miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Qué será la materia? ¿Cómo puede adoptar tantas formas?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

http://francisthemulenews.files.wordpress.com/2010/08/dibujo20100822_hoag_object_a1515_2146_hubble_space_telescope1.png

            Aunque de extraña y atípica figura, también, esta galaxia, está hecha de materia

Tiene y encierra tantos misterios la materia que estamos aún a años-luz de saber y conocer sobre su verdadera naturaleza. Es algo que vemos en sus distintas formas materiales que configuran y conforman todo lo material desde (creemos) las partículas elementales hasta las montañas y los océanos. Unas veces está en estado “inerte” y otras, se eleva hasta la vida que incluso,  en ocasiones, alcanza la consciencia de SER. Sin embargo, no acabamos de dilucidar de dónde viene su verdadero origen y que era antes de “ser” materia. ¿Existe acaso una especie de sustancia cósmica anterior a la materia? Y, si realmente existe esa sustancia… ¿Dónde está? Tenemos un Modelo plausible de la creación del Universo que nos dice de dónde surgió y cómo se formaron los primeros átomos de materia pero, sospecho que… ¡No es suficiente!

Descubren restos de la materia prima original del Universo

Con esta imagen se publicó que se habían descubiertos restos de la materia prima del universo. Sin embargo, no es mucho lo que de ello podemos asegurar y, en cualquier parte que podamos mirar nos dan más o menos, las mismas respuestas sobre lo que la materia es:

Densidad como Propiedad de la materia - Monografias.comCuáles son las propiedades generales de la materia? (Con jemplos)Materia - Concepto, propiedades, clasificación y ejemplosClase1

“Materia es todo aquello que tiene localización espacial, posee una cierta cantidad de energía, y está sujeto a cambios en el tiempo y a interacciones con aparatos de medida. En física y filosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, etc.”

En Ginebra,  los físicos en el centro de investigación CERN están logrando colisiones de alta carga energética de partículas subatómicas en su intento por recrear las condiciones inmediatamente posteriores al Big Bang con el cual (suponemos) que comenzó el Tiempo al nacer el Universo 13.700 millones de años atrás. Mucho se ha criticado al LHC y, sin embargo, es un gran paso adelante que nos posibilitará saber, como es el Universo y, nos descubrirá algunos de sus secretos. Hará posible que avancemos en el conocimiento sobre de dónde venimos, cómo el universo temprano evolucionó, cómo tienen y adquieren su masa las partículas y, algunas cosas más.

Qué es la "luz líquida" y por qué se le considera el quinto estado de la  materia - BBC News Mundo2.000 expertos se citan online en el congreso de Física de la Materia  Condensada del CSIC | MadridPress periódico digital de noticias de Madrid,  España y mundo

Lo cierto es que, adentrarse en el universo de las partículas que componen los elementos de la Tabla Periódica, y en definitiva, la materia conocida, es verdaderamente fantástico”. Esos pequeños objetos que no podemos ver, de dimensiones infinitesimales, son, en definitiva, los componentes de todo lo que contemplamos a nuestro alrededor: Las montañas, ríos, Bosques, océanos, los más exoticos animales y, hasta nosotros mismos, estamos hechos de Quarks y Leptones que, en nuestro caso, han podido evolucionar hasta llegar…¡A los pensamientos!

 

 

Resultado de imagen de Desde los Quarks hasta los pensamientosLa física cuántica revela la unión entre mente, emoción y materia | El Adán  Buenos Ayres

 

Desde los Quarks hasta los pensamientos, es decir, a partir de lo material se crea ese otro “universo” metafísico y exento de materia que, no sabemos explicar por qué, es más poderoso que lo que podemos ver y tocar. ¿de qué estarán hechos los pensamientos?

 

Estas dos familias de partículas (Quarks y Leptones) conforman todo lo que podemos ver a nuestro alrededor, la materia del Universo y, si la “materia oscura” en realidad existe, no sabemos de qué pueda estar hecha y las clases de partículas que la puedan conformar. Habrá que esperar y, de momento, hablaremos de lo que conocemos.

 

 

Protactinio | Qué es, características, yacimientos, usos, aplicaciones,  extracciónSe cumplen 94 años del hallazgo del protactinio | El Bolígrafo

 

Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Sí, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

Elementos transuranicosHallan cuatro nuevos elementos transuránidos | Vanguardia.com

                              Los transuránicos son elementos artificiales que no existen en la Naturaleza

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

¡Parece que la materia está viva!

Controlan la 'danza' de los electrones del helio

                                  A la derecha la imagen captada de la danza de los electrones del Helio

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

Joseph John Thomson físico inglés descubridor de los electrones

                  Josepth John Thomson

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

Una de las cámaras más rápidas del mundo capta movimiento de electrones

Aunque no se trata propiamente de la imagen real de un electrón, un equipo de siete científicos suecos de la Facultad de Ingeniería de la Universidad de Lund consiguieron captar en vídeo por primera vez el movimiento o la distribución energética de un electrón sobre una onda de luz, tras ser desprendido previamente del átomo correspondiente.

