Mar
10
¿Tiempo de Planck? ¡Qué no imaginará el hombre!
por Emilio Silvera ~ Clasificado en General ~ Comments (9)
Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por segundos, donde G es la constante gravitacional (6’672 59 (85) ×10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2π = 1’054589 × 10-34 Julios segundo) y c es la velocidad de la luz (299.792.458 m/s).
El valor del tiempo del Planck es del orden de 10-43 segundos. En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del universo.
Expresado en números corrientes que todos podamos entender, su valor es 0’0000000000000000000000000000000000000000010 de 1 segundo, que es el tiempo que necesita el fotón para recorrer la longitud de Planck, de 10-35 metros (veinte ordenes de magnitud menor que el tamaño del protón de 10-15 metros). El límite de Planck es
Todo, desde Einstein, es relativo. Depende de la pregunta que se formule y de quién nos de la respuesta.
Si preguntamos ¿qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio-133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Baricéntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio. Cada una de estas versiones del tiempo tiene una respuesta diferente, ya que no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo universal. Como se puede ver, la respuesta dependerá de cómo hagamos la preguntas
Nuestro tiempo
En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas; los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es sólo uno; ese que comenzó cuando nació el universo y que finalizará cuando éste llegue a su final.
Lo cierto es que para las estrellas super-masivas, cuando llegan al final de su ciclo y dejan de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella) y la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un agujero negro, una singularidad, donde dejan de existir el “tiempo” y el espacio. A su alrededor nace un horizonte de sucesos, que si se traspasa se es engullido por la enorme gravedad del agujero negro.
El tiempo, de esta manera, deja de existir en estas regiones del universo que conocemos como singularidad. El mismo Big Bang surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.
Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y agujeros negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son a menudo esféricas. El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.
Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble. Su densidad es de 1017 Kg/m3; los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del universo.
Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del universo. Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.
“Magia es cualquier tecnología suficientemente avanzada”
Arthur C. Clarke
Ramanujan
Pero también es magia el hecho de que en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver estructuras complejas matemáticas que hacen posible que la humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.
Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: la teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Göttingen en Alemania. Aquello fue como abrir de golpe todas las ventanas cerradas durante 2.000 años de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante. Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.
¿Qué hay detrás del descubrimiento del espacio multidimensional, empezando con el matemático que lo inició todo, Georg Bernhard Riemann. Anticipando el siglo siguiente de progreso científico, Riemann fue el primero en afirmar que la naturaleza encuentra su ámbito natural en la geometría del espacio multidimensional?
Su ensayo, de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios. La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas
La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias. En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la literatura en toda Europa. Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del universo y su evolución mediante su asombrosa teoría de la relatividad general. Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del universo. El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.
Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico. Era huraño, solitario y sufría crisis nerviosas. De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis.
Riemann nació en 1.826 en Hannover, Alemania, segundo de los seis hijos de un pobre pastor luterano que trabajó y se esforzó como humilde predicador para alimentar a su numerosa familia que, mal alimentada, tendrían una delicada salud que les llevaría a una temprana muerte. La madre de Riemann también murió antes de que sus hijos hubieran crecido.
A edad muy temprana, Riemann mostraba ya los rasgos que le hicieron famoso: increíble capacidad de cálculo que era el contrapunto a su gran timidez y temor a expresarse en público. Terriblemente apocado era objeto de bromas de otros niños, lo que le hizo recogerse aún más en un mundo matemático intensamente privado que le salvaba del mundo hostil exterior.
Para complacer a su padre, Riemann se propuso hacerse estudiante de teología, obtener un puesto remunerado como pastor y ayudar a su familia. En la escuela secundaria estudió la Biblia con intensidad, pero sus pensamientos volvían siempre a las matemáticas. Aprendía tan rápidamente que siempre estaba por delante de los conocimientos de sus instructores, que encontraron imposible mantenerse a su altura. Finalmente, el director de la escuela dio a Riemann un pesado libro para mantenerle ocupado. Una voluminosa obra maestra de 859 páginas, el tratado más avanzado del mundo sobre el difícil tema de la teoría de números. Riemann devoró el libro en seis días.
Cuando el director le preguntó: “¿hasta dónde has leído?“, el joven Riemann respondió: “este es un libro maravilloso. Ya me lo sé todo“.
Sin creerse realmente la afirmación de su pupilo, el director le planteó varios meses después cuestiones complejas sobre el contenido del libro, que Riemann respondió correctamente.
