Nov
4
¡Increíbles estructuras!
por Emilio Silvera ~
Clasificado en Agujeros negros ~
Comments (0)
Recreación artística de un agujero negro. /NASA/JPL-Caltech
Un enorme agujero negro, cien mil veces más masivo que el Sol, se ha encontrado detrás de una nube de gas tóxico que flota alrededor del corazón de la Vía Láctea. Este gigante invisible sería el segundo más grande que se ha visto en nuestra galaxia después de Sagitario A, el agujero negro super-masivo ubicado en su centro. El nuevo descubrimiento, publicado en Nature Astronomy es la mejor evidencia de una clase de agujeros negros de masa intermedia, cuya existencia podría explicar cómo crecen los agujeros negros super-masivos.
En el centro galáctico se observan estrellas que llevan más de 20 años dando vueltas alrededor del Agujero Negro que allí habita.
Imagen del centro de nuestra galaxia, la Vía Láctea, donde hay un agujero negro. Un agujero más masivo tendrá un mayor horizonte de sucesos (la frontera a partir de la cual nada, si siquiera la luz, puede escapar). Un agujero de 10.000 millones de soles en el centro de la Vía Láctea tendría un horizonte inmenso.
Los dos agujeros negros más masivos que se encontraron hasta la fecha fueron hallados en el corazón de dos galaxias gigantes, situadas a varios cientos de millones de kilómetros de la Tierra. Los agujeros negros tienen una masa más de 10 mil millones de veces mayor a la del Sol, un récord, indica un artículo publicado en la revista científica Nature.
Casi siempre la unión de dos agujeros negros gigantes vienen de la mano de la colisión de las galaxias que los contienen en su centro galáctico. Y, además de que la galaxia se transmuta en una sola mayor, el agujero también.
Localizan cientos de agujeros negros gigantes que no paran de crecer (Texto completo en: http://actualidad.rt.com/ciencias/view/55686-localizan-cientos-agujeros-negros-gigantes-paran-crecer) La noticia nos dice que la nueva concentración está tan alejada de la Tierra que está literalmente situada “al borde del Tiempo”, ya que algunos se encuentran a una distancia de varios miles de millones de años luz de la Tierra.

La estrella, bautizada como SO-102, está orbitando cerca del agujero negro situado en el centro de la Vía Láctea cada 11 años y medio terrestres, mucho más rápido que los 60 años o más que normalmente les lleva al resto de las estrellas orbitar alrededor del mismo. Esta es la segunda estrella descubierta que presenta una órbita tan corta, -la otra, SO-2, gravita alrededor del agujero negro cada 16 años- gracias a nuevas técnicas mejoradas de imagen.


Esta ilustración muestra las órbitas de los objetos en el sistema estelar triple HR 6819. El sistema consta de una estrella interior (órbita en azul) y un agujero negro (órbita en rojo), así como una tercera estrella en una órbita más amplia (también en azul).


Nov
3
El Universo Asombroso
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
También esto forma parte del Universo
Y pensar que nuestra Galaxia, la Vía Láctea con todo el Grupo Local de galaxias, se mueve a 600 Km/s en relación a la radiación del fondo de microondas… ¡Es increíble! Ningún científico hasta el momento, podía tener en mente tal estimación dada por el último estudio realizado. Estamos viviendo en una nave espacial que se mueve a una buena velocidad. El Sol se mueve dentro de la Galaxia a una velocidad media de 220 km/s y la Tierra le acompaña en el recorrido al iguakl que todo el Sistema Solar. El Sol tarda 250 millones de años en dar una vuelta alrededor de la Galaxia. Así que desde que “nació” ha realizado el recorrido unas 20 veces.
“La astronomía en rayos gamma estudia los objetos más energéticos del universo y, desde sus comienzos hace apenas medio siglo, ha lidiado con un problema grave, que consiste en determinar de precisa y fidedigna la región de donde procede la radiación que llega a los detectores de rayos gamma, lo que permite a su vez averiguar el mecanismo a través del que se produce. Ahora, un grupo internacional liderado por astrónomos del Instituto de Astrofísica de Andalucía (IAA-CSIC) ha localizado, por primera vez sin la aplicación de modelos y con un grado de confianza superior al 99,7%, la región de la que surgió un destello en rayos gamma en el blázar AO 0235+164 y que permite conocer cómo se produjo.”
La sinfonía de los agujeros negros binarios ¿La oirémos algún día?
Puesto que la curvatura-espaciotemporal es lo mismo que la gravedad, estas ondulaciones de curvatura son realmente ondas de gravedad, u ondas gravitatorias. La Teoría de la Relatividad General de Einstein predice, de forma inequívoca, que tales ondas gravitatorias deben producirse siempre que dos agujeros negros orbiten uno en torno al otro.
Posible sistema binario de Agujeros Negros
Cuando se forma un par de agujeros negros binarios semejantes, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal) en la superficie insertada y, a medida que los agujeros giran uno en torno al otro, los pozos en órbita producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Las ondulaciones forman una espiral en el tejido del espacio-tiempo en torno al sistema binario, muy semejante a la estructura espiral del agua que procede de un aspersor de cesped que gira rápidamente. Los fragmentos de curvatura forman un conjunto de crestas y valles en espiral en el tejido espacio-temporal.
Sin temor a equivocarnos, podemos decir que, al día de la fecha, los agujeros negros siguen teniendo muchos secretos para la ciencia.
En las imágenes podemos contemplar galaxias que se fusionarán y, sus agujeros negros centrales se harán gigantes después de cientos o miles de años “bailando” el uno alrededor del otro hasta consumar el “casamiento” y unificarse en otro mayor.
¿Cómo un agujero negro y su disco dar lugar a dos chorros que apuntan en direcciones opuestas? De una forma sorprendentemente fácil, reconocieron Blandford, Rees y Lynden-Bell en la Universidad de Cambridge a mediados de los setenta. Hay cuatro formas posibles de producir chorros; cualquiera de ellas funcionaria, y, aquí, donde se explica el no versado en estos objetos cosmológicos, sólo explicaré el cuarto método por ser el más interesante:
El Agujero es atravesado por la línea de campo magnético. el agujero gira, arrastra líneas de campo que le rodean, haciendo que desvíen el plasma arriba y hacia abajo. Los chorros apuntan a lo largo del eje de giro del agujero y su dirección está así firmemente anclada a la rotación giroscópica del agujero. El método fue concebido por Blandford poco después de que recibiera el doctorado de física en Cambridge, junto con un estudiante graduado de Cambridge, Roman Znajek, y es por ello llamado el proceso Blandford-Znajet.
Ahí estamos, como observadores del Espacio exterior y haciendo pruebas para vivir en el medio. De todas las maneras y según todos los indicios (si no la prorrogan), la Estación Espacial Internacional tiene sus días contados. Ya se está trabajando en la sustituta que, estará situada en la órbita de la Luna con la idea de, más tarde, construir allí la primera base espacial con miras a viajes más largos.
Seguimos esperando ese mensaje que… ¡nunca llega!
Mientras que con nuestros ingenios telescópicos cada vez mayores y con mejor tecnología, capturamos las imágenes de galaxias muy lejanas.
Venus desde la Tierra
Nebulosa IC 4628 en la que el gas y el polvo interestelar hacen posible el nacimiento de nuevas estrellas, nuevos mundos y… ¿Quién sabe? Si Vida también en alguna de sus formas conocidas en nuestro planeta, o, conformada en diferentes formas en función de la gravedad y las condiciones de los planetas que pudieran estar orbitándo aquellas estrellas.
