Abr
28
¿Lo que pasó? ¿Lo que pasará? o, simple imaginación
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Coreografía de un par de electrones
Controlan la ‘danza’ de los electrones del helio
Un estudio con participación de la Universidad Autónoma de Madrid, ha conseguido visualizar y controlar, por primera vez, el movimiento sincronizado de los dos electrones que componen el átomo de helio.
“En física, el término causalidad describe la relación entre causas y efectos, es fundamental en todas las ciencias naturales, especialmente en física. En términos generales, la causalidad puede ser estudiada desde varias perspectivas: la filosófica, la de la computación y la estadística.”
¿Cómo podríamos resolver la estructura del Universo?
“Imaginaos ahora este instante en que los murmullos se arrastran discretamente y las espesas tinieblas llenan el navío del Universo.”
Esas palabras de Chakesperare en Enrique V (acto IV, esc. 1), nos podría valer ahora a nosotros para extrapolarlas a este tiempo y haciendo un ejercicio de imaginación, convertir esas tinieblas en la “materia oscura”, esa clase de materia que postulan los cosmólogos, que no podemos ver, que no emite radiación, que no sabemos de qué está hecha y, en realidad, tampoco sabemos donde está (sólo lo suponemos) pero, nos soluciona, de un plumazo, todos los problemas de la estructura del Universo. Esa clase de materia “transparente” que sí emite la fuerza gravitatoria podría explicar el ritmo a grandes escalas que hemos podido observar en el comportamiento de nuestro universo y que antes de la llegada de la “materia oscura”, no sabíamos, a qué era debido… “¡ahora sí lo sabemos!”. Bueno, al menos, eso dicen algunos pero, lo tienen que demostrar.
Sitios como este, en nuestro planeta, los tenemos en multitud de lugares
No pocas veces me encuentro mirando al cielo nocturno estrellado desde la orilla del Atlántico cuya superficie brilla con millones de luces titilando al reflejar el resplendor de la Luna, la inmensidad del océano que se pierde en el horizonte y, la infinitud del firmamento me podrían hacer sentir insignificante. Sin embargo, no es así como lo siento. He dicho alguna vez que todo lo grande está hecho de cosas pequeñas, y, esa afirmación, nos dá la respuesta. Formamos parte de algo muy grande: El Universo.
Estamos en un punto, o en un nivel de sabiduría aceptable pero insuficiente, es mucho el camino que nos queda por recorrer y, como dijo el sabio, la energía necesaria para explorar la décima dimensión es mil millones de veces mayor que la energía que puede producirse en nuestros mayores colisionadores de átomos. La empresa resulta difícil para seres que, como nosotros, apenas tenemos medios seguros para escapar del débil campo gravitatorio del planeta Tierra.
A veces, a solas con mis pensamientos, no puedo dejar de cavilar sobre esa idea que rige como Modelo “inamovible” al que llaman Big Bang, nos cuentan de a partir de un punto de densidad y energías “infinitas”, surgió nuestro Universo, y, en el momento del suceso, no existían ni el Espacio ni El Tiempo. El desarrollo del Modelo nos habla de energías inconmensurables y de cómo se fueron formando, a partir de las partículas elementales, otras más complejas que formaron átomos y más tarde cuerpos.
Nada puede surgir de la “nada”, si surgió, es porque había
Energías del tal calibre, que sepamos, solo han estado disponibles en el instante de la creación del Universo, en su nacimiento, en eso que llamamos Big Bang. Solamente allí estuvo presente la energía del Hiperespacio de diez dimensiones y, por eso se suele decir que, cuando se logre la teoría de cuerdas sabremos y podremos desvelar el secreto del origen del Universo.
A los físicos teóricos siempre les resultó provechoso introducir dimensiones más altas para fisgar libremente en secretos celosamente escondidos.
Según esa nueva teoría, antes del Big Bang nuestro cosmos era realmente un universo perfecto de diez dimensiones, un mundo en el que el viaje inter-dimensional era posible. Sin embargo, ese “mundo” era inestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro y otro universo de seis dimensiones.
El Universo en el que vivimos nació en ese cataclismo cósmico. Nuestro Universo tetradimensional se expandió de forma explosiva, mientras que nuestro universo gemelo hexa-dimensional se contrajo violentamente hasta que se redujo a un tamaño casi infinitesimal.