Captan por vez primera imágenes en tiempo real de dos átomos vibrando en  una molécula | Noticias de la Ciencia y la Tecnología (Amazings® / NCYT®)

Previamente dos físicos de la Universidad Brown habían mostrado películas de electrones que se movían a través de helio líquido en el International Symposium on Quantum Fluids and Solids del 2006. Dichas imágenes, que mostraban puntos de luz que bajaban por la pantalla fueron publicadas en línea el 31 de mayo de 2007, en el Journal of Low Temperature Physics.

En el experimento que ahora nos ocupa y dada la altísima velocidad de los electrones el equipo de investigadores ha tenido que usar una nueva tecnología que genera pulsos cortos de láserde luz intensa (“Attoseconds (Un attosegundo es una unidad de tiempo equivalente a la trillonésima parte de un segundo… 1 as = 10−18 s).

¡No por pequeño, se es insignificante! Recordémoslo, todo lo grande está hecho de cosas pequeñas.

Haga clic para mostrar el resultado de "Louis de Broglie" número 12Difracción de electrones - Wikipedia, la enciclopedia libre

Louis de Broglie y su difracción de electrones

La juventud debería ser la etapa más creativa' | Comunidad Valenciana | EL  MUNDOEfecto fotoeléctrico - Wikipedia, la enciclopedia libre

El joven Einstein y su Efecto fotoeléctrico

En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones.)

Resultado de imagen de dualidad onda corpusculo | Ondas, Particulas

Dualidad onda-partícula (o el electrón como onda en el espacio de momentos)  - La Ciencia de la Mula Francis

Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

El fotón es la partícula elemental responsable de las manifestaciones cuánticas del fenómeno electromagnético. Es la partícula portadora de todas las formas de radiación electromagnética, incluidos los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas y las ondas de radio.

El fotón tiene una masa invariante cero, y viaja en el vacío con una velocidad constante c. Como todos los cuantos, el fotón presenta tanto propiedades corpusculares como ondulatorias (“dualidad onda-corpúsculo“). Se comporta como una onda en fenómenos como la refracción que tiene lugar en una lente, o en la cancelación por interferencia destructiva de ondas reflejadas; sin embargo, se comporta como una partícula cuando interactúa con la materia para transferir una cantidad fija de energía, que viene dada por la expresión:

 

E={\frac  {hc}{\lambda }}=h\nu

donde h es la constante de Planckc es la velocidad de la luz\lambda  es la longitud de onda y \nu  la frecuencia de la onda. Esto difiere de lo que ocurre con las ondas clásicas, que pueden ganar o perder cantidades arbitrarias de energía. Para la luz visible, la energía portada por un fotón es de alrededor de 3.44×10–19 julios; esta energía es suficiente para excitar las células oculares fotosensibles y dar lugar a la visión.”

El comportamiento corpuscular de la luz: momento lineal del fotón —  Cuaderno de Cultura Científica

“En física newtoniana el momento lineal, p, también llamado cantidad de movimiento, de un cuerpo se define como el producto de la masa de ese cuerpo por su velocidad, esto es, p = m·v . De donde resulta que el momento lineal del fotón es inversamente proporcional a su longitud de onda, p = h/λ”

Además de energía, los fotones llevan también asociado un momento lineal y tienen una polarización. Siguen las leyes de la mecánica cuántica, lo que significa que a menudo estas propiedades no tienen un valor bien definido para un fotón dado. En su lugar se habla de las probabilidades de que tenga una cierta polarización, posición o momento lineal. Por ejemplo, aunque un fotón puede excitar una molécula, a menudo es imposible predecir cuál será la molécula excitada.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

Definicion De Fuerza Gravitacion - onlinecitasgoodslekla's diaryQué es la fuerza electromagnética? ⚡️ » Respuestas.tips

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

                  Joseph Weber

Jujuy Aprende en Casa - El Interferómetro de Michelson

El interferómetro funciona enviando un haz de luz que se separa en dos haces; éstos se envían en direcciones diferentes a unos espejos donde se reflejan de regreso, entonces los haces al combinarse presentarán interferencia.

Pink Crossing GIF by xponentialdesign - Find & Share on GIPHY

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

Motions of the planets put new limit on graviton mass – Physics World

El Gravitón (se supone) que es el Bosón intermediario de la fuerza de Gravedad

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es cero, su carga es cero, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones. Tenemos varios proyectos en marcha de la NASA y otros Organismos oficiales que buscan las ondas gravitatorias de los agujeros negros, de colisiones entre estrellas de neutrones y de otras fuentes análogas que, según se cree, nos hablará de “otro universo”, es decir, nos dará información desconocida hasta ahora y sabremos “ver” un universo distinto al reflejado por las ondas electromagnéticas que es el que ahora conocemos.

          ¿Espuma cuántica? Si profundizamos mucho en la materia…

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.

El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

“Una investigación ha llevado a pensar que, la materia se construye sobre fundamentos frágiles. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interior de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común. Estas dos partículas, protones y neutrones, se comportan como si en su interior, los quarks de los que están hechas ambas partículas, lucharan por escapar del confinamiento a que se ven sometidos por la fuerza nuclear fuerte por medio de los Gluones que forman un océano en el que se ven confinados sin remedio. De hecho, nunca nadie ha podido ver a un quark libre.”