Lo cierto es que nuestra vecindad es tranquila y ninguna estrella vecina nos amenaza con una explosión supernova ni tiene dimensiones y masa que nos puedan preocupar si llegara el final de sus días. Bien resguardaditos en el interior del Brazo de Orión, en un Sistema solar relativamente apacible, el tercer planeta a partir del Sol, la Tierra, reluce en la secuencia principal enviando la luz y el calor necesarios para la vida a nuestro planeta que, situado en la zona habitable de la estrella, goza de una atmósfera ideal, de continentes de inmensa belleza y de mares y océanos que hace de nuestro mundo, la maravilla que es.
Todo eso que antes comento, ocurre en una Galaxia espiral situada en un pequeño grupo de poco más de una treintena de galaxias en la que, ella, junto a su compañera Andrómeda, comanda a toda la familia de las que son las hermanas mayores. Nuestro mundo, la Tierra, está situado a 30.000 años-luz del centro de la galaxia que, como hemos podido comprobar, es un lugar peligroso en el que habitan agujeros negros gigantes que emiten radiación y absorben materia, es decir, que no serían nada buenos como vecinos.
Aquí la tenemos, es nuestra casa ¡La Tierra! que, en el Sistema solar es un planeta más pero, con la suerte de haber caído en la zona habitable de la estrella que llamamos el Sol, en relación a la Galaxia Vía Láctea es un simple planeta como hay tantos, y, si la situamos en el contexto del Universo, es menos que un grano de arena de la playa de Punta Umbría en Huelva, ese lugar del que salió Colón para (re) descubrir América.
Lo cierto es que nos encontramos en un Universo inmenso y precioso. Esta composición cósmica equilibra muy bien la Nebulosa de la burbuja en la parte inferior izquierda con el cúmulo estelar abierto M52 por encima de ella y hacia la derecha. La pareja estaría desequilibrada en otras escalas, sin embargo. Incrustado en un complejo de polvo interestelar y gas y soplado por los vientos de una sola, gran estrella de tipo O, la Nebulosa de la Burbuja, también conocida como NGC 7635, se encuentra a sólo 10 años luz de ancho. Por otro lado, M52 es un cúmulo abierto rico de alrededor de mil estrellas. El cúmulo se encuentra a unos 25 años luz de diámetro. Visto hacia el límite norte de Casiopea, las estimaciones de distancia de la Nebulosa de la burbuja y el complejo de nubes asociadas son alrededor de 11.000 años luz, mientras que el cúmulo estelar M52 se encuentra cerca de 5.000 años luz de distancia.
Sí, desde la noche de los tiempos hemos mirado al cielo, buscando sus maravillas que siempre nos asombraron, primero al no poder entender cómo eran posible aquellos extraños fenómenos e increíbles objetos, y, más tarde, cuando pudimos comprender, al conocer las maravillas que podía realizar la Naturaleza valiéndose de fuerzas que, ni podemos imaginar.
Y, después de mucho pensar, llego a la conclusión de que, lo más asombroso del Universo es… ¡Que nosotros estemos aquí… Para poder describirlo!
emilio silvera
Nov
3
No siempre la Física se puede explicar con palabras
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Se dice que un agujero negro (una masa M concentrada en un volumen menor que el dictado por su radio de Schwarzschild rs = 2GM/c2) absorbe todo lo que cae sobre él. Sin embargo, Beckenstein y Hawking determinaron que el agujero negro posee entropía (proporcional al área del horizonte) y por ello temperatura, y Hawking concluye (1975) que la temperatura le hace radiar como un cuerpo negro; por tanto, eventualmente el agujero se evapora.
Aquí viene la paradoja. Si formamos el agujero negro arrojando materia en forma concreta (por ejemplo, un camión), la masa del camión acabaría eventualmente escupida como radiación del cuerpo negro, perdiéndose la preciosa información sobre el camión. Pero se supone que la evolución de “todo” es cuántica, y por ello unitaria. Ahora bien, la evolución unitaria mantiene la información (estados puros van a estados puros, no mezcla…); he ahí la paradoja.
Estaría bien poder entrar en un agujero negro para recabar información
Fue Hawking quien primero presentó la paradoja de “pérdida de información” en contra de otros que, como Gerard ‘t Hooft y Susskind, quienes mantienen que la información no se puede perder, y que por ello debe haber sutiles correlaciones en la radiación emitida, de las que en principio sería posible extraer la información original sobre que el agujero negro que se tragó un camión…
Paradójicamente, ha sido, durante el desarrollo de la “Teoría de Cuerdas” cuando se ha podido dilucidar el problema planteado hace veinticinco años por Beckenstein y Hawking que han resultado llevar razón.
¿Qué sucede entonces dentro de un agujero negro? “Según nuestro trabajo, la información no se pierde después de entrar en un agujero negro. Simplemente, no desaparece”, explica Dejan Stojkovic, líder del estudio.
Antes de su fallecimiento, S. Hawking cambió de opinión y admitió que no hay pérdida de información, al respetarse el sentido unitario de la evolución del sistema, de acuerdo con la mecánica cuántica.
La gravitación y dimensiones extra
Esas hipotéticas dimensiones extra, necesarias para la existencia de la teoría de cuerdas, muchos las están buscando pero hasta el momento… ¡Nadie las pudo encontrar!
Claro que, como para todo en este mundo, se necesita…¡Tiempo! dejemos que transcurra y…¡veremos!
“… la línea tiene magnitud en una dirección, el plano en dos direcciones y el sólido en tres direcciones; a parte de éstas, no hay ninguna magnitud porque las tres son todas…”
En nuestro Universo sólo podemos ver tres dimensiones y la temporal
Eso nos dijo Aristóteles alrededor de 350 años antes de Cristo, y la verdad, es que desde la experiencia cotidiana es difícil refutarlo. Más aún, la existencia de dimensiones extra podría tener consecuencias desastrosas para la estabilidad de las órbitas atómicas y planetarias, sobre todo en el caso de que dichas dimensiones fuesen de un tamaño comparable al del sistema estudiado. En concreto, Paul Ehrenfest en 1917 demostró que la ley del inverso del cuadrado de la distancia para la fuerza electrostática o gravitatoria se modificaría si hubiera N dimensiones espacial extra, de forma que F ≈ r-2 π. De hecho, ningún experimentado físico realizado hasta la fecha ha revelado la existencia de más de tres dimensiones espaciales, y dicho sea de paso, tampoco más de una dimensión temporal.
Hemos tratado de escenificar esas dimensiones extras de muchas maneras pero, ninguna convincente
Sin embargo, aunque la experiencia ordinaria no necesitase de más de tres más una dimensiones, desde Riemann, Gauss, Ricci y algún otro, el punto de vista matemático permite estudiar de forma consistente la geometría de espacio de dimensión arbitraria que, como digo, lo debemos en gran parte a Bernhard Riemann sobre variedades n-dimensionales (1854), y ello a pesar de que Ptolomeo propusiera una “demostración” de que una cuarta dimensión espacial no tiene magnitud ni definición posibles (Tratado sobre la distancia, 150 a. C.).
Lo del Tiempo como cuarta dimensión depende de la perspectiva con que la miremos
Según esta Teoría de Einstein, esta dimensión temporal se puede estirar dependiendo de la velocidad
La formulación de la Relatividad Especial de Einstein en 1905 supuso una revolución en nuestra concepción del espacio y del tiempo, y planteó la cuestión de la dimensionalidad desde una perspectiva completamente nueva. En efecto, en la interpretación geométrica que llevó a cabo Herman Minkowski en 1909, la teoría de Einstein podía entenderse de forma simple en términos de una variedad espacio-temporal de cuatro dimensiones, en la que a tres dimensiones espaciales se le añadía en pie de igualdad una cuarta, el tiempo. El espacio y el tiempo pasaron de entenderse como conceptos independientes a formar un entramado único 4-dimensional, en el que las distancias se miden a través de la métrica de Minkowski:
Por su parte, Einstein, lejos de considerar el espacio-tiempo de Minkowski como una mera descripción matemática, lo elevó a la categoría de entidad física con su Teoría General de la Relatividad (RG) de 1.915 al considerarlo como objeto dinámico, cuya geometría, dada por la métrica de Riemann gμυ(x), depende de tener en cuenta en cada punto de su contenido de materia y energía. La curvatura del espacio-tiempo determina la trayectoria de las partículas de prueba que se mueven en él, y por tanto, la teoría proporciona una interpretación geométrica de la interacción gravitatoria.