Surgió la sustancia cósmica de la que, miles de millones de años más tarde, nacería la consciencia
Eso podría explicar el origen del Big Bang, y, si la teoría es correcta, demuestra que la rápida expansión del Universo fue simple consecuencia de un cataclismo cósmico mucho mayor, la ruptura de los propios espacio y tiempo. La energía que impulsa la expansión observada del Universo se halla entonces en el colapso del espacio-tiempo de diez dimensiones. Según la teoría, las estrellas y las Galaxias distantes están alejándose de nosotras a velocidades astronómicas debido al colapso original del espacio y el tiempo de diez dimensiones.
Esta teoría predice que nuestro Universo sigue teniendo un gemelo enano, un universo compañero que se ha enrollado en una pequeña bola de seis dimensiones (en la escala de Planck) muy pequeña para ser observada.
Ese Universo de diez dimensiones, lejos de ser un apéndice inútil de nuestro mundo, podría ser en última instancia, nuestra salvación. Claro que, si las galaxias siguen alejándose las unas de las otras, será la muerte térmica del universo, y, en ese escenario, ni los átomos se moverán.
Todo quedará quieto, congelado en los -273 ºC, la Densidad Crítica que se vislumbra nos habla de la muerte térmica del Universo
Para el cosmólogo, la única certeza es que el Universo morirá un día. Algunos creen que la muerte final del Universo llegará en la forma del Big Crunch. La gravitación invertirá la expansión cósmica generada por el Big Bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial. A medida que las estrellas se contraen, las temperaturas aumentan espectacularmente hasta que toda la materia y la energía del universo están concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del Universo tal como lo conocemos. Esta teoría parece que ha dejado de tener “creyentes” y, casi todos los expertos se decantan por la muerte térmica. Las Galaxias se alejan las unas de las otras, el universo está en continua expansiòn y, el frío, se apodera más y más de todo el Cosmos, así, cuando se alcancen los -273 ºC… ‘Todo se acabará!
Todas las formas de vida serán borradas de la faz de los mundo que las pudieran contener: evaporadas por las enormes temperaturas o aplastadas, ¡qué más da! No habrá escape. Y, sabiendo lo que ahora sabemos, conociendo la historia del universo mismo que, durante miles de millones de años ha estado fabricando materiales en las estrellas para que los seres vivos conscientes pudieran venir, ¿Cómo imaginar un final así? ¿Para qué tanto trabajo y tanto tiempo perdido? Seguramente, para cuando eso puede ir llegando, si es que la inteligencia sigue aquí, habrá buscado ya la manera de escapar a tal desastre y, las especies inteligentes se salvarán huyendo a otros universos, o, incluso, ¿por qué no? viajando hacia atrás en el Tiempo, hacia otras épocas de tiempos más benignas para tener otros miles de millones de años por delante y hacer las cosas, de manera diferente. ¡Una segunda oportunidad!
Bertrand Russell
Científicos y filósofos, como Charles Darwin y Bertrand Russell, han escrito lamentándose de la futilidad de nuestras míseras existencias, sabiendo que nuestra civilización morirá inexorablemente cuando llegue el fin de nuestro mundo. Las leyes de la física, aparentemente, llevan la garantía de una muerte final e irrevocable para todas las formas de vida, inteligente o no, del Universo.
Yo, como Gerald Feinberg, físico de la Universidad de Columbia (ya desaparecido), creo que sí puede haber, quizá sólo una esperanza de evitar la calamidad final. Ese atisbo de esperanza está en nosotros mismos, es decir, si somos capaces de no destruirnos antes, si procuramos comprender los mensajes que el universo nos envía continuamente, si desvelamos secretos de la Naturaleza que nos posibilitarán para hacer cosas, ahora inimaginables, entonces y solo entonces, habrá alguna esperanza.
Poder escapar a universos conexos que, como el nuestro, nos de cobijo
Gerald Feinberg especuló que la vida inteligente, llegando a dominar los misterios del espacio de más dimensiones (para lo que contaba con un poderoso aliado, el Tiempo de miles de millones de años), sabría utilizar las dimensiones extras para escapar de la catástrofe del Big Crunch. En los momentos finales del colapso de nuestro Universo, el Universo hermano se abriría de nuevo y el viaje inter-dimensional se haría posible mediante un túnel en el Hiperespacio hacia un Universo alternativo, evitando así la pérdida irreparable de la inteligencia de la que somos portadores.