Así que, si estudiamos el vacío cuántico, parece que eso permitirá a los físicos someter a prueba a la Cromo Dinámica Cuántica y buscar sus efectos más allá de la física conocida. Por ahora, los cálculos demuestran que la QCD describe partículas basadas en quarks de forma precisa, y que la mayor parte de nuestra masa viene de quarks virtuales y gluones que burbujean en el vacío cuántico.

Se cree que el campo de Higgs hace también su pequeña contribución, dando masa a los quarks individuales, así como a los electrones y a otras varias partículas. El campo de Higgs también crea masa a partir del vacío cuántico, en forma de bosones virtuales de Higgs. De modo que si el LHC confirma la existencia del bosón de Higgs (como ya hizo), eso significará que toda la realidad es virtual, es menos virtual de lo que se pensaba. No creo que hasta el momento, y, a pesar de las declaraciones salidas desde el CERN, se tenga la seguridad de haber detectado el Bosón de Higgs (creo que han faltado explicaciones),

De todo lo anterior, no podemos obtener una respuesta cierta y científicamente probada de que todo eso sea así, más bien, los resultados indican que todo eso “podría ser así”, lo que ocurre es que, los científicos, a veces se dejan llevar por las emociones. Al fin y al cabo, ellos como el común de los mortales, también son humanos.

      Ya nos gustaría saber cómo es, ese vacío cuántico y qué pasa allí

Fluctuaciones de vacío! ¿Que son? : Blog de Emilio Silvera V.

Noésis(Νόησις) — El antiparmenídeo efecto Casimir en el vacío...

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles que no se pueden eliminar de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven. Hace un par de días que hablamos de ello.

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.

No puedo dejar de referirme al vacíotheta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una funciónn de Bloch en un cristal.

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

                              ¡Es tánto lo que hay pero que no podemos ver!

Si buscamos por ahí podremos leer explicaciones como esta: “En la Teoría cuántica de campos,  el vacío cuántico (también llamado el vacío) es el estado cuántico con la menor energía posible. Generalmente no contiene partículas físicas. El término “Energía de punto cero” es usado ocasionalmente como sinónimo para el vacío cuántico de un determinado campo cuántico.

Increíble! La física descubre que en el vacío existe esta fuerza - VIX

El vacío absoluto no existe. El espacio que se puede considerar vacío porque no se aprecia materia en él, está repleto de partículas energéticas que surgen de la “nada” y vuelven a desaparecer, para repetir continuamente dicha mecánica de están y no están. ¿De dónde vienen?

De acuerdo a lo que se entiende actualmente por vacío cuántico o “estado de vacío”, este “no es desde ningún punto de vista un simple espacio vacío” , y otra vez: “es un error pensar en cualquier vacío físico como un absoluto espacio vacío.” De acuerdo con la mecánica cuántica, el vacío cuántico no está verdaderamente vacío sino que contiene ondas electromagnéticas fluctuantes y partículas que saltan adentro y fuera de la existencia.

Los planetas que orbitan una estrella ¿se mueven siempre en un plano  horizontal imaginario que atraviesa a la estrella por su ecuador? - Quora

Según las modernas teorías de las partículas elementales, el vacío es un objeto físico, se puede cargar de energía y se puede convertir en varios estados distintos. Dentro de su terminología, los físicos hablan de vacíos diferentes. El tipo de partículas elementales, su masa y sus interacciones están determinados por el vacío subyacente. La relación entre las partículas y el vacío es similar a la relación entre las ondas del sonido y la materia por la que se propagan. Los tipos de ondas y la velocidad a la que viajan varía dependiendo del material.”

Como nos dicen en este anuncio del Kybalion, nada es estático en el Universo y, todo está en continuo movimiento o vibración. Habréis oído hablar de la energía de punto cero que permanece en una sustancia en el cero absoluto (cero K). Está de acuerdo con la teoría cuántica, según la cual, una partícula oscilando con un movimiento armónico simple no tiene estado estacionario de energía cinética nula. Es más, el Principio de Incertidumbre no permite que esta partícula esté en reposo en el punto central exacto de sus oscilaciones. Del vacío surgen sin cesar partículas virtuales que desaparecen en fracciones de segundo, y, ya conocéis, por ejemplo, el Efecto Casimir en el que dos placas pueden producir energía negativa surgidas del vacío.

Efecto Casimir - Wikipedia, la enciclopedia libre

De todas las maneras, en este momento sabemos tanto de la espuma cuántica como de nuestra presencia en el Universo, es decir, nada. Todo son conjeturas, suposiciones e hipótesis que nos hacen imaginar lo que pueda existir a la distancia de Planck. Claro que  en una longitud de 10-35 metros, sí que es fácil imaginar que lo que podamos ver allí sería simplemente una especie de espuma cuántica asociada a lo que estimamos que sería la gravedad cuántica.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting