infinitos. De esa manera, esa materia que conforma otros universos, podría estar “tirando” de nuestras galaxias y, haciendo que corran a más velocidad de la que tendrían de no concurrir en escena, alguna otra fuerza externa. Claro que, nosotros, creyendo que la idea de otros universos es algo atrevida, hemos preferido adoptar a la “Materia Oscura” para que explique, o, más bien justifique, las anomalías observadas.
Una cosa sí que está clara, el Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Tal separación gradual, a medida que el tiempo pasa, hace que el Universo sea, cada vez más frío.
¿No pasará con los universos como ocurre con las galaxias? Sabemos que Andrómeda se nos echa encima a 100 Km/s, y, de la misma manera, son múltiples las galaxias que se han fundido en una sola galaxia mayor. Si eso es así (que lo es), si las leyes del Universo son las que son, no podemos negar que al igual que las galaxias, también los universos se funden en otro mayor.
Yo, la verdad es que no acabo de estar de acuerdo con la dichosa “materia oscura”, algo me dice que hay algo más que no sabemos ver y, posiblemente, la fuerza de Graedad tenga alguna propiedad o extensión desconocida. Por otra parte, la idea, no de universos paralelos que serían intangibles para nosotros al estar situados en otro plano dimensional, sino la idea de universos conexos que, de alguna manera, se relacionan entre sí a una escala tan enorme que aún no hemos podido captar.
Creo firmemente que, eso debe ser así según los indicios que, cada vez son más fuertes apuntando en dicha dirección, y, esos modelos que nos hemos inventado del Universo Plano, Abierto o Cerrado, no son más que palos de ciego tratando de explicar lo que no comprendemos.
La materia que conforma nuestro Universo es la que podemos ver y detectar, la que confroman todos los objetos existentes nosotros incluidos, y, sin importar la forma que esté adoptando en este momento, la materia, materia es: es decir, Quarks y Leptones. Es posible que, seguramente, esté acompañada de esa otra escondida en eso que llamamos “fluctuaciones de vacío” donde, que sepamos, puede haber oculto mucho más de lo que hemos podido localizar, ya que, su dominio, el dominio de los llamados “océanos de Higgs” nos quedan muy, pero que muy lejos, y, ahora, con el LHC, posiblemente podamos obtener algunas de las respuestas tan deseadas y necesarias para rellenar muchos de los espacios “vacíos” que están presentes en nuestros conocimientos limitados.
Pensemos en el Universo y que con el Hubble y otros magníficos aparatos tecnológicos de complejo diseño, hemos podido acceder a un conocimiento más profundo de lo que puede ser la materia y las partículas de que está conformada. Por otra parte y pensando en el enorme costo que nos suponen esos inmensos aceleradores de partículas que nos llevan (durante una fracción de segundo) al instante mismo de la creación para que, allí, podamos “ver” lo que fue y entender, de esa manera, lo que es, a costa de una inemnsa energía. Precisamente por ello, sería deseable busca otros caminos más dinámicos y menos costosos (la Química) que nos llevaran hasta el mismo lugar sin tanta estructura y con menos esfuerzo económico que se podría destinar a otros proyectos del espacio.
Sabemos de su magnificencia y de su “infinitud”. Lleva 13.700 millones de años creciendo, y, hemos logrado la proeza de captar galaxias situadas a unos 13.ooo millones de años-luz de nosotros, es decir, de cuando el Universo era muy joven.
Con las nuevas generaciones de aparatos, con las nuevas y más avanzadas tecnologías, seguramente, alcanzaremos a poder ver, incluso el momento mismo de “la gran explosión”.
Sin embargo, tales hallazgos no serán suficientes para explicar todo lo que en verdad existe y está ahí, “junto” a nosotros, haciéndonos señales que no podemos captar, y, seguramente, enviándonos mensajes que no podemos recibir.
¡Algún día, muy lejos en el futuro, podremos, al fin saber, en qué Universo estamos y si, éste Universo nuestro, tiene otros hermanos!
“Kashlinsky y su equipo afirman que su observación representa la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”
“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.
En el escenario de inflación, la expansión está dirigida por un campo de energía de un origen misterioso. Erickcek y sus colegas argumentan que la asimetría podría ser el remanente de las fluctuaciones en un campo de energía adicional, el cual empezó siendo diminuto, pero estalló por la inflación hasta que se hizo mayor que el universo observable.
Como resultado, el valor de este campo de energía varió desde un lado del universo al otro en los inicios, aumentando las variaciones de temperatura – y densidad de materia – en un lado del cielo con respecto a otro.
La conclusión, si es correcta, haría añicos una apreciada suposición sobre el universo. “Uno de los sustentos básicos de la cosmología es que el universo es el mismo en todas las direcciones, y el modelo estándar de la inflación se construye sobre estos cimientos”, dijo Erickcek a New Scientist. “Si la asimetría es real, entonces nos dice que un lado del universo es de algún modo distinto al otro lado”.
“El universo, tan vasto para la mayoría de nosotros, a veces les resulta pequeño a los cosmólogos. Observando a enormes distancias de la Tierra han encontrado una “ventana” que podría mostrarnos que existe algo más allá de los 45.000 millones de años luz, el “borde final” observable de esta burbuja cósmica que nos aloja. ¿Constituye esto una evidencia de la existencia otros universos?”
He buscado diversas opiniones y estudios que arriba están para su lectura, y, también he plasmado aquí mis propias opiniones sobre todo este complejo tema. Leyendo a unos y otros sabemos que, a nada se ha llegado de manera definitiva pero, la idea de que más allá del horizonte de nuestro Universo, hay algo más, toma fuerza y amplia nuestra visión en relación a dónde podemos estar y lo que, verdaderamente pueda ser todo esto.
Para más abundamiento, se incluyen hoy dos entrevistas que el Pais publicó sobre el tema y, con ellas, oyendo lo que los científicos opinan del tema, podéis sacar vuestras propias conclusiones.La mías es: ¡Que todo es posible! Sin embargo, necesitamos Tiempo para demostrarlo.
emilio silvera
Oct
23
Pululando por la Red
por Emilio Silvera ~ Clasificado en Agujeros negros, General ~ Comments (0)
Bienvenidos a mi sitio, soy Abdel Majluf, cosmólogo, investigador y divulgador científico. Durante el último tiempo, me he dedicando a investigar y encontrar respuesta a los misterios del Universo. Hoy que he aprendido a conocerlo un poco mas, quiero compartir esa información.
Una cosa debemos tener clara: Aún sabiendo muchas cosas sobre los Agujeros negros y de su procedencia, como funcionan, su “singularidad” y el Horizonte de sucesos, de cómo atrae a la luz y engulle a las estrellas vecinas… ¡Nos quedea mucho por saber.