Si algo así es posible, entonces, desde su santuario en el espacio de más dimensiones, la Humanidad, podría ser testigo de la muerte del Universo que la vio nacer y florecer.
Son muchas las cosas que no sabemos
Aunque la teoría de campos demuestra que la energía necesaria para crear estas maravillosas distorsiones del espacio y el tiempo está mucho más allá de cualquier cosa que pueda imaginar la civilización moderna, esto nos plantea dos cuestiones importantes:
¿cuánto tardaría nuestra civilización, que está creciendo exponencialmente en conocimiento y poder, en alcanzar el punto de dominar la teoría de hiperespacio?
¿Y qué sucede con otras formas de vida inteligente en el Universo, que puedan haber alcanzado ya este punto?
Lo que hace interesante esa discusión es que científicos serios han tratado de cuantificar el progreso de la civilización en un futuro lejano, cuando los viajes por el espacio sean una rutina en los sistemas estelares o incluso las galaxias vecinas hayan sido colonizadas. Aunque la escala de energía necesaria para manipular el Hiperespacio es astronómicamente grande, estos científicos señalan que el crecimiento del conocimiento científico aumentara, sin ninguna duda, de forma exponencial durante los siglos y milenios próximos, superando las capacidades de las mentes humanas para captarlo (como ocurre ahora con la teoría M, parada en seco, esperando que alguien vea las matemáticas necesarias para continuar su desarrollo).
El paso del Tiempo lo destruye todo
Somos conscientes de que el Tiempo inexorable sigue su implacable caminar y la Entropía, que sabe hacer bien su trabajo, lo transforma todo, lo que ayer era una cosa, hoy se ha convertido en otra distinta, irreconocible, y, sin embargo, ese deterioro natural no es algo perdido, sino que, por el contrario, hasta que llega ese final, se hizo un trabajo que dará sus frutos en la mente de otros seres, en las cosas mismas que, transformadas, servirán y tendrán cometidos nuevos.
El paso del tiempo lo transforma todo
Nada se pierde y todo tiene su por qué. La Naturaleza no hace nada porque sí, todo está programado y tiene un fin. Y, si eso es así (que los es), ¿Qué nos deparará el destino a nosotros? Habiendo llegado al nivel de comprensión alcanzado, no creo que el final sea el de la desaparición sin más, algo más debe estar oculto en los designios de la Naturaleza que no llegamos a comprender.
Ahora, sin temor a equivocarnos, podemos decir que tenemos en Mundo en las manos. No existen ningún rincón de la Tierra que se nos escape y con el que no podamos contactar en unos instantes. Tampoco existen aquellas largas separaciones de seres queridos en largos viajes, ni existe ningún problema para saber de alguna cosa que, incluso con imágenes podemos obtener al instante con sólo preguntar. En cuanto a los nuevos métodos de trabajo en la computación, es algo de increíble eficacia e impensada realidad hace sólo unos pocos años. ¿Qué decir de los nuevos materiales? La medicina ha dado un salto cualitativo gracias a los avances del CERB y el mismo LHC, los viajes espaciales ha mejorado nuestr0 confort en la vida cotidiana y del hogar…
Todo esto sin olvidar que, la que manda es la Naturaleza (La situación actual del mundo lo demuestra).
Con el LHC queremos llegar muy lejos, tanto como al corazón del Big Bang. Sin embargo, no tiene energía suficiente para ello, y, de momento, dicen haber descubierto un Penta-quark que, vaya usted a saber que es eso. De todas las maneras, hoy por hoy, es lo mejor que tenemos para profundizar en el corazón de la materia y… ¡En algún secretillo más del Universo!
Cada 10/15 años el conocimiento científico se doblará, crecerá el cien por ciento, así que, el avance superará todas las previsiones. Tecnologías que hoy solo son un sueño (la energía de fusión o en robótica, los cerebros positrónicos), serán realidad en un tiempo muy corto en el futuro. Quizá entonces podamos discutir con cierto sentido la cuestión de si podremos o no ser señores del Hiperespacio.
Viaje en el tiempo. Universos paralelos. Ventana dimensional.
