viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡¡Qué Bonito es saber!!

Autor por Emilio Silvera    ~    Archivo Clasificado en Química    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

helio (He) – neón (Ne) – argón (Ar) – kriptón (Kr) – xenón (Xe) – radón (Rn)

nobles-gases

Tabla periódica de los elementos
Gases Nobles

En el caso de los gases nobles y dada la disposición de sus electrones en las capas mas externas (orbitales), son químicamente inertes lo que significa que no reaccionan frente a otros elementos químicos (por este motivo se llaman nobles). Los átomos que componen este grupo de gases ni siquiera se relacionan entre ellos mismos, a excepción de los pesados como el xenón que en determinadas condiciones forzadaspueden formar algún tipo de compuesto si se relaciona con elementos químicos muy reactivos como por ejemplo el oxígeno y/o el flúor.
Debido a esta carencia de reactividad química, los gases nobles, a diferencia de lo que sucede con otros elementos químicos tales como el hidrógeno, el oxígeno, el nitrógeno, el flúor o el clorono forman moléculas diatómicas, sino que están constituidos por átomos individuales. Asimismo, y tal como se desprende de su nombre, en condiciones normales se presentan siempre en estado gaseoso.

Grupo 18 de la Tabla Periódica: Gases Nobles - Química en casa.com

“Gases nobles excitados eléctricamente, mostrando la luz que emiten. Ocupan el lugar 18 de la Tabla Periódica. Este término surge de la traducción del nombre alemán «edelgas», empleado por vez primera en el año 1898 por Hugo Erdmann, para señalar la baja reactividad que presenta los elementos de este grupo. Dicho calificativo es debido a una analogía con la expresión «metales nobles«, como el oro, relacionado con la fortuna y la nobleza, y que de igual manera, posee baja reactividad.”

 El CSIC encuentra gases nobles en el espacio | Noticias Diario de Ávila

       Nebulosa del Cangrejo – Foto: CSIC

“Un equipo de investigadores con participación del Consejo Superior de Investigaciones Científicas (CSIC) ha encontrado la primera evidencia de una molécula basada en el gas noble argón en la Nebulosa del Cangrejo. El trabajo, que ha utilizado datos de infrarrojo del observatorio espacial HERSCHEL, aparece publicado en último número de la revista Science.
La Nebulosa del Cangrejo (Messier 1), ubicada en la Constelación de Tauro, a unos 6.500 años luz de la Tierra, tiene un diámetro de 11 años luz (casi 700.000 veces la distancia entre el Sol y la Tierra). Esta nebulosa es una estructura filamentosa y difusa formada tras la explosión de una supernova observada en el año 1054 por astrónomos chinos.

Nebulosa del cangrejo

En el estudio realizado, los investigadores han detectado la emisión de hidrilo de argón (ArH+), un ión molecular que contiene el gas noble argón. Aunque ya se habían detectado átomos o iones de gases nobles, hasta ahora no se había encontrado ninguno de los compuestos moleculares basados en estos átomos gases nobles lo que, según los investigadores, parecía sugerir que estos elementos requieren un mayor tiempo de reacción en el espacio o que no se dan las condiciones para que se formen.”

Sí, todos hemos oído hablar de ellos, de los Gases Nobles en alguna ocasión pero, ¿sabemos algo de ellos? Asimov que era químico, lo explicaba muy bien. Los elementos que reaccionan difícilmente o que no reaccionan en absoluto con otros elementos se denominan “inertes”. El nitrógeno y el platino son ejemplos de elementos inertes.

En la última década del siglo pasado se descubrieron en la atmósfera una serie de gases que no parecían intervenir en ninguna reacción química.  Estos nuevos gases (helio, neón, argón, kripton, xenón y radón) son más inertes que cualquier otro elemento y se agrupan bajo el nombre de gases inertes.

oscar sanchez (Presentacion de la tabla periodica)Gases nobles: características, configuración,reacciones, usos - Lifeder

“Los gases nobles son un conjunto de elementos que se encuentran integrando el grupo 18 de la tabla periódica. A lo largo de los años se les han llamado también gases raros o inertes, ambas denominaciones inexactas; algunos de ellos son muy abundantes fuera y dentro del planeta Tierra, y también son capaces, bajo condiciones extremas, de reaccionar.

Sus siete elementos integran quizás el grupo más singular de la tabla periódica, cuyas propiedades y escasas reactividades impresionan tanto como la de los metales nobles. Entre ellos desfilan el elemento más inerte (neón), el segundo más abundante del Cosmos (helio), y el más pesado e inestable (oganesón)”

Los elementos inertes reciben a veces el calificativo de “nobles” porque esa resistencia a reaccionar con otros elementos recordaba un poco a la altanería de la aristocracia. El oro y el platino son ejemplos de “metales nobles”, y por la misma razón se llaman a veces “gases nobles” a los gases inertes. Hasta 1.962, el nombre más común era el de gases inertes, quizá porque lo de nobles parecía poco apropiados.

Gases nobles : Blog de Emilio Silvera V.Gases nobles : Blog de Emilio Silvera V.

Es apropiado incluir una descripción de este grupo de elementos conocido en un capítulo dedicado a los halógenos, porque el flúor es el único elemento conocido que entra en combinación química directa con los dos gases nobles más pesados, el xenón y el criptón, resultando en  compuestos estables.

Los gases nobles surgen en la naturaleza como constituyentes menos abundantes de la atmósfera. La primera indicación de la existencia de los gases nobles fue divulgada por el químico ingles Cavendish, en 1784.

La razón de que los gases inertes sean inertes es que el conjunto de electrones de cada uno de sus átomos está distribuido en capas especialmente estables. La más exterior, en concreto, tiene 8 electrones. Así la distribución electrónica del neón es (2,8) y la del argón (2,8,8). Como la adición o sustracción de electrones rompe esta distribución estable, no pueden producirse cambios electrónicos. Lo cual significa que no pueden producirse reacciones químicas y que estos elementos son inertes.

Los gases nobles se pueden combinar con otros elementos ??? - Los gases  nobles

Ahora bien, el grado de inercia depende de la fuerza con que el núcleo, cargado positivamente y situado en el centro del átomo sujeta a los 8 electrones de la capa exterior. Cuantas más capas electrónicas haya entre la exterior y el centro, más débil será la atracción del núcleo central sobre los electrones de esa última capa de electrones.

Quiere esto decir que el gas inerte más complejo es también el menos inerte. El gas inerte de estructura atómica más complicada es el radón. Sus átomos tienen una distribución electrónica de (2,8,18,32,18,8). El radón, sin embargo está sólo constituido por isótopos radiactivos y es un elemento con el que difícilmente se pueden hacer experimentos químicos. El siguiente en orden de complejidad es el xenón, que es estable. Sus átomos tienen una distribución electrónica de (2,8,18,18,8).

Propiedades del xenón

 

Xenon(2)

 

“El xenón es incoloro, inodoro e insípido; es un gas en condiciones normales. El xenón es el único de los gases nobles no radiactivos que forma compuestos químicos estables a la temperatura ambiente; también forma enlaces débiles con clatratos.”

 

 

Los gases nobles como el xenón tienen poca tendencia a participar en reacciones químicas. El xenón, como el resto de gases nobles presenta las siguientes propiedades: Es incoloro, inodoro y muestra una reactividad química muy baja en condiciones normales.

El estado del xenón en su forma natural es gaseoso (no magnético). El xenón es un elmento químico de aspecto incoloro y pertenece al grupo de los gases nobles. El número atómico del xenón es 54. El símbolo químico del xenón es Xe. El punto de fusión del xenón es de 161,4 grados Kelvin o de -111,75 grados celsius o grados centígrados. El punto de ebullición del xenón es de 165,1 grados Kelvin o de -108,05 grados celsius o grados centígrados.

Propiedades atómicas del xenón

 

 

✅ Xenón (Xe)

 

La masa atómica de un elemento está determinado por la masa total de neutrones y protones que se puede encontrar en un solo átomo perteneciente a este elemento. En cuanto a la posición donde encontrar el mercurio dentro de la tabla periódica de los elementos, el mercurio se encuentra en el grupo 18 (VIIIA) y periodo 5. El xenón tiene una masa atómica de 131,293 u. La configuración electrónica del xenón es [Kr]4d10 5s2 5p6. La configuración electrónica de los elementos, determina la forma el la cual los electrones están estructurados en los átomos de un elemento. El radio atómico o radio de Bohr del xenón es de 1,8 pm, su radio covalente es de 1,0 pm y su radio de Van der Waals es de 2,6 pm. El xenón tiene un total de 54 electrones cuya distribución es la siguiente: En la primera capa tiene 2 electrones, en la segunda tiene 8 electrones, en su tercera capa tiene 18 electrones, en la cuarta, 18 electrones y en la quinta capa tiene 8 electrones.

Configuración de un átomo de Xenón

Los electrones más exteriores de los átomos de xenón y radón están bastante alejados del núcleo y, por consiguiente, muy sueltos. En presencia de átomos que tienen una gran apetencia de electrones, son cedidos rápidamente. El átomo con mayor apetencia de electrones es el flúor, y así fue como en 1.962 el químico canadiense Neil Bartlett consiguió formar compuestos de xenón y flúor.

Desde entonces se han conseguido formar también compuestos de radón y kriptón. Por eso los químicos rehúyen el nombre de gases inertes, porque a fin de cuentas, esos gases no son completamente inertes. Hoy día se ha impuesto la denominación de “gases nobles”, y existe toda una rama de la química que se ocupa de los “compuestos de gases nobles”.

Naturalmente, cuanto más pequeño es el átomo de un gas noble, más inerte es, y no se ha encontrado nada que sea capaz de arrancarles algún electrón. El argón, cuya distribución electrónica es de 2,8,8 y el neón, con 2,8 electrones respectivamente, sigue siendo completamente inerte. Y el más inerte de todos es el helio, cuyos átomos contienen una sola capa electrónica con dos electrones (que es lo máximo que puede alojar esta primera capa) que al estar en la primera línea cerca del núcleo positivo, están fuertemente atraídos al tener su carga eléctrica el signo negativo.

Un átomo es como una cebolla: los electrones se distribuyen en capas, llamadas K, L, M, … (indexadas por el número cuántico n=1, 2, 3, …).

A baja energía, las capas interiores de un átomo como el Neón son inaccesibles (su estructura atómica es 1s2 2s2 2p6).

Ilustración de Concepto De Diagrama De Átomo De Neón y más Vectores Libres  de Derechos de Abstracto - iStockNeón led 8w flexible 12v bobina 25m 8mm rosa - Iluminación LED

Para ver los electrones en las capas interiores (electrones 1s2 en el caso del Neón) se requiere una fuente láser de pulsos ultracortos muy intensa que permita “pelar” el átomo como si de una cebolla se tratara.

El año pasado se inauguró en EEUU una fuente de rayos X de este tipo y ahora se publica en Nature la primera vez que se logra despojar a un átomo de Neón de todos y cada uno de sus 10 electrones, permitiendo obtener todos los iones (cationes) posibles de dicho átomo.

Además, se ha logrado observar por primera vez los electrones del nivel K de átomos de Neón rodeados de “huecos” en los niveles L.

Hay que recordar que en mecánica cuántica un electrón y el “hueco” ocupado por un electrón se comporta de forma muy parecida.

La observación de electrones de nivel K rodeados de “huecos” de nivel L confirma, como era de esperar, los resultados predichos por la mecánica cuántica. Este es el primer artículo importante que se obtiene en la fuente de rayos X coherente llamada Linac (Linac Coherent Light Source) en el Laboratorio Nacional SLAC (SLAC National Accelerator Laboratory) en California.

El Edificio De Apoyo Científico Y De Usuario En El Laboratorio Nacional De  Aceleradores Slac Foto de stock y más banco de imágenes de Aire libre -  iStockPresentan las primeras fotos digitales de 3.200 megapíxeles - LED.FM |  MOBILE RADIO

Imitan en laboratorio las condiciones extremas del universoDisparando el láser más potente contra el agua [Vídeo]

El Laboratorio Nacional SLAC

 

Para finalizar diré que los gases nobles (gases inertes, gases raros) están clasificados en el grupo 18 (antiguamente 0) de la tabla periódica de dos elementos y se definen por símbolos que responden a: helio (He), neón  (Ne), argón (Ar), kriptón (Kr), xenón (Xe) y radón (Rn).

Ya se dijo antes la configuración electrónica de cada uno de ellos y todas las capas internas están completamente ocupadas, lo que hace que estos elementos, por tanto, constituyan la terminación de un periodo y posean configuración de capa completa, por lo que sus energías de ionización son muy elevadas y su reactividad química escasa.

Como son monoatómicos, las moléculas de los gases nobles poseen simetría esférica, y las fuerzas intermoleculares son muy débiles, por lo que sus entalpías de vaporización son muy bajas.

 

 

 

Con todo lo anteriormente expuesto sobre los gases nobles, espero que el lector del trabajo aquí reflejado pueda tener una idea más amplia y un conocimiento más certero sobre lo que en realidad son los denominados como “gases nobles”.

En comparación con la inmensidad del universo, nos queda aún muchísimo que aprender. Si nos limitamos a nuestro entorno más cercano, la Tierra, ¿Cómo hemos podido llegar tan lejos?

El conocimiento que actualmente tenemos en las distintas ramas del saber (el conocimiento es un árbol enorme, las raíces que lo sustenta son las matemáticas, el tronco es la física, y a partir de ahí, salen las ramas que corresponden a los distintos disciplinas del saber, tales como química, biología, astronomía, etc), tiene su origen muy lejos en el pasado, en civilizaciones olvidadas que dejaron las huellas de su saber a otras que, como los griegos antiguos, hace ahora de ello 2.600 años, o 600 años a. de C., aprovecharon esos conocimientos y se dieron cuenta de que el mundo que les rodeaba y los acontecimientos naturales que ocurrían eran totalmente ajenos a los Dioses del Olimpo y a la mitología.

La ignorancia llevó en aquellos tiempos a la Humanidad a crear diez dioses ficticios sobre los que contaban toda clase de peripecias y aventuras o hechos que, no pocas veces, los involucraban con la gente normal. Sin embargo, fue también, al final de aquel período, cuando se percibieron de que, los “dioses” nada tenían que ver con el mundo que les rodeaba y, de esa manera, Thales de Mileto, uno de los siete sabios de Grecia, entendió; dejó a un lado a los Dioses y expresó sus ideas empleando la lógica observando la naturaleza.

10 Características de Tales de MiletoTALES DE MILETO: Biografía, Teorema, Frases, Aportes, y mucho más

Él fue el primero que se dio cuenta de la importancia que tenía el agua para la vida. Empédodes, otro pensador, dijo que todo estaba formado por cuatro elementos: aire, agua, tierra y fuego que, combinados en la debida proporción se convertirían en los distintos materiales de los que estaban formados todas las cosas. Demócrito de Abdera nos habló de algo invisible e indivisible como el componente más pequeño de la materia, le llamó a-tomo o átomo. Sócrates, Aristóteles o Platón (y otros) nos introdujeron en el campo de la filosofía, y Anaximandro, Anaxímedes, Pitágoras, Euclides y muchos más, nos enseñaron astronomía, matemáticas-geometría, medicina, etc.

Ciencia en la Antigua Grecia - Escuelapedia - Recursos EducativosOrigen de la ciencia.

Los Griegos: Las ciencias en Grecia antiguaEuclides En Clase PresentacionMatematicas, Geometria, Elementos de Euclides, Libro 1, 23 Definiciones.Teorema de Pitágoras Tercero de Secundaria - Matemáticas Tamayo | Facebook

Se podría decir, sin temor a equivocarse, que allí en la antigua Grecia comenzó a germinar la semilla sobre la que está basada y donde están asentados los pilares de la ciencia actual, de la sociología, de las Humanidades, las Artes y las letras de hoy. Si aquellos grandes hombres levantaran la cabeza y pudieran mirar lo que han hecho de su querida Grecia, sus descendientes políticos, se volvían a morir del susto.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El modelo matemático que dice que es posible volver al pasado (y soluciona  un problema que enfrentan estas teorías) - BBC News Mundo

                                 Un modelo matemático nos dice que es factible viajar en el Tiempo

He creído que no estaría mal hacer un viaje al pasado para asomarnos a los acontecimientos que tuvieron lugar para que, ahora, estemos nosotros aquí. Al buscar cómo lo podría hacer para que fuese reducido y didáctico, caí en la cuenta de que, en el Libro de Timothy Ferris, La Aventura del Universo, al final, viene una recopilación de los hechos del pasado a partir del Comienzo del Tiempo, es decir, cuando tuvo lugar el Big Bang.

Así que, creyéndolo de interés aquí lo dejo, con algunas imágenes, un repaso, y, una serie de datos que han sido acumulados (unos atienden a hechos reales y otros, son el fruto de teorías derivadas del estudio y la observación) para formar parte del saber científico que atesoramos.

La fecha (el Tiempo) y los acontecimientos notables que en cada período de produjeron

 

Ocho cosas insólitas que quizás no sepa sobre el Big Bang

Antes del Tiempo Cero

 

Ilya prigogine. el nacimiento del tiempo. tusqu - Vendido en Venta Directa  - 47491984Te obsesiona "perder" el tiempo? Qué es la cronopatía

 

– En el momento cero: Origen del Tiempo, el espacio y la energía del universo que conocemos.

– 10-43 de segundo GCT (Después del Comienzo del Tiempo): Fin de la época de Planck; la radiación gravitatoria sale del equilibrio térmico con el resto del Universo.

Detectadas señales de las primeras estrellas del universo - Noticias  Sociedad - El Periódico Extremadura

– 10-34 de segundo: El universo, en un estado de vacío, empieza a “inflarse”, esto es, expandirse a una tasa exponencial de unas 1050 veces la tasa actual de expansión.

– 10-30 de segundo: Termina la época inflacionaria; las partículas se arrojan fuera del vacío.

Viaje a la escala electrodébil | Investigación y Ciencia | Investigación y  Ciencia

– 10-11 de segundo: La transición de fase de la ruptura de la simetría escinde la fuerza electro-débil en la fuerza electromagnética y la fuerza nuclear débil.

– 10-6 – 10-5 de segundo: Los Quarks y anti-quarks cesan su aniquilación mutua. Los supervivientes se unen en tríos para formar protones y neutrones, los componentes de todos los futuros núcleos atómicos.

Qué aspecto tienen las partículas? – Ciencia de Sofá

– 10-4 de segundo: El Universo tiene 1/10.000 de segundo de antigüedad. La constante captura de electrones y positrones convierte los neutrones en protones y a la inversa. Como se requiere un poco más de energía para hacer neutrones que protones, el proceso deja el universo con cincuenta veces más protones que neutrones.

-10-2 de segundo: Partículas de materia y de energía interaccionan en equilibrio térmico.

Física nuclear de partículas - Monografias.comHistoria de la física de partículas - Monografias.com

Leer más

Es bueno saber como funciona la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Entropía    ~    Comentarios Comments (12)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Escultura dedicada a la Entropía en los jardines centrales de la Universidad  de Monterrey, México | Universidad de monterrey, Entropia, Arquitectura

 

Escultura dedicada a la Entropía en los jardines centrales de la Universidad de Monterrey, México

 

Variación de entropía del universoLa Entropía y el fin del Universo - VIX

 

“La entropía es una función de estado que, evaluada para todo el universo, aumenta en una transformación irreversible y permanece constante en una transformación reversible.”

 

Escenifica el desorden, es la magnitud termodinámica que indica el grado de desorden molecular de un sistema. La entropía es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se da de forma natural. La entropía describe lo irreversible y nos dice que con el paso del Tiempo todo se deteriora, como podemos constatar en nosotros mismos, o, en el mismo Universo.

En las galaxias se genera Entropía negativa cuando se crean nuevas estrellas, nuevos mundos y nueva vida

Entropy

“Simbolizada como S es una magnitud física para un sistema termodinámico en equilibrio. Mide el número de microestados compatibles con el macro-estado de equilibrio, también se puede decir que mide el grado de organización del sistema, o que es la razón de un incremento entre energía interna frente a un incremento de temperatura del sistema termodinámico.”

 

Todos hemos visto el sistema mecánico en el cual se conserva la energía, para que sea perfectamente elástico y tenga ausencia de rozamiento.  Está claro que si queremos hablar de energía y su conservación, de termodinámica y de entropía, tendríamos que mencionar aquí muchos nombres que, como el del conde Rumford nacido en lo que entonces era colonia británica de Massachusetts en 1753 y vivió hasta 1814, se llamaba en principio Benjamín Thompson.  Fue mientras trabajaba en Baviera, supervisando la construcción de un nuevo cañón cuando planteó la idea de que el calor es una forma de trabajo.

Benjamin Thompson, el James Bond científico | UNIVERSO Blog

La gestación de esta idea duró mucho tiempo, un paso decisivo fue el que dio James Joule de Gran Bretaña durante la década de 1840. Lo hizo todavía mejor que Rumford, ya que realizó experimentos precisos para medir la cantidad de trabajo necesario para producir un determina ascenso de la temperatura en una cantidad de agua. Estos trabajos y otros llevados a cabo por contemporáneos de Joule, tales como Hermann Helmholtz en Alemania, desembocaron el en el Principio de la conservación de la energía. Éste dice que la energía no puede crearse ni destruirse, sólo puede transformarse.

          Conservación de la materia

 

Energía – Conservación

             http://3.bp.blogspot.com/_DvHSK-p7zDo/SxTzLbg3IcI/AAAAAAAABKs/gm0EMnI7tCE/s1600/Esquem%C3%83%C2%A1tico_interf_spin_dispositivo.jpg

A diferencia de lo que ocurre con el momento angular de los objetos macroscópicos, a los que estamos acostumbrados, que puede tomar valores muy variados dependiendo de las acciones a las que se vean sujetos, la magnitud del espín de una partícula subatómica es siempre la misma para este tipo concreto de partícula.

Leyes de Conservación

 

Si un sistema no interacciona con su entorno de ninguna manera, entonces determinadas propiedades mecánicas del sistema no pueden cambiar. Algunas veces nos referimos a ellas como “constantes del movimiento”. Estas cantidades se dice que son “conservadas” y las leyes de conservación resultante se pueden considerar como los principios mas fundamentales de la mecánica. En mecánica, ejemplos de cantidades conservativas son la energía, el momento y el momento angular. Las leyes de conservación son exactas para un Sistema aislado.

Establecidas aquí como principios de la mecánica, estas leyes de conservación tiene profundas implicaciones en la simetría de la naturaleza, que no hemos visto violadas. Ellas sirven como una fuerte restricción en cualquier teoría sobre cualquier rama de la ciencia.

Nebulosa de Orión - Concepto, descubrimiento y características

En la nebulosa molecular gigante de Orión, los astrónomos han observado las transformaciones que se producen al crearse nuevas estrellas y nuevos sistemas planetarios. Ahí se pueden observar continuados cambios irreversibles de destrucción y creación que escenifica el continuo renovarse del Universo.

La energía y sus manifestaciones La energía Para que cualquier movimiento  se produzca es necesario que un cuerpo u objeto cuente con energía. - ppt  descargarPrincipio De Conservacion De La Energia Mecanica Ejemplos - Colección de  EjemploQué evento representa la conservación de la energía? - JoveneswebTEMA 11. TRABAJO, ENERGÍA Y POTENCIA. GUIÓN DEL TEMA 1.TRABAJO REALIZADO  POR UNA FUERZA CONSTANTE. 2.ENERGÍA FORMAS DE ENERGÍA. 3. PRINCIPIO DE. -  ppt descargar

El principio de conservación de energía llegó a conocerse también como primer principio de termodinámica y nos dice que en un sistema cerrado (pongamos por ejemplo esta Nebulosa e imaginemos que no interacción con el mundo exterior, para llevarlo hasta un Sistema cerrado ideal como, el plano sin rozamiento). Aquí la energía total permanece constante pero, ninguna transformación de trabajo en energía es perfecta, ya que el calor siempre se disipa como un subproducto, de tal forma que hay algo de energía que desaparece de la circulación. Dado que el calor siempre fluye de un lugar caliente a otro más frío (segundo principio de la termodinámica), finalmente, en cualquier sistema cerrado toda la energía acaba convirtiéndose en calor, y todas las diferencias de temperatura se irán nivelando hasta dejar un sistema templado y sin características especiales donde no sucede nada interesante.

Segundo principio de la termodinámica (Presentación PowerPoint) -  Monografias.comEL SEGUNDO PRINCIPIO DE LA TERMODINÁMICA

Lo que actualmente conocemos como segundo principio de la Termodinámica se puede expresar de muchas formas diferentes, pero su primer enunciado se debe al Físico británico William Thomson (quien fuera posteriormente lord Kelvin) en 1852. La cuestión esencial sobre la que Thomson llamó la atención es esta idea de disipación -que, aunque el modo en que funciona el mundo natural se puede describir como un gran motor que convierte el calor en trabajo (o en movimiento, que viene a ser lo mismo), debe haber siempre algo de calor que se disipa durante el proceso, aunque realmente no se pierde, sino que se propaga por todo el universo, haciendo que su temperatura global suba una pizca, una cantidad casi imperceptible.

Una máquina térmica es un dispositivo que, operando de forma cíclica, toma de calor de un foco caliente, realiza un cierto trabajo (parte del cual se emplea en hacer funcionar la propia máquina) y entrega calor de desecho a un foco frío, normalmente el ambiente.

El ejemplo característico de máquina térmica es la máquina de vapor, que se emplea en la mayoría de las centrales eléctricas (sean estas térmicas, termo-solares o nucleares). En una máquina de vapor una cierta cantidad de líquido se hace hervir en un horno (foco caliente); el vapor resultante mueve una turbina, enfriándose parcialmente. El vapor enfriado pasa a un condensador, donde es enfriado a la temperatura ambiente, liberando calor y volviendo a ser líquido. Una bomba (movida por la turbina) toma ese líquido y vuelve a llevarlo al horno, manteniendo en marcha el sistema.

Descripción de la tarea | Máquinas térmicas y frigoríficas

  • El calor | Qc | proporcionado por el foco caliente.
  • El calor | Qf | cedido al foco frío
  • El trabajo | Wext | realizado por la turbina
  • El trabajo Wint necesario para hacer funcionar la máquina térmica

 

 

 

Esto va más allá del principio, o ley, de conservación de la energía (el primer principio de la termodinámica), porque en este caso, aunque la cantidad total de energía del mundo (expresión con la que los victorianos se referían al total del universo), se mantiene siempre igual, la cantidad de energía útil siempre está disminuyendo. Esto implica que los físicos necesitan un sofisticado sistema técnico para cuantificar la cantidad de energía útil existente en un sistema cerrado, o en el mundo (el universo en toda su amplitud), de tal modo que pudieran tenerla en cuenta y manejarla en sus ecuaciones. esto indujo a Rudolf Clausius a proponer el concepto de Entropía, lo cual hizo en Alemania a mediados de la década de 1860.

Segundo Principio de la Termodinámica y la Espontaneidad (página 2) -  Monografias.comSegundo principio-termodinamica-y-espontaneidadTermodinámica química (página 2) - Monografias.comLa entropía

El Modo más sencillo de calcular lo que mide la Entropía es pensar en términos de la cantidad de orden que hay en un sistema, y el ejemplo clásico consiste en imaginar una caja que está dividida en dos mitades mediante una pared separadora móvil. Una mitad de la caja está llena de gas y la otra se encuentra inicialmente vacía -es el vacío-. Tenemos así un sistema que posee una cierta cantidad de orden, o de estructura, porque hay una diferencia entre las dos mitades del recipiente. Si se introduce al azar un robot consistente en una sonda microscópica, nos podrá decir en qué lado de la pared separadora se encuentra, , comprobando si está rodeado por gas o por vacío. Imaginemos que abrimos esa pared separadora. Todos sabemos lo que va a suceder. El gas se propaga hasta llenar la caja de manera uniforme. Entonces habrá en el sistema menos orden (o, si se quiere, más desorden).

It's written on Ludwig Boltzmann's tombstone, and it means that "entropy is  the logarithm of multiplicity.… | Entropy quote, Ludwig boltzmann,  Statistical mechanicsHow chaos drives the arrow of time – Many Body Physics

La entropía mide la cantidad de orden que hay en un sistema y, si el desorden aumenta, también lo haced la entropía. Sabiendo que en el mundo real el desorden crece en todo sistema cerrado (las cosas se desgastan, se rompen, son inundadas por el polvo y la corrosión, a medida que pasa el tiempo, el inevitable aumento de la entropía define una dirección del tiempo, una flecha que parte del pasado ordenado y apunta hacia el futuro desordenado. Dado que ese proceso parecía inevitable y universal, los especialistas en termodinámica de la era victoriana preveían un destino último del Universo en el que toda la energía útil se habría convertido en calor y todo sería una mezcla templada de materia a temperatura uniforme, una situación desoladora que llamaban la “muerte térmica” del universo.

http://1.bp.blogspot.com/_Nlt4zw12dQA/SI36eCq10yI/AAAAAAAABiM/Y3uZfEf0QvY/s400/universo.jpg

Pero, ese tenebroso pronóstico ha quedado ya descartado. El hecho de que el Universo se expande (que no se descubrió hasta finales de la década de 1920), alteró todo el contenido de tal predicción, y la constatación de que la Gravedad tiene de hecho energía negativa, que data de la década de 1940, descartó en esencia el tipo de muerte térmica que imaginaron los victorianos.

Las estrellas que brillan en el cielo, todas las nuevas que en la Nebulosas nacen, los mundos que se crean, la vida que surge, la Gravedad…Todo ello, contribuye a generar Entropía negativa que, de alguna manera, autogenera el Universo u consigue que aquella muerte térmica no llegue.

La ciencia encontró un mecanismo convincente para explicar cómo fue canalizada la energía positiva de la materia, y una cantidad igual de energía  negativa fue el campo gravitatorio. Así, en efecto, ¡toda la materia cósmica fue creada realmente gratis! Una vez que los cosmólogos advirtieron esto, se hizo plausible la hipótesis de que en el comienzo del universo el espacio estaba vacío; toda la materia apareció después (aunque con gran rapidez), como resultado de un proceso físico natural. La nueva teoría se consideraba superior y más científica porque eliminaba la necesidad de postular “el tufillo” sobrenatural que llevaba la materia en el comienzo del tiempo.
William Latham: Biogenesis – ACM SIGGRAPH ART SHOW ARCHIVESAnimate Projects - William Latham
William Latham: Biogenesis                                 Animate Projects – William Latham
Pero giremos la cabeza para poder mirar al problema de la Biogénesis para encontrarnos con una singular inversión de los sentimientos. Ahora no tenemos que explicar el origen de la materia, sino el origen de la información. Mientras que es buena ciencia buscar un proceso físico para generar materia, se considera acientífico en extremo considerar un proceso que genere información. La información no es algo que se supone que viene gratis (como la materia cósmica), sino algo por lo que uno tiene que trabajar (si queremos saber, hay que estudiar, observar, investigar y experimentar). En realidad, esto simplemente la segunda ley de la termodinámica revisada, porque la aparición espontánea de información en el universo sería equivalente a una reducción de la entropía del universo: una violación de la segunda ley, “un milagro”. Ahora bien, el hecho de que el universo contiene información es innegable (porque no está en equilibrio termodinámico). Si la información no puede crearse, debe haber estado allí en el comienzo, como parte del impulso inicial. La conclusión a la que nos vemos guiados es que el universo venía lleno de información, o entropía negativa, desde su nacimiento mismo.
LIGO y Virgo descubren un misterioso objeto fusionándose con un agujero  negro
Todos sabemos que el universo está lleno de sucesos misteriosos. En agosto de 2019, la red de ondas gravitacionales LIGO-Virgo fue testigo de la fusión de un agujero negro con 23 veces la masa de nuestro sol y un objeto misterioso con 2,6 veces la masa de nuestra estrella. Los científicos no saben si será una estrella de neutrones o un agujero negro.
No puede haber Universo sin Big BangEl Universo, del Big Bang a hoy, como nunca lo habías visto
¿Qué nos dicen las observaciones astronómicas sobre el contenido de información del universo primitivo? Aquí descubrimos algo muy curioso. Uno de los elementos de prueba más decisivos a favor de la teoría del Big Bang es la existencia de un fondo universal de radiación térmica, que parece ser una especie de brillo residual del explosivo nacimiento del universo. Esta radiación ha viajado a través del espacio y del tiempo sin sufrir prácticamente ninguna perturbación desde el tiempo inmediatamente posterior al “supuestoBig Bang y, nos proporciona así, una instantánea imagen de cómo era el universo en su comienzo. Las medidas hechas desde los satélites han determinado que el espectro de la radiación térmica cósmica corresponde exactamente a un estado de equilibrio termodinámico.. Pero el equilibrio termodinámico es un estado de máxima entropía que, a través de métodos y modelos existentes, implica mínima información.
La segunda ley de la termodinámica,... - En un lugar del cosmos | Facebook
Así que, nos vemos enfrentado a  una contradicción muy molesta. La segunda ley prohíbe que el contenido de información del universo aumente a medida que este evoluciona, pero, por lo que podemos decir del universo primitivo, éste contenía muy poca información. De modo que ¿de donde ha venido la información presente hoy en el universo? Otra manera de exponer el problema sería en términos de entropía. Si el universo empezó próximo al equilibrio termodinámico máxima entropía, ¿Cómo ha alcanzado su estado actual de desequilibrio, dado que la segunda ley prohíbe que la entropía total disminuya?
Formación estelar | Astropedia | FandomEspectáculo en el espacio con nubes cósmicas y vientos estelares | Canarias7
Vientos de las estrellas, vientos estelares — AstronooLa llamativa nebulosa planetaria CVMP 1 | UNIVERSO Blog
La respuesta a esta paradoja cósmica es ahora bien conocida (al menos eso creemos): procede de un cuidadoso estudio de la gravitación. Para ver que diferencia supone la gravitación para la termodinámica, uno de los índices que podemos escoger como guía es ver cómo se comporta la gravedad en las nubes interestelares que contienen las masas de miles de millones de soles. El gas, como consecuencia de la gravedad, comienza a contraerse al ser perturbado (digamos que por vientos estelares) y, la gravitación se hace muy importante en ese medio. Así que, el gas se contrae y en algunos lugares se acumulan grumos de material más denso. En los centros de esos grumos la contracción producida por la gravedad, calentará el gas, aparecerán gradientes de temperatura y fluirá calor y, en la nube interestelar, se formarán estrellas nuevas y cúmulos de ellas.
El flujo de radiación térmica procedente de esas estrellas (como el Sol, pongamos por caso), es la fuente de energía libre, o entropía negativa, que como sabemos, impulsa toda la vida en el planeta Tierra mediante la fotosíntesis y otros procesos biogenéticos que llevan a la materia “inerte” a evolucionar por medio de procesos complejos bioquímicos hasta convertirse en una especie de “sopa primordial” a partir de la cual, surge eso que llamamos vida y que es, el mejor exponente de la entropía negativa presente en el universo.
Los Viajeros estelares: La respiración estelarLa impresionante Nebulosa del Renacuajo | UNIVERSO Blog
Por eso, bajo la acción de la gravitación, un gas supuestamente en equilibrio termodinámico y a una temperatura uniforme y máxima entropía sufre de todas formas cambios y transiciones de fases adicionales que lleva a esa Nebulosa a un estado de desequilibrio o inestabilidad inducida por la fuerza de gravedad y que se convierte en una fuente de información. Así, podríamos decir que, la Gravedad, ha cambiado las reglas del juego toda vez que, su presencia, rompe el equilibrio termodinámico y, el estado de máxima entropía se rompe al aparecer la entropía negativa que, de alguna manera, será motivo de un futuro de vida.
NASA celebra Halloween con nebulosas fantasmagóricas
Claro que, para algunos, todos estos procesos son auténticos enigmas sin resolver. ¿Cómo, siendo la gravitación una fuerza tan débil, pudo desempeñar un papel tan directo en los procesos bioquímicos? Penrose nos dice (como experto mundial en la gravitación) que él ha especulado con que la gravedad podría afectar a las biomoléculas a través de procesos cuánticos. También Lee Smolin ha comparado los temas de la vida y la gravitación en su libro La vida del cosmos, donde elabora una analogía entre el comportamiento de los ecosistemas y las galaxias espirales. Muchas de las ideas que aquí os dejo, son debidas a Paul Davies que, en su libro El quinto milagro, nos habla de todo esto y mucho más.
4. cuadro de diferencias entre un ser vivo y materia inerte
Lo cierto es que, poco a poco, vamos pudiendo entender como a partir de ciertos comportamientos de la materia en presencia de las fuerzas fundamentales del universo, nos llevan a estados supuestamente caóticos a partir de los cuáles, finalmente, la materia “inerte” se convierte en vida.
Cindy's Open House Blog: La espiral de la vida
Todo eso ocurre por el simple hecho de que las galaxias espirales se comportan y tienen una dinámica cosmológica que las lleva a la creación de entropía negativa que, en definitiva nos lleva de manera directa e irremediable hasta el surgir de la vida en mundos que, el azar ha colocado, de manera aleatoria, en esos lugares de privilegio que llamamos “zonas habitables” en los que son posibles la presencia del agua líquida, ese bien que, los humanos, nunca hemos sabido valorar en su justo valor.
http://www.santiagokoval.com/wp-content/uploads/2009/06/el-poshumano.jpg
De uno u otro modo, siguiendo a Wiener, si la propagación de la especie puede interpretarse como una función según la cual un ser vivo crea otro a su propia imagen, análogamente, la producción de artificios debiera interpretarse, en particular a partir del siglo XVIII, como una función por medio de la cual un ser humano crea a su imagen y semejanza un ser artificial.
Pero hablamos de Entropía y, la Vida, por supuesto, parece querer desafiar este proceso creando orden y estructuras a partir de materiales desordenados (o, en todo caso, menos ordenados).
Aescala macroscópica, según unas leyes deducidas a partir de experimentos y observación  siguiendo procedimientos científicos aprobados, ensayados y comprobados, el universo actúa de un modo irreversible. Nunca se pueden conseguir que las cosas vuelvan a ser como solían.
La vida privada de las estrellas - Las gigantes rojas - El TamizKepler observa dos planetas gaseosos que puede que sobrevivieran a ser  engullidos por su estrella cuando ésta se transformó en gigante roja - La  Ciencia de la Mula Francis
                                                       El proceso que seguirá el Sol cuando se acerque a su final
Cuando nuestro Sol agote su combustible nuclear de fusión y se convierta en una gigante roja como la que arriba vemos, nada podrá hacerla volver a su estructura original como estrella amarilla del Tipo G2V que ahora nos entrega su luz y su calor para que la vida, en la Tierra, sea posible. Ese Sol, ya nunca volvera.
Qué son las nebulosas planetarias? – NuestroclimaFacebook
Pero precisamente en este sencillo y clásico ejemplo de irreversibilidad termodinámica, la Entropía y la Flecha del Tiempo hacen su trabajo y lo que era dejó de ser para convertirse en algo nuevo, es decir, lo que antes era el Sol, ahora, una vez pasados todos los procesos hasta la Nebulosa Planetaria, el Sol se convertirá en una estrella enana blanca de intensa radiación ultravioleta que estará en el centro de la Nebulosa durante cien millones de años, mientras el gas se disipa y la estrella se enfría quedando, para siempre, como un cadáver estelar, un objeto de una gran densidad.

 

Sí, en nuestro universo algo cambia y,  muchas otras cosas serán distintas

 

Claro que no hay una flecha del tiempo en las leyes de Newton y, según Laplace y muchos otros, estas leyes parecen describir un mundo completamente determinista en el cual el pasado y el futuro están fijados de una manera rígida y no hay lugar para el libre albedrío.

Lo que ninguno de estos científicos parece haber observado es que el argumento fundamental se desploma si, en cualquier momento y lugar del universo, se produce una colisión simultánea entre tres partículas –aunque la valoración de si esto sería suficiente para restablecer el libre albedrío es una cuestión cuya discusión prefiero dejar a la filosofía.

En la física del movimiento y sus causas -Dinámica- las leyes de la naturaleza funcionan tanto si el tiempo transcurre “hacia adelante” como también si lo hiciera “hacia atrás”, es decir que son simétricas y reversibles en el tiempo. Si filmamos un choque entre dos partículas, o la órbita de un planeta entorno a su sol, y pasamos la película al revés, notaremos que las trayectorias están invertidas, lo cual es totalmente coherente para la física: no hay nada que nos indique que el tiempo está trascurriendo en sentido contrario. Si las leyes de la naturaleza no distinguen entre el pasado y el futuro, entonces ¿por qué notamos que el tiempo fluye en un sentido y no en otro? ¿De dónde sale esa asimetría del tiempo? ¿Por qué recordamos el pasado pero no el futuro?

 

http://farm4.staticflickr.com/3020/2837529280_6c09aab100_z.jpg

Nos podemos sentar mirando hacia el futuro, pero, ¿veremos algo….

 

Este mismo problema relativo al tiempo se planteó a partir de uno de los mayores triunfos de la física del siglo XIX: la investigación de la naturaleza de la luz y de otras formas de radiación electromagnética, que tuvo su momento culminante en la obra del escocés James Clerk Maxwell (1831-1879). La explicación dada por Maxwell sobre la radiación electromagnética se basa en la obra de Michael Faraday, que vivió entre 1791 y 1867, y propuso la definición de los “campos” eléctrico y magnético que surgen en torno a los objetos que poseen una carga eléctrica.

 

 

Mi mayor descubrimiento ha sido Michael Faraday» | Física para tod@s

 

Fue Faraday el primero en sugerir que la luz podría estar producida por algún tipo de vibración de las líneas de fuerza asociadas con imágenes y partículas “cargadas”, que vibrarían como lo hacen las cuerdas de un violín al ser pulsadas. El problema estaba en que, Faraday, carecía de los conocimientos matemáticos necesarios para desarrollar la idea de maneta tal que se desarrollara un modelo perfectamente configurado. Así, en la década de 1860, llegó Maxwell para rematar el trabajo de Faraday con sus maravillosas ecuaciones vectoriales para demostrar que todos los fenómenos eléctricos y magnéticos conocidos en aquella época, incluido el comportamiento de la luz, podía ser descrito mediante un conjunto de sólo cuatro ecuaciones, que actualmente se denominan ecuaciones de Maxwell.

Claro que, como todo, también las ecuaciones de Maxwell tenían sus limitaciones, especialmente en la descripción de fenómenos que se producen a escalas muy pequeñas, tales como el comportamiento de los átomos y de las partículas que los componen. En este caso, es preciso modificar tanto la descripción clásica de las descripciones electromagnéticas (Maxwell), como la descripción clásica de las interacciones entre partículas (Newton), fenómenos en los cuales se cumplen las reglas de la física cuántica. Así, las ecuaciones de Maxwell, como las de Newton, tampoco contienen la flecha del tiempo.

 

 

Máquina de vapor. Artículo de la Enciclopedia.Quién inventó la Máquina de Vapor - Origen y Evolución✔️

 

Lo que fue durante mucho tiempo la explicación habitual la razón por la que vemos una dirección predominante del tiempo surgió a partir de otro gran triunfo de la física del siglo XIX: la descripción de la relación entre calor y movimiento (termodinámica). Esto tuvo una importancia práctica fundamental en el mundo industrial cuando se utilizaba la fuerza de las máquinas de vapor.

Lo cierto es que, la importancia de la termodinámica reside en que permite a los físicos explicar el comportamiento de gran número de objetos –en especial, partículas de gas- que, en cierto sentido, funcionan juntos en un sistema complejo. Esto incluye el uso de promedios y estadísticas, pero se basa en gran medida en la idea de que un gas está constituido por una cantidad innumerable de partículas diminutas (átomos y moléculas) que no cesan de rebotar y chocar entre sí y con las paredes del recipiente que las contiene, cumpliendo las leyes del movimiento de Newton. Esta teoría cinética de los gases fue un ejemplo importante del modo en que las leyes universales de la física ponían orden en el caos.

 

Ludwing Boltzmann (1844-1906)
       Ludwig Boltzmann (1844-1906)

La palabra “gas” fue acuñada por el físico flamenco Joannes van Helmont a partir de la palabra griega que significa “caos”; este término apareció impreso por primera vez en el libro de van Helmont titulado Ortus medicina, publicado cuatro años después del fallecimiento de Joannes, en 1648. La idea de que los gases eran como un caos se consideró acertada durante trescientos años, hasta que Maxwell desde Gran Bretaña, y su contemporáneo Ludwig Boltzmann, desde Viena, consolidaron la teoría cinética (que hasta entonces había sido sólo una especulación), dándole una firme base científica fundamentada en las leyes de Newton.

Me proponía al comenzar este trabajo a exponer muchas más cosas pero, como siempre pasa, el espacio y el tiempo no dan para tanto en este lugar y, dejo pendiente explicar cómo surge el Caos a partir del Orden y el Orden a partir del Caos, cómo podemos llegar al borde del Caos y qué transiciones de fase tienen que producirse para que, la normalidad y la simetría vuelva a reinar a partir de ese desorden que, en un principio, podría parecer irreversible.

 

http://4.bp.blogspot.com/-Dx_aXmprn1Q/TieVh6TcL2I/AAAAAAAAAAg/CmRfAnKezeI/s1600/galaxia-espiral.jpg

 

De todo lo que aquí hemos hablado, se puede tomar razón y llegar a tener una razonada conciencia en el estudio de una galaxia espiral que, con sus millones de estrellas brillantes en los brazos espirales y sus estrellas rojas y más viejas en el centro galáctico, nos hablan claramente de la flecha del tiempo y de la entropía al considerar, la galaxia, como el sistema cerrado que, poco a poco, va tornándose más y más compleja en la composición de la materia que la conforma que, de manera irreversible va sufriendo transformaciones de todo tipo que, finalmente, la llevará a un estado crítico que hasta se podría transformar en un inmenso agujero negro como resultado final del proceso.

 

El tic tac del universo - Revelación - WattpadQué había en el Universo antes del Big Bang? - AmbientumEl tic tac que nos mueve | EL PAÍS SemanalUniverso y evolución | Ciencia UANL

 

 

Mucho es lo que nos queda por saber, lo que sabemos, reconociendo que no es poco para el exiguo tiempo que llevamos aquí (en la medida del reloj del universo), es aún insuficiente para lo que la Humanidad necesita saber. Nuestra ignorancia es grande, muy grande…, casi infinita, si la contraponemos con todo aquellos que nos queda por descubrir de los secretos de la Naturaleza. Nunca podremos acabar ese aprendizaje que se pierde en la lejanía de la flecha del tiempo en ese infinito que llamamos futuro.

 

emilio silvera

Hechos que nos llevan al el futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Prinicipia-title.pngTrinityCollegeCamGreatCourt.jpg


“Philosophiæ naturalis principia mathematica
 (del latín: Principios matemáticos de la filosofía natural), también conocido simplemente como Principia,1​ es una obra publicada por Isaac Newton el 5 de julio de 1687​ a instancias de su amigo Edmund Halley, donde recoge sus descubrimientos en mecánica y cálculo matemático. Este trabajo marcó un punto de inflexión en la historia de la ciencia y es considerada, por muchos, como la obra científica más importante de la historia.”

Ley de la gravedad - EcuRedTrabajo de ley de la gravitación universal de newton

Para no retrotraernos muy atrás en el tiempo, fijaremos el punto de partida en 1687, fecha en que salió a la luz la Obra de Newton, sus Principias. El tiempo transcurrió hasta 1900, fecha en la que Planck publicó un artículo de ocho páginas con su idea del cuanto que sería la semilla que daría lugar al nacimiento de la mecánica cuántica. En 1905, aquel joven de la Oficina de Patentes de Berna, sorprendió al mundo de la Física con su Teoría de la Relatividad Especial. Se produjeron muchos desarrollos importantes para nuestras imágenes de la Física Fundamental. Uno de los mayores cambios ocurrido en ese período fue la comprensión, básicamente mediante los trabajos de Faraday y Maxwell en el siglo XIX, de que cierta noción de campo físico, que permea en el espacio, debe cohexistir con la previamente aceptada “realidad newtoniana” de las partículas individuales que interaccionan por medio de fuerzas instantáneas.

Conforme a lo que arriba decimos se producen fenómenos y se ponen en marcha mecanismos que hacen posible que, la imagen que vemos, pueda ser posible gracias a la presencia de fuerzas que, aunque no las podamos ver, su presencia se hace patente por los resultados que en su diversidad, son los mecanismos que llevan el ritmo del universo en el que vivimos.

 

Astrofísica y Física: La gravedad como campo

Más tarde, esta noción de “campo” se convirtió también en un ingrediente crucial de la teoría de la Gravedad en un espacio-tiempo curvo a la que llegó Einstein en 1915. Lo que ahora denominamos campos clásicos son el Campo Electromagnético de Maxwell y el Campo Gravitatorio de Einstein.

Leer más

El Universo y la Mente

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Mente    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

 

 

¿Dónde estabas tú cuando yo puse los cimientos de la Tierra? Dilo si tienes entendimiento.

Contestar a esa pregunta sólo puede ser la de otra pregunta: ¿Quién sabe realmente? So todo lo que ahora “sabemos” es el fruto (primero) de la especulación (más tarde) de la observación, y, finalmente, del experimento. Cuando no sabemos  conjeturamos y hablamos de la existencia de cuerdas vibrantes, o, de “materia oscura” que tratan de justificar lo que no sabemos.

Las primeras galaxias del universo | Noticias de la Ciencia y la Tecnología  (Amazings® / NCYT®)

 

Se ha confeccionado el primer censo de las galaxias más primitivas y distantes. Un equipo de astrónomos dirigido por el Instituto Tecnológico de California (Caltech), en Pasadena, ha utilizado el Telescopio Espacial Hubble de la NASA para descubrir siete de las galaxias más arcaicas y distantes.

La más antigua de estas galaxias descubiertas ha sido observada tal como era cuando el universo tenía sólo 380 millones años de edad. Todas las galaxias recién descubiertas se formaron hace más de 13.000 millones de años, cuando el universo tenía sólo el 4 por ciento de su edad actual.

 

2020 abril 07 : Blog de Emilio Silvera V.

Sin embargo, lo que nadie sabe explicar es que, en presencia de la expansión de Hubble, cuando la materia corría imparable creando el espacio, las galaxias se pudieran formar. ¿Qué estaba allí presente que generaba la fuerza de Gravedad necesaria para que las galaxias se pudieran formar?

“Ylem o hylem (forma aumentativa de la palabra griega ὑλ [hylé] = materia) es el nombre dado por Aristóteles a la que consideraba sustancia fundamental de la cual procedería todo ente de materia.”

Si hablamos del Universo y de la Mente, habrá que pensar en la Vida

 

¿La Vida? Lo único que se me ocurre para contestar es decir que la Vida es el nivel más alto de la evolución de la Materia. Entendiendo, eso sí, que ese “nivel más alto” es aquel en el que se ha llegado hasta la consciencia de Ser. Cuando nos hemos percatado de que “somos”, entonces y sólo entonces hemos sido conscientes de que formamos parte del inmenso universo.

Introducción - LAS CARACTERÍSTICAS DE NUESTRO UNIVERSO"</p

El Universo y la Química de la Vida : Blog de Emilio Silvera V. El Universo de la Conciencia : Blog de Emilio Silvera V.

Podríamos decir, sin temor a equivocarnos, que somos (seguramente con otros muchos), lo más complejo que existe en el Universo, la materia evolucionada hasta el nivel de poder crear pensamientos.

 

Es verdaderamente admirable constatar cómo ha ido evolucionando nuestro entendimiento del mundo que nos rodea, de la Naturaleza, del Universo. Hubo un tiempo en el que, los individuos de nuestra especie deambulaban por este planeta pero, no sabían comprender el “mundo” ni podían pensar siquiera en el misterio que representaban los fenómenos naturales que a su alrededor se sucedían.

Poetry: Crashing Stars – The Inkblotters

Pasado el tiempo, pudieron mirar hacia arriba y, la presencia de aquellos puntitos brillantes en la oscura y misteriosa oscuridad de la noche, despertó su curiosidad consciente y se pudieron hacer algunas preguntas. Muchas decenas de miles de años más tarde, nuestro deambular por el planeta, las experiencias y la observación de la Naturaleza, nos llevó a comprender, algunas de las cosas que antes no tenían explicación.

Filosofia naturalista9.- Astronomía en la Grecia Clásica – El Bazar De La Biblioteca Perdida

Pensadores del pasado dejaron la huella de sus inquietudes y los llamados filósofos naturales, hicieron el ejercicio de dibujar el “mundo” según ellos lo veían. Nos hablaron de “elementos” de “átomos” y, aunque no era el concepto que  de esas palabras podamos tener, ya denotaba una gran intuición en el pensamiento humano que trataba de entender la Naturaleza y cómo estaban hechas las cosas que nos rodeaban. Ellos, a la materia primigenia la llamaron “Ylem” la sustancia cósmica.

Es cierto que siempre hemos querido abarcar más de lo que nuestra “sabiduría” nos podía permitir. , en el presente, las cosas no han cambiado y tratamos de explicar lo que no sabemos, y, para ello, si hay que inventarse la materia oscura”, las “fluctuaciones de vacío”, los “universos paralelos”, los “agujeros de gusano”, o, cualesquiera otros conceptos o fenómenos inexistentes en el mundo material o experimental… ¡qué más da! Lo importante es exponer las ideas que nos pasen por la cabeza que, de alguna manera, pasando el tiempo, se harán realidad. Nuestras mentes, como digo, siempre fueron por delante de nosotros mismos y ha dejado al descubierto esa intuición que nos caracteriza y que, de alguna manera, nos habla de esos hilos invisibles que, de alguna manera, nos conecta con el resto del Universo del que, al fin y al cabo, formamos .

El agua es el principio de todas las cosas" | Fundación AquaeTales de Mileto se convenció de que todo estaba hecho con agua | Blogs El  Espectador

 

“Para Tales de Mileto el agua era el elemento primero de todas las cosas que existen, lo que dio comienzo al universo, una idea que los griegos llamaban arjé (del griego ἀρχή, fuente, principio u origen). … Al no estar sostenida sobre unas bases fijas si no que, como está flotando sobre el agua, ésta la hace tambalearse.”

            Tales de Mileto fue el primero en expresar la importancia que tenía el agua para la Vida

Frases de vivir el presente para aprender a disfrutar cada momento -  Innatia.com

Lo cierto es que estamos condenados a vivir en un Eterno Presente que viajó por el Pasado que podemos recordar, ¿El Futuro? Es algo que nunca podremos alcanzar, es como el horizonte, nos acercamos hacia él y siempre estará a la misma (inalcanzable) distancia.

 

 

Ciencias naturales - Wikipedia, la enciclopedia libreTodo es Química...ciencia en la 70La galaxia espiral intermedia NGC 1566Best Atomo GIFs | Gfycat

 

, que hemos podido realizar un cierto avance en el “conocimiento del mundo que nos rodea”, no le damos la verdadera importancia que tienen algunos pensamientos del pasado que, en realidad, son los responsables de que ahora, nos encontremos en el nivel de conocimiento que hemos podido conquistar. Tales de Mileto, uno de los siete sabios de Grecia, fue el primero que dejó a un lado la mitología para utilizar la lógica y, entre otras muchas cosas, indicó la importancia que tenía el agua para la existencia de la vida. Empédocles nos habló de los elementos y Demócrito del a-tomo o átomo., Arquitas de Tarento (filósofo, soldado y músico), el amigo de Platón y seguidor de Pitágoras, ya se preguntaba: ¿Es el Universo infinito?

El drone de Archytas de Tarentum fue el primer ...El primer vuelo de un modelo de dispositivo paloma fue hecha de madera por  Archytas de Tarento (428-347 A.C.) fue sostenido por el gas y había batir  las alas Fotografía de stock -

Arquitas y su ingenio volador

“Aunque Heron es el primero en recopilar datos sobre los autómatas otros anteriores a él realizaron sus aportaciones como es el caso de Archytas (428 aC- 347 aC) inventor del tornillo y la polea y famoso por su paloma mecánica capaz de volar gracias a vapor de aire en propulsión.”

Resultado de imagen de Arquímedes inventó el Tornillo
“Un tornillo de Arquímedes es una máquina gravimétrica helicoidal utilizada para la elevación de agua, harina, cereales o material excavado. Fue inventado en el siglo III a. C. por Arquímedes, del que recibe su nombre, aunque existen hipótesis de que ya era utilizado en épocas mucho más antiguas en el Antiguo Egipto.”

Arquitas de Tarento (filósofo, soldado y músico), el amigo de Platón y seguidor de Pitágoras, ya se preguntaba: ¿Es el Universo infinito?

Dónde está el BORDE del UNIVERSO? - YouTube

       Te dan ganas de preguntar: ¿Qué habrá más allá del “borde” del Universo?

Él mismo se contestaba diciendo que todo tenía un límite y, pensaba en el final que lindaba con el “vacío”, allí donde nada impedía que su espada, lanzada con fuerza en el borde del universo, siguiera su camino sin fin, ninguna fuerza podría pararla y con ninguna clase de materia podría chocar. Así, con esos pensamientos surgidos de la mente humana, podemos constatar que,  siempre, hemos tratado de saber de qué están hechas las cosas, cómo funciona la Naturaleza y de qué manera se comporta el universo y por qué lo hace de esa manera y no de otra.