Con mil sacrificios, el padre de Riemann consiguió reunir los fondos necesarios para que a los 19 años pudiera acudir a la Universidad de Gitngen, donde encontró a Carl Friedrich Gauss, el aclamado por todos “Príncipe de las Matemáticas”, uno de los mayores matemáticos de todos los tiempos. Incluso hoy, si hacemos una selección por expertos para distinguir a los matemáticos más grandes de la Historia, aparecerá indudablemente Euclides, Arquímedes, Newton y Gauss.
Los estudios de Riemann no fueron un camino de rosas precisamente. Alemania sacudida por disturbios, manifestaciones y levantamientos, fue reclutado en el cuerpo de estudiantes para proteger al rey en el palacio real de Berlín y sus estudios quedaron interrumpidos.
En aquel ambiente, el problema que captó el interés de Riemann fue el colapso que, según el pensaba, suponía la geometría euclidiana, que mantiene que el espacio es tridimensional y “plano” (en el espacio plano, la distancia más corta entre dos puntos es la línea recta; lo que descarta la posibilidad de que el espacio pueda estar curvado, como en una esfera).
Para Riemann, la geometría de Euclides era particularmente estéril cuando se la comparaba con la rica diversidad del mundo. En ninguna parte veía Riemann las figuras geométricas planas idealizadas por Euclides. Las montañas, las olas del mar, las nubes y los torbellinos no son círculos, triángulos o cuadrados perfectos, sino objetos curvos que se doblan y retuercen en una diversidad infinita. Riemann, ante aquella realidad, se rebeló contra la aparente precisión matemática de la geometría griega, cuyos fundamentos, descubrió él, estaban basados en definitiva sobre las arenas movedizas del sentido común y la intuición, no sobre el terreno firme de la lógica y la realidad del mundo.
Euclides nos habló de la obviedad de que un punto no tiene dimensión. Una línea tiene una dimensión: longitud. Un plano tiene dos dimensiones: longitud y anchura. Un sólido tiene tres dimensiones: longitud, anchura y altura. Y allí se detiene. Nada tiene cuatro dimensiones, incluso Aristóteles afirmó que la cuarta dimensión era imposible. En Sobre el cielo, escribió: “La línea tiene magnitud en una dirección, el plano en dos direcciones, y el sólido en tres direcciones, y más allá de éstas no hay otra magnitud porque los tres son todas“. Además, en el año 150 d. C. el astrónomo Ptolomeo de Alejandría fue más allá de Aristóteles y ofreció, en su libro sobre la distancia, la primera “demostración” ingeniosa de que la cuarta dimensión es imposible.
En realidad, lo único que Ptolomeo demostraba era que era imposible visualizar la cuarta dimensión con nuestros cerebros tridimensionales (de hecho, hoy sabemos que muchos objetos matemáticos no pueden ser visualizados, aunque puede demostrarse que en realidad, existen). Ptolomeo puede pasar a la Historia como el hombre que se opuso a dos grandes ideas en la ciencia: el sistema solar heliocéntrico y la cuarta dimensión.
La ruptura decisiva con la geometría euclidiana llegó cuando Gauss pidió a su discípulo Riemann que preparara una presentación oral sobre los “fundamentos de la geometría”. Gauss estaba muy interesado en ver si su discípulo podía desarrollar una alternativa a la geometría de Euclides.
Riemann desarrolló su teoría de dimensiones más altas.
Finalmente, cuando hizo su presentación oral en 1.854, la recepción fue entusiasta. Visto en retrospectiva, esta fue, sin discusión, una de las conferencias públicas más importantes en la historia de las matemáticas. Rápidamente se entendió por toda Europa la noticia de que Riemann había roto definitivamente los límites de la geometría de Euclides que había regido las matemáticas durante dos milenios.
Riemann creó su tensor métrico para que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresarse, a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la relación entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2. El teorema de Pitágoras, por supuesto, es la base de toda la arquitectura; toda estructura construida en este planeta está basada en él. Claro que, es una herramienta para utilizar en un mundo tridimensional).
El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema para dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del espacio en presencia de grandes masas. Precisamente, el tensor de Riemann permitió a Einstein formular su teoría de la gravedad y posteriormente lo utilizo Kaluza y Klein para su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de super-gravedad, supersimetría y, finalmente, las supercuerdas.
Para asombro de Einstein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854 que le había enviado su amigo Marcel Grossman, rápidamente se dio cuenta de que allí estaba la clave para resolver su problema. Descubrió que podía incorporar todo el cuerpo del trabajo de Riemann en la reformulación de su principio. Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de la relatividad general. Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E = mc2. La reinterpretación física de la famosa conferencia de Riemann se denomina ahora relatividad general, y las ecuaciones de campo de Einstein se sitúan entre las ideas más profundas de la historia de la ciencia.
En el gráfico de arriba quedan representados los universos que, en función de la Densidad crítica podamos tener, el abierto, el plano y el cerrado. Los Modelos de Friedman y de Einstein-De Sitter.
emilio silvera
el 6 de enero del 2009 a las 14:10
No sé si le pasa a más personas pero soy incapaz de visualizar las imágenes.
Aprovecho para agradecete tu labor divulgativa.
Un afectuoso saludo
el 6 de enero del 2009 a las 14:50
Ya está solucionado; son problemas técnicos.
Un saludo
el 6 de enero del 2009 a las 22:05
Gracias por la atención y pronta resolución. Un saludo cordial.
el 26 de marzo del 2010 a las 23:19
esta muy interesante este articulo de ciencia
el 12 de noviembre del 2010 a las 20:20
si no era capaz de visualizar las imagines signifca que careces de capacidad de abstracción que es la definicion clásica de inteligencia
el 12 de noviembre del 2010 a las 21:52
alejo, creo que no entiendes mensajes sencillos de otros, debes tener carencias en tu capacidad de comunicación y en el uso del lenguaje, cosa de gran importancia en la inteligencia 😉
el 13 de noviembre del 2010 a las 3:26
Bien dicho Zephiros…
un saludo.
el 25 de mayo del 2012 a las 3:07
Con nuevos saludos para don Emilio Silvera Vásquez: Agradeciendo que mantenga información en mi zona web. Siempre interesantes para mi “deporte” preferido: pensar con libertad. Respecto a la opinión de Arthur C. Clarke: en efecto, hay dos caminos que tarde o temprano definen sus direcciones, una es la magia, otra es la mística. Personalmente no escogí la primera, porque mi libertad no tiene precio. Me interesa la segunda que se opone a la primera, y porque se eleva sobre la suma de los conocimientos en el tiempo; pero, por sus puertas solamente ingresan los elegidos. Mientras tanto, hay que buscar ser dignos de las revelaciones, y contentarse con ellas. Tener paciencia y ejercitarse hacia las perfecciones. Que los años, siglos o milenios harán posibles los encuentros más sorprendentes. Deseando parabienes, hasta pronto.
el 25 de mayo del 2012 a las 6:05
Amigo mío:
“Pensar en Libertad” es uno de los pocos privilegios que nadie nos puede quitar (al menos, mientras lo hagamos con nosotros mismos y en silencio, sin que nuestra voz exprese algunos de esos pensamientos que, para nuestra seguridad, pudieran ser peligrosos), y que, nos pueden llevar hacia esos “paraisos soñados” que están más allá de lo material, en ese “universo místico” que está muy encima de lo cotidiano, dónde nos podemos sentir aislados, y despojados de la carga del mundo que tantas veces nos resulta tan pesada que se hace insoportable de llevar.
La magía, amigo mío, es todo aquello que nos pueda sorprender y maravillar. Sin embargo, tiene un alcance muy limitado, cuando nos llega la comprensión del suceso, se esfuma y, la razón prevalece. Sin embargo, lo místico, es otra cosa muy distinta y según creemos, superior, algo que nos tansporta hacia más elevados “universos” en lo que, podemos llegar a comprender cosas que, en el mundo material no existen, allí, en el universo místico, están las verdades que en el mundo cotidiano nunca podremos alcanzar, es un estadio de elevación que pocos podrán alcanzar y que, por elevación de la mente, encuentra aquellas respuestas que en ninguna otra parte podrían hallar.
Claro que, pocos han sido los que han visitado ese “universo místico” de visiones extraordinarias donde “dicen” que, se pueden encontrar las respuestas que en el plano terrenal nadie nos podría dar.
Es agradable pensar que, “ese universo místico” está ahí para que, alguna vez, lo podamos alcanzar si, nuestras mentes están preparadas para ello. Creo, según tengo entendido que, no todos estamos preparados para ese viaje que realia la mente alejándose del cuerpo para “viajar” lejos del mundo, de lo material, de lo ordinario y cotidiano que es, el plano que todos ocupamos y que pocos pueden dejar. Aquel otro, será, como apuntas, para unos pocos elegidos.
Un saludo cordial