La unificación del electromagnetismo y la gravitación, mencionada por mí en anteriores trabajos, fue la primera de las teorías con dimensiones extra. Se la envió un oscuro matemático desconocido a Einstein, en una carta manuscrita en la que, le presentaba la teoría de 5 dimensiones en la que, era posible unificar, las dos teorías más grandes del momento (relatividad y electromagnetismo).
Einstein la leyó varias veces y la volvía a guardad y, por fin, después de dos años, se decidió a enviarla para su publicación. Allí nació la teoría primera de más altas dimensiones: la de Kaluza-Klein (este último la mejoró más tarde).
Está claro que a comienzos del siglo pasado, nuestro conocimiento de las interacciones fundamentales se reducía a dos teorías de campos bien establecidas, el electromagnetismo de Maxwell, en pie desde 1873, y la novedosa Teoría General de la Relatividad para la gravitación, que Einstein comenzara a gestar en 1907 y publicara en 1915. No es por tanto de extrañar que el atractivo de la teoría de Einstein provocara en muchos, incluido el propio Einstein, el impulso de buscar una generalización de la misma, que incluyera también a la teoría de Maxwell, en una descripción geométrica unificada.
Con ese único objetivo, se tomaron varios caminos que, si bien no llegaron al destino deseado, permitieron realizar descubrimientos trascendentales que marcaría la evolución de la física teórica hasta nuestros días. (En aquellos tiempos se desconocían las fuerzaas nucleares débil y fuerte).
Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas.
Dos líneas geodésicas, en rojo, sobre una superficie curva, esas geodésicas coinciden con las trayectorias de dos partículas en el campo gravitatorio esférico de una masa central de acuerdo con la teoría general de la relatividad.
Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.
Dos líneas geodésicas, en rojo, sobre una superficie curva, esas geodésicas coinciden con las trayectorias de dos partículas en el campo gravitatorio esférico de una masa central de acuerdo con la teoría general de la relatividad.
Triángulo geodésico sobre una esfera. La línea geodésica sería cualquiera de los arcos que forman los triángulos.
El primero de estos caminos fue propuesto por Hermann Weyl en 1918. En la Relatividad General, el espacio-tiempo se considera como una variedad pseudo-Riemanniana métrica, esto es, en la que, aunque la orientación de un vector transportado paralelamente de un punto a otro depende del camino seguido, su norma es independiente del transporte. Esta independencia de la norma disgustaba a Weyl que propuso reemplazar el tensor métrico gμυ por una clase de métricas conformemente equivalentes [gμυ] (esto es, equivalentes bajo cambios de escala gμυ → λ gμυ), y el transporte paralelo por otro que respetara esa estructura conforme. Esto se conseguía introduciendo un nuevo campo, Aμ, que al cambiar de representante de la clase de equivalencia [gμυ], se transformaba precisamente como el potencial vector de la teoría de Maxwell:
Aμ → Aμ + ∂μλ
Hermann Weyl
Este tipo de transformación es lo que Weyl denominó trasformación de “gauge”, en el sentido de cambio de longitud. En propias palabras de Weyl en una carta dirigida a Einstein en 1.918, con su teoría había conseguido “… derivar la electricidad y la gravitación de una fuente común…“. La respuesta de Einstein no se hizo esperar:
“Aunque su idea es muy elegante, tengo que declarar francamente que, en mi opinión, es imposible que la teoría se corresponda con la naturaleza.”
La objeción de Einstein se basaba en el hecho de que en la propuesta de Weyl, el ritmo de avance de los relojes también dependería del camino seguido por éstos, lo cual entraría en contradicción, por ejemplo, con la estabilidad de los espectros atómicos.
Aunque la teoría de Weyl fue abandonada rápidamente, en ella se introducía por primera vez el concepto de simetría gauge. Varias décadas más tarde, con el desarrollo de las teorías gauge no abelianas por Yang Mills (1954), y del Modelo Estándar de las partículas elementales, se comprobó que la misma noción de invarianza subyacía en la descripción del resto de interacciones fundamentales (electrodébiles y fuertes).
La teoría de cinco dimensiones de Kaluza-Klein fue la precursora de la de cuerdas
El segundo camino en la búsqueda de la unificación comenzó un año antes de la publicación de la Relatividad General. En 1914 Gunnar Nordström propuso una teoría en cinco dimensiones que unificaba el electromagnetismo con la gravitación de Newton. La aparición de la Teoría de la Relatividad General hizo olvidar la teoría de Nordström, pero no la idea de la unificación a través de dimensiones extra.
En cuentos Cuánticos lo explican así:
Nuestro universo tiene 4 dimensiones, en la imagen es la parte a) esas cuatro dimensiones están representadas por las 2 dimensiones que vemos en la imagen. Ahora Kaluza impone una nueva dimensión adicional, 5 dimensiones, en la parte b) de la imagen eso se representa por el cilindro que ahora se puede ver que tiene dos dimensiones (la superficie) y un radio (de la base) entonces tenemos una dimensión más que al principio. Ojo, esto no es más que una imagen divulgativa, la realidad no es tan fácil pero es mucho más divertida y la matemática involucrada mucho más.
Y como mencionaba antes, así estaban las cosas cuando en 1.919 recibió Einstein un trabajo de Theodor Kaluza, un privatdozent*en la Universidad de Königsberg, en el que extendía la Relatividad General a cinco dimensiones. Kaluza consideraba un espacio con cuatro dimensiones, más la correspondiente dimensión temporal y suponía que la métrica del espacio-tiempo se podía escribir como:
Donde con μ,υ = 1, 2, 3, 4, corresponde a la métrica 4-dimensional del espacio-tiempo de la RG, Aμproporciona el campo electromagnético, Φ es un campo escalar conocido posteriormente como dilatón, y α = √2k es la constante de acoplo relacionada con la constante de Newton k. Kaluza demostró que las ecuaciones de Einstein en cinco dimensiones obtenidas de esta métrica y linealizadas por los campos, se reducían a las ecuaciones de Einstein ordinarias (en cuatro dimensiones) en vacío, junto con las ecuaciones de Maxwell para Aμ, siempre que se impusiera la condición cilíndrica, esto es, que la métrica
no dependiera de la quinta coordenada.
El trabajo de Kaluza impresionó muy positivamente a Einstein: “Nunca había caído en la cuenta de lograr una teoría unificada por medio de un cilindro de cinco dimensiones… A primera vista, su idea me gusta enormemente…” (carta de Einstein a Kaluza en 1919, en abril).

Este hecho resulta sorprendente si consideramos que el trabajo de Nordström fue publicado cinco años antes. Por motivos desconocidos, en el mes de mayo de 1919, Einstein rebajó su entusiasmo inicial: “Respeto en gran medida la belleza y lo atrevido de su idea, pero comprenderá que a la vista de las objeciones actuales no pueda tomar parte como originalmente se planeó“. Einstein retuvo el trabajo de T. Kaluza durante dos años, hasta que en 1.921 fue presentado por él mismo ante la Academia Prusiana. Hasta 1.926 Einstein guardó silencia acerca de la teoría en cinco dimensiones.
Ese mismo año, Oskar Klein publicaba un trabajo sobre la relación entre la teoría cuántica y la relatividad en cinco dimensiones. Uno de los principales defectos del modelo de Kaluza era la interpretación física de la quinta dimensión. La condición cilíndrica impuesta ad hoc hacía que ningún campo dependiera de la dimensión extra, pero no se justificaba de manera alguna.
Klein propuso que los campos podrían depender de ella, pero que ésta tendría la topología de un círculo con un radio muy pequeño, lo cual garantizaría la cuantización de la carga eléctrica. Su diminuto tamaño, R5 ≈ 8×10-31 cm, cercano a la longitud de Planck, explicaría el hecho de que la dimensión extra no se observe en los experimentos ordinarios, y en particular, que la ley del inverso del cuadrado se cumpla para distancias r » R5. Pero además, la condición de periodicidad implica que existe una isometría de la métrica bajo traslaciones en la quinta dimensión, cuyo grupo U(1), coincide con el grupo de simetría gauge del electromagnetismo.
Oskar Benjamin Klein (1894-1977). Fotografía tomada para el Göttingen Bohr-Festspiele, junio de 1922.
Por último, imponiendo que el dilatón es una constante, Klein demostró que las ecuaciones de movimiento reproducen las ecuaciones completas de Einstein y Maxwell. Esta forma de tratar la dimensión extra, bautizada posteriormente como el paradigma de la compactificación, había logrado superar los obstáculos iniciales: “… parece que la unión de la gravitación y la teoría de Maxwell se consigue de una forma completamente satisfactoria con la teoría de cinco dimensiones” (carta de Einstein a Lorentz en 1927), y de hecho, ha sido la única forma consistente de introducir dimensiones extra hasta fechas más recientes.
El propio Einstein había comenzado a trabajar en la teoría de Kaluza con su ayudante Jacob Grommer y en 1.922 publicó un primer trabajo sobre existencia de soluciones esféricamente simétricas, con resultado negativo. Más tarde, en 1927 presentó ante la Academia Prusiana dos trabajos en los que reobtenía los resultados de Klein. Su infructuosa búsqueda de una teoría de campo unificada le haría volver cada pocos años a la teoría en cinco dimensiones durante el resto de su vida. Los resultados de Klein sobre la cuantización de la carga eléctrica pueden entenderse fácilmente considerando el desarrollo en modos de Fourier de los campos con respecto a la dimensión periódica:
La ecuación de ondas en cinco dimensiones puede reescribirse como:
Donde Dμ es una derivada covariante con respecto a transformaciones generales de coordenadas y con respecto a transformaciones gauge con una carga qn = nk/R5. Vemos por tanto que el campo en cinco dimensiones se descompone en una torre infinita de modos 4-dimensionales Ψn(x) con masas , en unidades naturales ћ = c = 1, y carga qn (modos de Kaluza-Klein).
Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck). Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.
Puesto que el radio de compactificación es tan pequeño, el valor típico de las masas será muy elevado, cercano a la masa de Planck Mp = k-12 = 1’2 × 1019 GeV*, y por tanto, a las energías accesibles hoy día (y previsiblemente, tampoco en un futuro cercano – qué más quisieran E. Witten y los perseguidores de las supercuerdas -), únicamente el modo cero n = 0 será relevante. Esto plantea un serio problema para la teoría, pues no contendría partículas ligeras cargadas como las que conocemos.
¿Y si llevamos a Kaluza-Klein a dimensiones superiores para unificar todas las interacciones?
La descripción de las interacciones débiles y fuertes a través de teorías gauge no abelianas mostró las limitaciones de los modelos en cinco dimensiones, pues éstas requerirían grupos de simetría mayores que el del electromagnetismo. En 1964 Bryce de UIT presentó el primer modelo de tipo Kaluza-Klein-Yang-Mills en el que el espacio extra contenía más de una dimensión.
Hace mucho que se busca la Hiperdimensionalidad
El siguiente paso sería construir un modelo cuyo grupo de isometría contuviese el del Modelo Estándar SU(3)c × SU(2)l × U(1)y, y que unificara por tanto la gravitación con el resto de las interacciones.
Edward Witten demostró en 1981 que el número total de dimensiones que se necesitarían sería al menos de once. Sin embargo, se pudo comprobar que la extensión de la teoría a once dimensiones no podía contener fermiones quirales, y por tanto sería incapaz de describir los campos de leptones y quarks.
Por otra parte, la supersimetría implica que por cada bosón existe un fermión con las mismas propiedades. La extensión supersimétrica de la Relatividad General es lo que se conoce como supergravedad (supersimetría local).
Joël Scherk (1946-1980) (a menudo citado como Joel Scherk) fue un francés teórico físico que estudió la teoría de cuerdas ysupergravedad [1] . Junto con John H. Schwarz , pensaba que la teoría de cuerdas es una teoría de la gravedad cuántica en 1974. En 1978, junto con Eugène Cremmer y Julia Bernard , Scherk construyó el lagrangiano y la supersimetría transformaciones parasupergravedad en once dimensiones [2] , que es uno de los fundamentos de la teoría-M .
Unos años antes, en 1978, Cremmer, Julia y Scherk habían encontrado que la supergravedad, precisamente en once dimensiones, tenía propiedades de unicidad que no se encontraban en otras dimensiones. A pesar de ello, la teoría no contenía fermiones quirales, como los que conocemos, cuando se compactaba en cuatro dimensiones. Estos problemas llevaron a gran parte de los teóricos al estudio de otro programa de unificación a través de dimensiones extra aún más ambicioso, la teoría de cuerdas.
No por haberme referido a ella en otros trabajos anteriores estará de más dar un breve repaso a las supercuerdas. Siempre surge algún matiz nuevo que enriquece lo que ya sabemos.
La interpretación de los cálculos que se realizan describen un objeto tan diminuto, como las supercuerdas, que tratar de imaginarlas es como querer encontrar un grano de arroz en el Universo, lo que es imposible; su calculada pequeñez las hace inimaginable para la mayoría de los mortales humanos.
Nos podemos hacer una idea:
La Tierra es 10-20 veces más pequeña que el Universo.
El núcleo atómico es 10-20 veces más pequeño que la Tierra.
Una supercuerda es 10-20 veces más pequeña que el núcleo atómico.
El origen de la teoría de supercuerdas data de 1968, cuando Gabriele Veneziano introdujo los modelos duales en un intento de describir las amplitudes de interacción hadrónicas, que en aquellos tiempos no parecía provenir de ninguna teoría cuántica de campos del tipo de la electrodinámica cuántica. Posteriormente, en 1979, Yaichiro Nambu, Leonard Susskind y Holger Nielsen demostraron de forma independiente que las amplitudes duales podían obtenerse como resultado de la dinámica de objetos unidimensionales cuánticos y relativistas dando comienzo la teoría de cuerdas.
En 1971, Pierre Ramona, André Neveu y otros desarrollaron una teoría de cuerdas con fermiones y bosones que resultó ser supersimétrica, inaugurando de esta forma la era de las supercuerdas.
Sin embargo, en 1973 David Gross, David Politzer y Frank Wilczek descubrieron que la Cromodinámica Cuántica, que es una teoría de campos gauge no abeliana basada en el grupo de color SU(3)c, que describe las interacciones fuertes en términos de quarks y gluones, poseía la propiedad de la libertad asintótica. Esto significaba que a grandes energías los quarks eran esencialmente libres, mientras que a bajas energías se encontraban confinados dentro de los hadrones en una región con radio R de valor R ≈ hc/Λ ≈ 10-13 cm.
Dicho descubrimiento, que fue recompensado con la concesión del Premio Nobel de Física a sus autores en 2.004, desvió el interés de la comunidad científica hacia la Cromodinámica Cuántica como teoría de las interacciones fuertes, relegando casi al olvido a la teoría de supercuerdas.
John Henry Schwarz
A pesar de todo, en 1974 Joel Scherk y John Schwarz hicieron la observación de que la teoría de cuerdas podía ser también una teoría cuántica de la gravitación. Sin embargo, este hecho pasó desapercibido durante casi una década. Además, las teorías de cuerdas tenían extrañas propiedades. Su versión más simple, la cuerda bosónica, sólo estaba definida en 26 dimensiones, y por si esto fuese poco, también presentaba un estado taquiónico, es decir, con masa al cuadrado negativa. Por otra parte, las supercuerdas parecían estar plagadas de anomalías (obstrucciones a la cuantización de la teoría que hacían altamente improbable que se los pudiera dar alguna explicación útil para la física fundamental.
Todo cambió, sin embargo, cuando en 1984 Michael Green y John Schwarz demostraron que las teorías de supercuerdas cerradas basadas en los grupos SO(32) y E8 × E8 estaban libres de anomalías si se definían en un espacio-tiempo de 10 dimensiones.
Ese mismo año, Gross, Harvey, Martinec y Rohm encontraron otro tipo de teorías de cuerdas consistentes denominadas heteróticas.
Como resultado de esos y otros muchos trabajos emergieron cinco teorías de cuerdas consistentes denominadas tipo I, tipo IIA, tipo IIB, heterótica SO(32) (HO) y heterótica E8 × E8 (HE). Todas consistentes exclusivamente en 10 dimensiones y estaban libres de taquiones.
David Jonathan Gross
El de más edad de los cuatro, David Gross, hombre de temperamento imperativo, es temible en los seminarios cuando al final de la charla, en el tiempo de preguntas, con su inconfundible vozarrón dispara certeros e inquisidoras preguntas al ponente. Lo que resulta sorprendente es el hecho de que sus preguntas dan normalmente en el clavo.
La posibilidad de construir teorías realistas de las interacciones entre partículas fundamentales (incluyendo la gravitación) a partir de la teoría de supercuerdas surgió del trabajo seminal de Candelas, Strominger, Horowitz y Witten de 1985 donde se proponía el uso de la supercuerda heterótica E8 × E8 y la compactificación de las 6 dimensiones extra para dar lugar a espacios de Calabi-Yan (un tipo especial de propiedades o variedades compactas con tres dimensiones complejas).
La idea era que mediante la elección apropiada de la variedad compactificada, el límite de la teoría a bajas energías sería similar al Modelo Estándar definido en las cuatro dimensiones ordinarias; es decir, la teoría cuántica de campos actualmente aceptada como la teoría correcta de las interacciones fuertes y electrodébiles basada en el grupo gauge SU(3)C × SU(2)L × U(1)Y, que incluye la cromodinámica cuántica (grupo de color SU(3)C) y la teoría de las interacciones electrodébiles basada en el grupo conocido como SU(2)L × U(1)Y, desarrollada en 1967 por Steven Weinberg, Abdus Salam y Sheldon Glashow y por la que se les concedió el Premio Nobel de Física en 1979.
De esta forma, durante los años ochenta se estudiaron con gran detalle numerosos espacios compactificados B de dimensión 6, tipo Calabi-Yan, junto con otros espacios, como por ejemplo, los llamados orbifoldios (variedades diferenciables cocientadas por grupos discretos) en un intento de tomas contacto con la fenomenología de bajar energías accesibles a los experimentos actuales. Además, las posibilidades podían aumentarse incluyendo campos gauge que podían estar definidos sobre B, dando lugar a diferentes líneas de flujo que se enrollarían y enlazarían de infinidad de formas dentro de B, sacando partido de su habitualmente intrincada topología.
En todo caso, el tamaño típico de espacio B era del orden de la longitud de Planck, Lp = 1’6 × 10-33 cm*, que en unidades naturales es la inversa de la masa de Planck. Este hecho situaba fuera de las posibilidades reales el estudio experimental de sus propiedades.
Además, a cada espacio B, ataviado de sus líneas de flujo, correspondería un posible vacío (estado fundamental o de menor energía) de la teoría. Sin embargo, en la medida que ésta sólo se podía determinar perturbativamente, es decir, en el régimen de interacción débil, no era posible seleccionar el verdadero vacío de la teoría a partir de primeros principios, sino tan sólo buscar aquellos que podían tener más posibilidades de establecer contacto con el mundo que observamos a nuestro alrededor.
emilio silvera
Profesor sin plaza ni salario, salvo honorarios según las clases impartidas.
del orden de 10-8 Kg = 1011 GeV; es la masa de una partícula cuya longitud de onda compton es igual a la longitud de Planck.
Nov
2
El Universo, la Diversidad, la Belleza, la Vida
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (1)
La galaxia anular de Hoag (A1515+2146) es un anillo de materia con estrellas jóvenes y azuladas que rodea a una galaxia esferoidal central sin traza de ninguna barra que conecte ambas, aunque como tienen el mismo corrimiento al rojo, deben estar a la misma distancia y deben estar relacionados entre sí. Las teorías actuales de formación galáctica permiten la formación de una galaxia anular siempre y cuando tenga una barra central. Se ha propuesto en el caso del objeto de Hoag que dicha barra se ha disuelto. Hay muchas galaxias anulares con anillos polares como NGC 6028 (que sí tiene una barra central) y UGC 6614 (ver más abajo, aunque no son imágenes tan detalladas como la del Telescopio Espacial Hubble).
Las azuladas estrellas orbitan alrededor del núcleo central de la Galaxia como si de un carrusel cósmico se tratara. En esa imagen que vemos las estrellas jóvenes emiten radiación ultravioleta que ioniza el material circundante de las nebulosas de las que surgieron, allá en la lejanía y ocultos por la inmensa infinitud de mundos y otros exóticos objetos que en la imagen captada por el Hubble no podemos ver.
Remanente de Supernova
Imagen de la galaxia compacta azul con formación estelar IIZw71 y espectro de la región central con la identificación de las líneas de emisión de neón y argón.
Enana Irregular de Sagitario (SagDIG). Datos de observación
Existen Galaxias con bajo brillo superficial (LSB): Tipo de galaxia cuya densidad de estrellas es tan baja que es difícil detectarla frente al fondo del cielo. Se desconoce la proporción de galaxias con bajo brillo superficial en relación a las galaxias normales, pudiendo representar una parte significativa del universo. Muchas de estas débiles galaxias son enanas, situadas particularmente en cúmulos de galaxias; algunas son tan masivas como las grandes espirales, por ejemplo, Malin-1.
Galaxia con envoltura: Galaxia espiral rodeada por débiles arcos o capas de estrellas, situados a ángulos rectos con respecto a su eje mayor. Pueden observarse entre una y veinte capas casi concéntricas, aunque incompletas. Se disponen de manera que capas sucesivas puedan aparecer normalmente en lados opuestos de la galaxia. Alrededor del 10% de las elípticas brillantes presentan envolturas, la mayoría de ellas en regiones de baja intensidad o densidad de galaxias. No se conoce ninguna espiral con una estructura de capas de ese tipo. Podrían ser el resultado de una elíptica gigante que se come una compañera.
Esta burbuja, fotografiada y examinada conjuntamente por la NASA y la ESA, entre 2006 y 2010, parece flotar sin actividad, pero lo cierto es que vivió un pasado convulso. Dicha envoltura gaseosa se formó después de una explosión estelar. Se conoce por el nombre de SNR B0509-67.5 y tiene un diámetro de 23 años luz (cuatro veces la distancia que nos separa de la estrella más cercana: Próxima Centaury).