El Universo siempre está presente : Blog de Emilio Silvera V.2018 diciembre 22 : Blog de Emilio Silvera V.

El Universo se expande y nuestras mentes también. Eso que llamamos Tiempo siguió su transcurrir

Inexorable, los pensamientos de los grandes pensadores se fueron acumulando en un sin fin de conjeturas y teorías que, poco a poco, pudimos ir comprobando mediante la observación, el estudio y la experimentación hasta que, pudimos llegar a saber de qué estaban hechas las estrellas y cómo la materia se transmutaba en sus hornos nucleares  crear elementos que hicieron posible el sugerir de la vida en los mundos (no creo que la vida esté supeditada a este mundo nuestro).

Creación del mundo por la música ~ Endeland tributo a Michael EndeESCENARIOS Los Los 9 mundos del Yggdrasill

      Creando mundos por la música y  Los 9 mundos del Yggdrasill

El conocimiento que creemos que tenemos sobre cómo está conformada la materia y las fuerzas fundamentales que con ella interaccionan, nos ha llevado a escenificar un Universo algo más comprensible que aquel, que nuestros ancestros imaginaron con la presencia de “dioses” y “divinidades” que eran los que, creaban los “mundos” o, el universo mismo, cada vez que soñaban.

Viaje de lo más pequeño a lo más grande en 8 nivelesUna teoría sobre el origen de la vidaLa panspermia: ¿Y si la vida en la Tierra se originó en otro planeta?TEORÍA DE LA EVOLUCIÓN QUÍMICA Y CELULAR:Mantiene que la vida apareció, a  partir de la materia ine… | Teoria de la evolucion, Evolucion de la vida,  Tierra primitiva

Es asombroso que hayamos podido llegar hasta la consciencia siendo la línea de salida la “materia inerte”. Sin embargo, el recorrido ha sido arduo y muy largo…, ¡diez mil millones de años han necesitado las estrellas  poder  solidificar los elementos de la vida para crear, en algunos de los muchos mundos presentes en las galaxias, el proto-plasma vivo que diera lugar a esa primera célula replicante que comenzara la fascinante aventura de la vida hasta llegar a los pensamientos.

Viaje a Dallol: el infierno en la Tierra donde se estudia la frontera de la  vidaCelula Mitocondria GIF - Celula Mitocondria - Descubre & Comparte GIFs

Eternamente jóvenes: Los investigadores descubren genes que influyen en la  esperanza de vida | Adn genetica, Pleyadianos, Geometría sagrada

Interview With Award-Winning Illustrator, Bob Lambiase – Artists' Blogs | Medical Illustration Sourcebook

NOS PUEDE PARECER MENTIRA PERO, EN LUGARES COMO ESE DE ARRIBA (DONDE LA QUÍMICA ESTÁ PRESENTE), LOS MATERIALES BOMBARDEADOS POR LA RADIACIÓN, EL OXÍGENO, EL AGUA LÍQUIDA… ¡PUDIERON HACER SURGIR LA RUDIMENTARIA VIDA PRIMERA!

 

Si nos preguntaran: ¿Es consciente el Universo? Tendríamos que contestar de manera afirmativa, toda vez que, al menos una sección importante de él, ¡la que piensa!, representada por seres vivos y que forman  de ese inmenso universo, Sí que lo es. La vida es la consecuencia de la materia evolucionada hasta su más alto nivel y, a partir de ella, ha podido surgir eso que llamamos cerebro, un lugar de tal complejidad que es capaz de generar ideas y de él emana también ese algo inmaterial que llamamos mente, un ente inmaterial y superior que trasciende y va más allá, lo que los filósofos llamaron Ser y quisieron explicar mediante la metafísica, toda vez que, al estar fuera de la materia, nada podía la Física decir. Todavía, no sabemos lo que la vida es y tampoco, podemos explicar lo que es la energía, o, por exponer algún concepto de los muchos que denota nuestra ignorancia, tampoco podemos contestar a una simple pregunta: ¿Qué es el Tiempo? ¿Existe en realidad o simplemente es una abstracción de la mente? Ya hablamos aquí de eso hace unos días.

Lo cierto es que nuestra especie ha dejado profundas huellas de su deambular por el mundo. Muchos de sus “tesoros y obras” quedaron enterrados en las profundidades del tiempo o inundados por los diluvios que las distintas civilizaciones que fueron nos contaron con sus maravillosas leyendas que, en realidad, trataban de explicar algo que sucedió y que no llegaban a comprender y,  ello, inventaban bonitas historias en las que, narraban hechos que quedaron difuminados por la fantasía hasta el punto de no saber, en el presente, hasta que punto eran ciertas o no las bonitas “historias” que nos contaron.

Lo cierto es que, con frecuencia sucede que, cuando surgen ideas nuevas que tienden a querer explicar científicamente lo que es la Naturaleza, aparecen viejos  que relacionan esas nuevas ideas con aquellos viejos problemas. Tenemos que admitir que todavía “no sabemos” cómo es la realidad del mundo y que, nuestra realidad, no tiene que coincidir con la verdadera realidad que incansables buscamos.

De hecho, no sabemos explicar ni cómo se pudieron formar las galaxias, y, a pesar de ello, no tenemos empacho de hablar de singularidades y agujeros de gusano o de universos paralelos. ¡La imaginación!, creo que sin ella, no habríamos podido llegar hasta aquí. La imaginación unida a la curiosidad ha sido siempre, el motor que nos llevó hacia el futuro.

Si en realidad existe “el infinito”, seguro que está en nuestras mentes, o, posiblemente en otras que, como las nuestras, han imaginado cómo ensanchar el mundo y  universo de los pensamientos sin límite alguno, el único límite que existe, amigos míos, es el de nuestra ignorancia  llegar a comprender lo que la Naturaleza es. En la Naturaleza están todas las respuestas a las preguntas que planteamos y que nadie sabe contestar. En ella, en la Naturaleza, buscan nuestros ingenios esas respuestas y, para poder encontrarlas hemos inventado los aceleradores de partículas, los microscopios y telescopios y aparatos que, como los espectrómetros de masa y otros nos llevan a ese “otro universo” que el ojo desnudo no puede ver pero que, no deja de ser y estar en nuestro propio mundo, y, al ser conscientes de ello, también lo somos de nuestras limitaciones. En realidad, la única manera de avanzar es ser consciente de que no sabemos, toda vez que, si creyéramos que ya lo sabiamos todo… ¿para qué seguir buscando?

Todo está hecho de Quarks y Leptones.  una Galaxia hasta el fiero león que habita en la selva

El pensamiento filosófico es un “mundo” que ensanchó los límites de la mente humana, nos llevó hasta la Ciencia, en un mundo en el que, las semillas de Quarks y Leptones se constituían en un universo material en el que, unas  fuerzas fundamentales interaccionaban para hacer posible el ritmo de todo lo que podemos observar, de todo lo que existe y que llegó, a crear el espacio-tiempo y dentro de toda esa inmensidad, ¡los pensamientos y la imaginación! de objetos complejos que llamamos cerebro y transportan mentes creadoras de ideas como la de universos en la sombra, cuerdas cósmicas y otros muchos fantásticos fenómenos que pueblan un paisaje inmenso de “cosas” en constante ebullición que se transforman para crear otras diferentes. Para que eso sea posible, a veces podemos contemplar lugares violentos donde impera un Caos aparente pero, necesario para la creación.

Heráclito decía:  “Todas las cosas son”
Con aquellas sencillas palabras elevó a las “cosas” a la categoría de Ser. Nada de lo que existe lo hace en vano, siempre tiene un sentido predeterminado que enlaza con otra razón que explica su “ser”. Las piedras en el fondo del río, el panal de abejas, el viento, el arbusto espinoso, la lluvia, el Sol, la arena, el océano, las especies, … ¡Los pensamientos!

Con aquellas sencillas palabras, el sabio, elevó a todas las cosas a la categoría de SER. ¿Tendrá memoria la materia? ¿Será posible que eso que llamamos materia “inerte”, no sea en realidad tan inocua ni tan insensible como imaginamos? Es posible que cada  de la materia sea un paso necesario para poder llegar hasta su estado de consciencia que, en este mundo, se ha revelado en nosotros.

emilio silvera