Galaxia de anillo polar: Raro tipo de galaxia, casi siempre una galaxia lenticular, que tiene un anillo luminoso de estrellas, gas y polvo orbitando sobre los polos de su disco. Por tanto, los ejes de rotación del anillo y del disco forman casi un ángulo recto. Dicho sistema puede ser el resultado de una colisión, una captura de por maneras, o la unión de una galaxia rica en gas con la galaxia lenticular.
Hay un artículo muy interesante que propone analiza en detalle una galaxia con anillo polar y presenta una explicación bastante coherente y que a mí me parece bastante natural. Se trataría de galaxias tipo SBa(R) en la que los dos brazos espirales se han unido hasta confundirse en un anillo y el bulbo y la gran barra central han evolucionado hasta formar una galaxia de tipo S0 central. La explicación me gusta porque no alude a colisiones galácticas, para las que uno esperaría un resultado mucho menos simétrico, ni a dinámicas gravitatorias exóticas. Por supuesto, queda por clarificar por qué la conexión entre la barra central y el anillo se ha perdido.
Hay Galaxias de disco: Tipo de galaxia cuya estructura principal es un delgado disco de estrellas con órbitas aproximadamente circulares alrededor de su centro, y cuya emisión de luz típicamente disminuye exponencialmente con el radio. El término se aplica a todos los tipos de galaxias que no sean elípticas, esferoidales enanas o algunas galaxias peculiares. El disco de las galaxias lenticulares contiene muy poco material interestelar, mientras que los discos de las galaxias espirales e irregulares contienen cantidades considerables de gas y polvo además de estrellas.
La brillante galaxia NGC 3621
Galaxia de tipo tardío: Galaxia espiral o irregular. El nombre proviene de la posición convencional de estas galaxias en el diagrama diapasón de los tipos de galaxias. Por razones similares, una galaxia espiral Sc o Sd pueden ser denominadas espiral del tipo tardío, en contraposición a una espiral Sa o Sb de tipo temprano.
Galaxia de tipo temprano: Galaxia elíptica o lenticular: una sin brazos espirales. El hombre proviene de la posición de las galaxias en el diagrama diapasón de las formas de las galaxias. Por razones similares, una galaxia Sa podría ser referida como una espiral de tipo temprano, en contraposición a una espiral Sc o Sd de tipo tardío.
Se podría continuar explicando lo que es una galaxia elíptica, enana, compacta azul, esferoidal enana, espiral (como la Vía Láctea), espiral enésima, espiral barrada, interaccionante, irregular, lenticular, peculiar, starburst, primordiales… etc, sin embargo, creo que ya se ha dejado constancia aquí de los datos necesarios para el que lector tenga una idea de lo que es una galaxia. Así que decido finalizar el apartado de galaxias, reflejando un cuadro del Grupo Local de galaxias en el que está situada la nuestra.
En todas estas galaxias que arriba podemos contemplar, existen estrellas binarias de cuyo estudio obtenemos datos fascinantes y podemos llegar a conocer mejor la dinámica del Universo. Ejemplo de una estrella binaria, donde dos cuerpos con masa similar orbitan alrededor de un centro de masa en órbitas elípticas.
Ejemplo de una estrella binaria, en donde dos cuerpos con una pequeña diferencia de masa orbitan alrededor de un centro de masa.
Binarias astrométricas: En este tipo de sistemas dobles sólo es visible un componente de la estrella. Se detectan que son binarias gracias al “tirón” gravitatorio ejercido por su compañera invisible. Esto produce un movimiento oscilatorio respecto al fondo de estrellas fijas que puede ser medido por técnicas de paralaje si está lo suficientemente cerca, ya que este tipo de cálculos se realiza en estrellas aproximadamente entre los 10 parsecs, a distancias menores el ángulo de paralaje no existe o es tan pequeño, que los cálculos no se pueden realizar. Como las binarias visuales, las astrométricas requieren prolongados períodos de observación.
Hemos creado modelos del origen del Universo que están muy extendidos al coincidir sus predicciones con la observación. Así de momento hemos aceptado que en su inicio el Universo era algo extremadamente denso y de infinita energía que, al explosionar, se expandió y de la radiación intensa se paso la era de las partículas y más tarde, al enfriarse paulatinamente, a la de la materia para que comenzara, millones de años más tarde, a formarse las primeras estrellas. Se liberaron los fotones y el Universo se hizo transparente, es decir, se hizo la luz.
La Radiación del fondo de microondas ha venido a corroborar tal teoría del Big Bang. la densidad y temperatura de la materia y la radiación en el Universo decrecieron continuamente a medida que el Universo se expandía. Esta expansión puede continuar para siempre o puede un día invertirse en un estado de contracción, volviendo a pasar por condiciones de densidad y temperaturas cada vez mayores hasta llegar al Big Crunch en un tiempo finito de nuestro futuro. Este escenario evolutivo tiene la característica clave de que las condiciones físicas en el pasado del Universo no eran las mismas que las actuales o las futuras. Hubo épocas en que la vida no podía existir porque había demasiado calor para los átomos; hubo épocas previas a las estrellas y habrá un tiempo en el que todas las estrellas hayan muerto. En este escenario hay un intervalo preferido de la historia cósmica durante el que es más probable que los observadores evolucionen por primera vez y hagan sus observaciones del Universo.
Todo eso, si es que realmente fue así, también implicaba que hubo un comienzo para Universo, un tiempo pasado antes del cuál éste (el propio tiempo) no existía, pero no decía nada al respecto de el por qué o al dónde de este comienzo. Todo quedaba oculto en el más profundo de los misterios y, nadie ha podido llegar a ese tiempo que marca la frontera que está situada en esa fracción de segundo, más allá del tiempo de Planck, en el cual los cosmólogos, para tapar su ignorancia, han puesto una singularidad lo mismo que ahora han colocado la materia oscura para explicar la expansión.
El Universo estacionario sostiene que el Universo nunca tuvo un origen, sino que siempre existió de la misma manera como lo conocemos hoy.
El escenario alternativo creado por Bondi, Gold y Hoyle estaba motivado en parte por un deseo de evitar la necesidad de un principio (o un posible final) del Universo. Su otro objetivo era crear un escenario cosmológico que pareciera de promedio siempre el mismo, de modo que no hubiera instantes privilegiados en la historia cósmica.
El gráfico de abajo indica la velocidad de alejamiento de las galaxias en función de sus distancias. La pendiente de la recta de “La constante de Hubble”
Horizontalmente: la medida de la distancia es proporcionada por la luminosidad de las galaxias más brillantes de diferentes grupos. Verticalmente: velocidades en Km. por segundo. Las diferentes curvas describen la relación velocidad distancia en función de la densidad supuesta del universo (en unidades de densidad crítica). Cuanto más denso es el universo, tanto más a la izquierda se sitúa la curva en el dibujo. La comparación con los puntos observados muestra que la densidad real es tres veces inferior a la densidad crítica. La cuirva más baja es la esperada en un universo estacionario.
Claro que dicho escenario, al principio parece imposible de conseguir. Después de todo, el Universo se está expandiendo. Está cambiando, de modo que, ¿cómo puede hacerse invariable? La visión de Hoyle era la de un río que fluye constantemente, siempre en movimiento pero siempre igual. Para que el universo presente la misma densidad media de materia y el mismo ritmo de expansión, independientemente de cuándo sea observado, la densidad debería ser constante.
Una especie de “Sustancia Cósmica” que es la semilla de la materia
Él propuso que, en lugar de nacer en un instante pasado, la materia del universo se creaba continuamente a un ritmo que compensaba exactamente la tendencia a que la densidad sea diluida por la expansión. Este mecanismo de “creación continua” sólo tenía que ocurrir muy lentamente para conseguir una densidad constante; sólo se requería aproximadamente un átomo por metro cúbico cada diez mil millones de años y ningún experimento ni observación astronómica sería capaz de detectar un efecto tan pequeño.
Esta teoría del “estado estacionario” del Universo hacía predicciones muy precisas. El Universo parecía el mismo de promedio en todo momento. No había hitos especiales en la historia cósmica: Ningún “principio”, ningún “final”, ningún momento en que empezaran a formarse las estrellas o en el que la vida se hiciera posible por primera vez en el Universo. Claro que, finalmente, esta teoría quedó descartada por una serie de observaciones iniciadas a mediados de la década de 1950 que mostraba en primer lugar que la población de galaxias que eran emisores profusos de radioondas variaba significativamente a medida que el Universo envejecía.
La culminación de todo aquello llegó cuando en el año 1965 se descubrió la radiación térmica residual del comienzo caliente predicho por los modelos del Big Bang. Esta radiación de fondo de microondas no tenía lugar en el Universo en estado estacionario. Durante veinte años los astrónomos trataron de encontrar pruebas que dijeran si realmente el universo estaba realmente en el estado estacionario que propusieron Bondi, Gold y Hoyle.
Un sencillo argumento antrópico podría haber demostrado lo poco posible que sería ese estado de cosas. Si uno mide el ritmo de expansión del Universo, da un tiempo durante el que el Universo parece haber estado expandiéndose. En un Universo Big Bang éste es realmente el tiempo transcurrido desde que empezó la expansión: la edad del Universo. En la teoría del estado estacionario no hay principio y el ritmo de expansión es tan sólo el ritmo de expansión y nada más.
La simulación por ordenador pone ante nuestros ojos la formación de aquellas primeras estrellas que, no comenzaron a brillar en la secuencia principal hasta pasados 400 millones de años después del comienzo del Tiempo.
Las primeras estrellas se formaron millones de años después del (supuesto) big bang. Eran enormes, pesadas, y muy calientes. Brillaron con furia, vivieron rápido y murieron jóvenes. Fueron las responsables de la creación de los primeros agujeros negros en el Universo y también, de la creación de los primeros elementos pesados y más complejos que el hidrógeno y el Helio.
En una teoría del Big Bang, el hecho de que la edad de expansión sea sólo ligeramente mayor que la edad de las estrellas es una situación natural. Las estrellas se formaron en nuestro pasado y por ello deberíamos esperar encontrarnos en la escena cósmica una vez formadas, dado que, los elementos necesarios para la vida, se forjaron en los hornos nucleares de las estrellas calientes que fusionaron aquella primera materia más simple en otras más complejas.
Se necesita mucho tiempo para que las estrellas fabriquen Carbono a partir de gases inertes como el Hidrógeno y el Helio. Pero no basta con el tiempo. La reacción nuclear específica que se necesita para hacer Carbono es una reacción bastante improbable. Requiere que se junten tres núcleos de Helio para fusionarse en un único núcleo de Carbono. Los núcleos de Helio se llaman partículas alfa, y esta reacción clave para formar Carbono ha sido bautizada como el proceso “triple alfa”.
Precisamente fue Fred Hoyle el que descubrió todo aquel complejo proceso de fabricación de Carbono en las estrellas. Él se unió a un grupo de investigadores que estaban trabajando sobre la cuestión de la relativa abundancia de elementos en las superficies de las estrellas. En conjunto, estructuraron un exhaustivo estudio de los elementos que se acumulan en los núcleos estelares. En un denso trabajo que publicaron en Octubre de 1957 en Review of Modem Physics, bajo el título de “Síntesis de los elementos de las estrellas”, lograron explicar la abundancia de prácticamente todos los isótopos de los elementos desde el Hidrógeno hasta el Uranio.
Descubrieron que las estrellas, en la medida que van gastando su combustible nuclear, transmutan el Hidrógeno en Helio; el Helio a Carbono y Oxígeno; y así sucesivamente, subiendo hasta llegar hasta los más pesados de la Tabla Periódica. En las explosiones de las supernovas se crean mucho de los elementos más pesados, incluidos el platino, el oro y el uranio. El trabajo que fue un inmenso logro científico, no sólo explicó la síntesis de todos los elementos más allá del Hidrógeno, sino que predijo su formación exactamente en las mismas proporciones que ocurrían en el Universo. Pero quedó por explicar la cuestión del Hidrógeno: Cómo se genera el combustible inicial de las estrellas.
Así, en las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético Big Bang donde se formaron los elementos más simples: El Hidrógeno (que nunca hemos podido llegar a saber cómo se formó), Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos simples ¿en el big bang? y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas. Abajo un gráfico de la Necleosíntesis estelar.
Estaba explicando el proceso triple alfa que es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Esta reacción nuclear de fusión sólo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio. Por tanto, este proceso sólo es posible en las estrllas más viejas, donde el helio producido por las cadenas protón–protón y el ciclo CNO se ha acumulado en el núcleo. Cuando todo el hidrógeno presente se ha consumido, el núcleo se colapsa hasta que se alcanzan las temperaturas necesarias para iniciar la fusión de helio.
8Be + 4He ↔ 12C
Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio.
Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.
Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caído en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.
Hablar del Universo, algo tan grande que se escapa a nuestra comprensión, nos llevaría tanto tiempo que finalizar el trabajo sería casi imposible, así que, habiendo dado una sencilla vuelta por algunos de los sucesos y objetos que en él están presentes, aquí lo dejamos. Sin embargo, de todo estos sucesos se derivan objetos múltiples de diversidad muy rica que adorna y embellece todo el espacio interestelar con la inmensa cantidad de objetos que lo adornan a lo largo de millones y millones de año luz de espacio.
Un rico abanico de Nebulosas que se configuran en función de la masa inicial de la estrella que las formó al eyectar material al final de sus vidas. Estrellas masivas supergigantes que, comparadas con nuestro Sol son enormes objetos que lo contienen más de cien veces y consumen hidrógeno a velocidad de vértigo como si quisiera convertirse en agujero negro en el menor tiempo posible. Diversidad de mundos, explosiones supernovas, sistemas planetarios, cúmulos y supercúmulos de galaxias…
Crédito NASA/ESA
que se fusionan por la fuerza de la gravedad que hace que se atraigan las unas hacia las otras como vemos en el conocido “aglomerado de galáxias Quinteto Stefan“, de cuya imagen podemos deducir de manera fácil las transiciones de fase que se producen en esta clase de fusiones de grandes galaxias, de donde surgen miles de millones de estrellas nuevas, se destruyen y nacen nuevos mundos y, finalmente, el complejo nuevo creado se convierte en una galaxia mayor, supergigante.
Explosiones de estrellas que finalizan sus vidas convirtiéndose en estrellas de neutrones o púlsares. Los Púlsares son fuentes de ondas de radio que vibran con periodos regulares. Se detectan mediante radiotelescopios. Los estudios indican que un púlsar es una estrella de neutrones pequeña que gira a gran velocidad. El más conocido está en la nebulosa de Cangrejo. Su densidad es tan grande que, en ellos, la materia de la medida de una bola de bolígrafo tiene una masa de cerca de 100.000 toneladas. Emiten una gran cantidad de energía. El campo magnético, muy intenso, se concentra en un espacio reducido. Esto lo acelera y lo hace emitir un haz de radiaciones que aquí recibimos como ondas de radio.
Las pulsares fueron descubiertas en 1967 por Anthony Hewish y Jocelyn Bell en el observatorio de radio astronomía en Cambridge. Se conocen más de 300, pero sólo dos, la Pulsar del Cangrejo, y la Pulsar de la Vela, emiten pulsos visibles detectables. Se sabe que estas dos también emiten pulsos de rayos gamma, y una, la del Cangrejo, también emite pulsos de rayos-X.
“El 16 de marzo de 2013 se cumplió medio siglo del descubrimiento de que los cuásares eran objetos extragalácticos muy brillantes y a enormes distancias de nosotros. Este descubrimiento fue consecuencia del desarrollo pionero de la Radioastronomía y del estudio cuidadoso de los espectros ópticos de unas misteriosas “fuentes casi-estelares”. En la actualidad sabemos que el proceso que genera un cuásar es un agujero negro súper-masivo en el centro de una galaxia.”
La medida de sus desplazamientos al rojo espectroscópico, indicaban que estaban a grandes distancias de la Tierra. El primer cuásar estudiado, 3C 273 está a 1.500 millones de años luz de la Tierra y se han descubierto cuásares a 12.000 millones de años luz de la Tierra, es decir, cuásares que son casi tan viejos como el mismo universo.
Y, pasados los diez mil primeros millones de años, cuando las estrellas habían crwado los materiales necesarios para que eso fuese posible, surgieron los primeros indicios de la presencia de vida en el Universo, Se asentaron en mundos como la Tierra y, en moléculas que se juntaron para formar células vivas surgidas de un protoplasma primordial… ¡Dio comienzo la aventura de la vida que, tantos secretos esconde y que tratamos de desvelar!
Muchas veces hemos oído hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un isótopo raro de Carbono que se produce en natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrogeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.
Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios…del Oxígeno, de la atmósfera, etc.
En los materiales más antiguos simplemente no queda suficiente 14C que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que sus secretos muy bien guardados en lo más profundo de los tiempos.
El grupo Warrawoona
En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental . La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.
Son células que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares cálidos y son el resultado de la unión de seres unicelulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.
En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a identificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron.
En el Parque de Yellowstone
Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.
Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos.
Son muchas las teorías científicas que, a lo largo de la historia han tratado de explicar el origen de la vida en la Tierra. Ya Aristóteles (384 – 322 aC), en la antigua Grecia, propuso una hipótesis: que la vida surgió por generación espontánea. Esta idea sería rebatida por los experimentos científicos de Louis Pasteur (1822 – 1895). Ahora sabemos que de donde no hay nada puede surgir, sabemos que los elementos se crearon en las estrellas que, en explosiones supernovas son expandidos por todo el universo. Sabemos que esos elementos depositados en mundos bien situados en las zonas habitables de sus estrellas, pueden llegar a constituirse en estructuras complejas de las que pueden surgir, formas de vida poco evolucionadas que, con el tiempo, se transforman en complejas y, en algunos casos, en miles de millones de años de evolución, pasando por fases que las hace ser una vez una cosa y más tarde otra… ¡Pueden llegar hasta la consciencia de Ser!
Sí, muchas son las cosas que no sabemos
Son muchas las cosas que no sabemos y, palabras que empleamos de manera cotidiana de cosas que sabemos para que sirven, como por ejemplo la energía, no sabríamos explicar lo que es. Tampoco sabemos a ciencia cierta y en toda su extensión lo que la materia es, y, si nos referimos al Tiempo… ¿Qué es el Tiempo? ¿Existe en realidad o es una simple ilusión de la mente?
Mientras continuamos tratando se desvelar todos esos secretos, disfrutemos del El Universo, de su rica Diversidad, de la Belleza que nos ofrece por todas part y, desde luego…, ¡de la Vida! Que no hemos llegado a comprender.
emilio silvera
Nov
2
Desde el Pasado… Siempre hacia el Futuro
por Emilio Silvera ~
Clasificado en Futuro ~
Comments (0)
Ahora todos hablamos del LHC. Sin embargo, la historia de los aceleradores no comenzó con éste moderno y complejo conglomerado de sofisticadas estructuras que hacen posible que visitemos lugares muy lejanos en el corazón de la materia. Tendríamos que recordar al acelerador lineal también llamado LINAC (linear accelerator) es un tipo de acelerador que le proporciona a la partícula subatómica cargada pequeños incrementos de energía cuando pasa a través de una secuencia de campos eléctricos alternos.
Mientras que el generador de Van de Graaff proporciona energía a la partícula en una sola etapa, el acelerador lineal y el ciclotrón proporcionan energía a la partícula en pequeñas cantidades que se van sumando. El acelerador lineal, fue propuesto en 1924 por el físico sueco Gustaf Ising. El ingeniero noruego Rolf Wideröe construyó la primera máquina de esta clase, que aceleraba iones de potasio hasta una energía de 50.000 eV.
De cómo llegamos hasta los Quarks
La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, SgrA) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros supermasivos.
Veamos que nos cuenta: “Desde el pasado pero…, ¡siempre hacia el futuro!”
Pueden leer documentos antiguos sin abrirlos
“La pregunta suena algo tonta ¿verdad?, pero no es nada imposible para la ciencia y la tecnología. La respuesta es SI, ¿cómo? A través de una fuente luminosa de diamantes.
Esta fuente luminosa de diamantes o “Diamond Light Source” es un acelerador de partículas que produce intensos rayos de luz. Es así que se inició este experimento en el año 2007 con el Diamond synchroton que puede generar una luz 100 mil millones de veces más brillantes que un rayo X estándar médico.
La utilidad de producir intensos rayos de luz, es para estudiar las propiedades de materiales microscópicos en varios campos como la estructura biológica , medicina, nano ciencia, química, entre otras, sin embargo a través de estos rayos podemos apreciar la lectura de libros sin necesidad de abrirlos. Pero, ¿Para qué serviría?, pues una de las utilidades es en la arqueología ya que es importante preservar los antiguos libros escritos y ante cualquier contacto se podrían desgastar y/o malograr.
El 13 de setiembre de 2007, científicos de la universidad de Cardiff , se descubrió esta funcionalidad del Diamond Synchroton para descubrir el contenido oculto de los documentos antiguos sin necesidad de abrirlos.”
Imagem cedida por Diamond Light Source
Acelerador de partículas construido en las instalaciones del Diamond Ligth Source en Oxfordshire (Inglaterra). Llamado la Fuente luminosa de diamante, el Diamond synchrotron comenzó a funcionar en enero de 2007. La luz que puede generar este artefacto es 100 mil millones de veces más brillante que un rayo X estándar médico.
Un acelerador de partículas (como todos sabemos) es, a grandes rasgos, una máquina que mediante campos electromagnéticos acelera partículas hasta que alcanzan velocidades inimaginables. Luego, por ejemplo, hacen chocar estas partículas y así se consigue saber de qué está formada la materia en sus partes más diminutas (mucho más diminutas que un átomo). Eso es lo que hace el LHC.
Sin embargo, en el caso de este acelerador, los científicos esperaban usar la luz del Diamond synchrotron para “leer” los textos antiguos que han sufrido el daño significativo. Porque los potentes rayos Xpermitirán hacerlo sin ni siquiera abrir el libro. El synchrotron emite un rayo X tan poderoso que, al incidir en una voluta, permite producir una imagen de 3-D del texto.
La técnica ya había sido aplicada satisfactoriamente en textos escritos con la tinta de hierro, que los escribanos comenzaron a usar en el siglo XII. Algunas de las tintas hechas con extractos vegetales y sales de hierro utilizadas en el Siglo XII deterioran el tipo de pergamino utilizado, imposibilitando la lectura de documentos valiosos. Simplemente he querido incluir esta introducción para que os hagais una idea de hasta donde puede llegar nuestro ingenio.