¡Sueños! Claro que, si echamos una atenta mirada a la Historia veremos que, muchos sueños se hicieron realidad.
emilio silvera
Abr
26
¿Será Marte el Futuro? I
por Emilio Silvera ~ Clasificado en General ~ Comments (4)
El Cráneo de Marte en el Cráter Gusev. Imágenes, obtenidas por el robot Spirit, en diferentes emplazamientos y fechas, que muestran calaveras (O al menos eso es lo que parecen)
Por muchas razones, el planeta vecino llamó siempre la atención de los pobladores de la Tierra y, con sus “canales” y su misterioso color rojo, despertó nuestra curiosidad y nos llevó a querer saber más de lo que allí pasaba. Algunas de las imágenes que pudimos obtener nos hizo -en ocasiones- pensar en una posible antigua civilización marciana.
Todos hemos visto, en más de una ocasión, imágenes del planeta Marte de regiones dispares y de variado contenido. Marte, el cuarto planeta desde el Sol, aparece marcadamente rojizo cuando se observa a simple vista. Tiene una delgada atmósfera compuesta (en volumen) por alrededor del 95% de dióxido de carbono, 2,7% de Nitrógeno, 1,6% de Argón, 0,1% de Oxígeno, 0,1% de monóxido de carbono y pequeñas trazas variables de vapor de agua. La presión atmosférica en la superficie es de unos 6 mbar. Las temperaturas superficiales pueden variar entre 0 y -125ºC, siendo la media de -50ºC. Es relativamente común la presencia de nubes blancas de vapor de agua condensada o de dióxido de carbono, particularmente cerca del terminador y en latitudes polares.
Los casquetes polares y las nubes brillantes de Marte
Existen dos casquetes de hielo de agua permanentes en los polos, que nunca se funden. En invierno éstos aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado hasta alcanzar los 60º de longitud. Ocurren esporádicamente tormentas de polvo que llegan a cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares.
Así ve la NASA las futuras viviendas de Marte
Paisaje de Syrtis Major
La superficie de Marte es basalto volcánico con un alto contenido en hierro y, su oxidación, es la responsable de su color característico rojo oxido. El accidente oscuro más prominente, Syrtis Major, dirigida hacia el Este con una inclinación menor que 1º.
Dunas activas en Marte
Existen muchas áreas de dunas de arena rodeando las más grandes los casquetes polares y constituyendo los mayores campos de dunas del Sistema Solar.
Imágenes de la NASA muestran “sombras de árboles” sobre la superficie de las dunas en Marte, que en realidad y según explicaron los expertos, son caminos de arena y extrañas formaciones debidas a la especial conformación del terreno y de las tormentas de arena que allí son frecuentes.
Hace ya bastantes años que en la NASA tuvo lugar una reunión a la que asistieron algunos personajes conocidos como el fallecido Neil Armstrong, Homer Newel, Arthur Clarke y Wernher von Braun entre otros. El motivo de tal cita no era otro que comentar sobre la posibilidad de ir a Marte e instalar allí una pequeña Colonia Humana que sirviera como punta de lanza para posteriores viajes.
emilio silvera
Abr
26
¿Si existieran otros universos, cómo serían?
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Siempre hablamos de visitar otros mundos, otros universos y, en ellos, las condiciones físicas no tienen, necesariamente que ser como en el nuestro. Los mundos, como las estrellas y los universos, pueden tener sus propias características dependiendo de muchos factores que lo podrían conformar de manera muy diferente a como lo está nuestro mundo y vemos que se comporta el universo con sus cuatro leyes fundamentales y sus constantes que, en otro universo, podrían ser de otra manera.
Se sospecha que un universo compañero del nuestro está ejerciendo una gran fuerza gravitatoria sobre las galaxias del nuestro que se alejan las unas de las otras a velocidades injustificadas. ¿Será esa fuerza, lo que induce a los cosmólogos a equivocarse y llamarla “materia oscura”?
“Oumuamua, un curioso objeto interestelar observado mientras cruzaba el Sistema Solar, no es una roca desprendida de otras estrellas, sino que se trata del “primer signo de vida inteligente de origen extraterrestre.
El principal catedrático de Astrofísica de la Universidad de Harvard, el israelí-estadounidense Abraham ‘Avi’ Loeb, está convencido de que hay vida inteligente fuera de la Tierra. Esta teoría la sostiene en su libro “Extraterrestre: El primer signo de vida inteligente más allá de la Tierra está en esa imagen de arriba”.
Formas de vida diferentes, estructuras asombrosas y para nosotros desconocidas, y, hasta el Tiempo se podría comportar de diferente manera. Ni negar ni confirmar podemos sobre lo que desconocemos y solo conjeturar y avanzar teorías es nuestra realidad hasta que, en un futuro lejano, podamos constatarlo con hechos.
Si es cierto lo que afirman algunas teorías, entonces existen en realidad un número infinito de universos paralelos, muchos de ellos con diferentes constantes físicas. En algunos de ellos, quizá los protones se desintegran con demasiada rapidez, o las estrellas no pueden fabricar los elementos pesados por encima del hierro, o el Big Crunch tiene lugar demasiado deprisa porque su densidad crítica sobrepasa en mucho a la ideal y no da tiempo a que pueda comenzar la germinación de la vida, y así sucesivamente. De hecho, un número infinito de estos universos paralelos están muertos, sin las leyes físicas que puedan hacer posible la vida tal como la conocemos.
En tal universo paralelo (el nuestro), las leyes de la física eran compatibles con la vida que conocemos. La prueba es que nosotros estamos aquí para tratar esta cuestión. Si esto es cierto, entonces quizá no haya que invocar a Dios para explicar por qué la vida, por preciosa que sea, es posible en nuestro universo. Sin embargo, esto reabre la posibilidad del principio antrópico débil, es decir, que coexistimos con nuestros universos muertos y que el nuestro sea el único compatible para vida.
La segunda controversia estimulada por la función de onda del universo de Hawking es mucho más profunda y, de hecho, aun está sin resolver. Se denomina el Gato de Schrödinger. Empezamos con una función de onda que describe el conjunto de todos los universos posibles. Esto significa que el punto de partida de la teoría de Hawking debe ser un conjunto infinito de universos paralelos, la función de onda del universo. El análisis bastante simple de Stephen Hawking, reemplazando la palabra partícula por universo, ha conducido a una revolución conceptual en nuestras ideas sobre la cosmología.
Función de onda y colapso de la función de onda
La teoría cuántica, recordémoslo, afirma que para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo. La teoría cuántica afirma también que nunca se conoce realmente el estado de una partícula hasta que se haya hecho una observación. Antes de que haya una medida, la partícula puede estar en uno de entre una diversidad de estados, descritos por la función de onda de Schrödinger. Por consiguiente, antes de que pueda hacerse una observación o medida, no se puede conocer realmente el estado de la partícula. De hecho, la partícula existe en un estado ultramundano, una suma de todos los estados posibles, hasta que se hace una medida.
Cuando esta idea fue propuesta por primera vez por Niels Bohr y Werner Heisemberg, Einstein se revolvió contra ella. “¿Existe la luna sólo porque la mira un ratón?“, -o un gato- le gustaba preguntar. Según la teoría cuántica, en su más estricta interpretación, la Luna, antes de que sea observada, no existe realmente tal como la conocemos. “La Luna puede estar, de hecho, en uno cualquiera de entre un número infinito de estados, incluyendo el estado de estar en el cielo, de estar explotando, o de no estar allí en absoluto. Es el proceso de medida que consiste en mirarla el que decide que la Luna está girando realmente alrededor de la Tierra“. Decía Einstein con ironía.
Edwin Schrödinger, autor de la ecuación con su función de onda, se disgustó con estas interpretaciones de su ecuación. Para demostrar lo absurdo de la situación creada, Schrödinger colocó un gato imaginario en una caja cerrada. El gato estaba frente a una pistola, que está conectada a un contador Geiger, que a su vez está conectado a un fragmento de uranio. El átomo de uranio es inestable y sufrirá una desintegración radiactiva. Si se desintegra un núcleo de uranio, será detectado por el contador Geiger que entonces disparará la pistola, cuya bala matará al gato.
Para decidir si el gato está vivo o muerto, debemos abrir la caja y observar al gato. Sin embargo, ¿cuál es el estado del gato antes de que abramos la caja? Según la teoría cuántica, sólo podemos afirmar que el gato esta descrito por una función de onda que describe la suma de un gato muerto y un gato vivo.
Para Schrödinger, la idea de pensar en gatos que no están ni muertos ni vivos era el colmo del absurdo, pero la confirmación experimental de la mecánica cuántica nos lleva inevitablemente a esta conclusión. Hasta el momento, todos los experimentos han verificado, favorablemente, la teoría cuántica.
Sí, a veces la mecánica cuántica parece tan fantástica como el cuento de Alicia
La paradoja del gato de Schrödinger es tan extraña que uno recuerda a menudo la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Lewis Carroll: “Allí me verás“, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.
La Mecánica Cuántica y la Mente
Existen varias maneras de abordar esta dificultad de lo incomprensible en mecánica cuántica. En primer lugar, podemos suponer que Dios existe. Puesto que todas las “observaciones” implican un observador, entonces debe haber alguna “conciencia” en el universo. Algunos físicos como el premio Nobel Eugene Wigner, han insistido en que la teoría cuántica prueba la existencia de algún tipo de conciencia cósmica universal.
La segunda forma de tratar la paradoja es la preferida por la gran mayoría de los físicos en activo: ignorar el problema.
El físico Richard Feynman dijo en cierta ocasión:
“Creo que es justo decir que nadie comprende la mecánica cuántica. No siga diciéndose a sí mismo, si puede evitarlo, “¿pero cómo puede ser así?” porque usted se meterá “hasta el fondo” en un callejón sin salida del que nadie ha escapado. Nadie sabe como puede ser eso“. De hecho, a menudo se ha dicho que de todas las teorías propuestas en el siglo XX, la más absurda es la teoría cuántica. Algunos dicen que la única cosa que la teoría tiene a su favor es que “es indudablemente correcta”.
Sin embargo, existe una tercera forma de tratar esta paradoja, denominada teoría de los muchos universos. Esta teoría (como el principio antrópico) no gozó de mucho favor en la última década, pero está siendo revitalizada por la función de onda del universo de Stephen Hawking.
Aunque no siempre, lo más simple tiene que ser lo verdadero. El principio de la Navaja de Ockham es fundamental para el reduccionismo metodológico.
Existe un principio de la física denominado Navaja de Ockham, que afirma que siempre deberíamos tomar el camino más sencillo posible e ignorar las alternativas más complicadas, especialmente si las alternativas no pueden medirse nunca.
Para seguir fielmente el consejo contenido en la Navaja de Ockham , primero hay que tener el conocimiento necesario para poder saber elegir el camino más sencillo, lo que en la realidad, no ocurre. Nos faltan los conocimientos necesarios para hacer las preguntas adecuadas.
¿Quién puede saber lo que ahí fuera existe? ¡Nadie! Sólo podemos imaginarlo en función de cada Mente y de distintas maneras. En tan inconmensurable panorama que nos muestra un Universo (para nosotros) infinito.
Hugo Everett, Bryce DeWitt y ahora Hawking (también otros), han propuesto la teoría de los universos múltiples. En unos universos los protones se desintegran antes haciendo inestable la materia, en otros, el átomo de uranio se desintegra mediante un proceso sin radiaciones, y en otros universos las constantes universales que existen en el nuestro, son totalmente diferentes y no dan posibilidad alguna para la existencia de seres vivos. Está claro que cualquier variación que en principio pudiera parecer sin importancia, como por ejemplo la carga del electrón, podría transformar radicalmente nuestro universo.
Como apuntó el físico Frank Wilczek:
De la película Troya, el personaje de Elena
“Se dice que la historia del mundo sería totalmente distinto si Helena de Troya hubiera tenido una verruga en la punta de su nariz.”
Hasta el momento, se han celebrado varias conferencias internacionales sobre la función de onda del universo. Sin embargo, como ocurre en la teoría de supercuerdas, las matemáticas implicadas en la función de onda del universo, parecen estar más allá de la capacidad de cálculo que cualquier humano en este planeta pudiera resolver, y tendríamos que esperar años antes de que aparezca un individuo genial que pudiera encontrar una solución rigurosa a las ecuaciones de Hawking.
Grigori Perelman
Recordemos aquí de nuevo que, precisamente ahora, un siglo más tarde, en el Congreso Internacional de Matemáticas celebrado en Madrid el mes de Agosto de 2.006, se otorgó la Medalla Field (una especie de Nobel de las matemáticas) al matemático ruso Perelman, extraño ser que ni se dignó comparecer a recogerla con el premio, hizo caso omiso. Perelman ha resuelto la conjetura expuesta por Poincaré planteada en 1.904.
La conjetura de Poincaré de 1.904, en el año 2.000, fue catalogada por el Instituto Clan como uno de los siete problemas del milenio. Para hacer un comentario sobre esta conjetura tengo que referirme a la topología, el nivel de las matemáticas donde está ubicada.
Verdaderamente Perelman es, un extraño personaje, metido en su propio mundo. Viaja en el metro, vive con su madre en un pido de reducido tamaño y, con un canasto recoge setas en el campo.
Las últimas fotos que se conocen de él se las sacaron con un celular en un vagón del metro de Petersburgo. Se está quedando pelado pero las mechas largas y desgreñadas le llegan a los hombros, va en zapatillas sucias, un traje arrugado que le queda corto, sin corbata y con la camisa enteramente desprendida, flaco como un Cristo, la barba igual, la mirada perdida, las uñas largas y sucias y curvadas hacia adentro como garras. El vagón va en dirección sur, a Kúpchino, un barrio de monoblocks donde muere el metro. Todos los vecinos de Kúpchino saben quién es Grisha Perelman y cuál es la puerta del ínfimo departamento que comparte con su madre. Pero ninguno va a decírselo a los periodistas y a los fanáticos de la matemática que cada tanto merodean por ahí.
La topología tienen unas matemáticas endiabladamente complejas
La topología es la geometría de los objetos elásticos o flexibles que cambian de forma pero tienen las mismas propiedades que antes de ser estirados, achatados, etc. Se pueden retorcer pero no cortar ni pegar.
Los topólogos no tienen en cuenta la distancia, puesto que se puede variar al deformar el objeto, sino nociones más sutiles. Los orígenes de la topología se remontan a mediados del siglo XVIII, con los trabajos de Euler en teoría de grafos, que llamó “análisis situs”.
“En Matemáticas, y con más exactitud en topología, la conjetura de Poincaré (también llamada hipótesis de Poincaré) es un resultado sobre la esfera cuatridimensional (la 3-esfera); la hipótesis dejó de ser una conjetura para convertirse en un teorema tras su comprobación en 2003 por el matemático Grigori Perelman. El teorema sostiene que la esfera cuatridimensional, también llamada 3-esfera o hiperesfera, es la única variedad compacta cuatridimensional en la que todo lazo o círculo cerrado (1-esfera) se puede deformar (transformar) en un punto. Este último enunciado es equivalente a decir que solo hay una variedad cerrada y simplemente conexa de dimensión 3: la esfera cuatridimensional.”
A finales del siglo XIX y principios del siglo XX, la topología recibió un gran impulso con los trabajos de Poincaré, matemático francés muy influyente en el posterior desarrollo de diversas áreas de las matemáticas y de la física. En particular, en 1.904 planteó la conjetura que lleva su nombre y que no se ha resuelto hasta el siglo XXI. Este problema ha sido un motor para la investigación en topología de todo el siglo pasado y se ha llegado a su resolución con ideas nuevas y apasionantes.
Henri Poincaré en su estudio trabajando
Para situarnos mejor debemos hablar de las variedades, espacios que tienen una dimensión determinada. Por ejemplo una recta o un circulo son variedades de dimensión uno, puesto que se describen como un parámetro. El plano o la esfera son ejemplos de variedades bidimensionales, al utilizar dos parámetros para describir sus posiciones. El espacio en que vivimos es una variedad tridimensional, y si le añadimos la dimensión temporal, el espacio-tiempo es una variedad de dimensión cuatro. Ya he comentado en este mismo trabajo cómo las singularidades geométricas, las variedades, fueron introducidas por Riemann a mediados del s. XIX y constituyeron una herramienta clave para la física del siglo XX. De hecho, la teoría de la relatividad especial de Einstein que fue postulada en 1.905, pero hasta que no incorporó las variedades contenidas en el Tensor métrico de Riemann, no pudo completar la teoría de la relatividad que incluía los espacios curvos.
La pregunta que hizo Poincaré fue la siguiente: ¿Es la esfera la única variedad tridimensional para la cual toda curva se contrae?
Se pasó un siglo entero antes de que un genio de las matemáticas, el extraño Grigori Perelman, pudiera demostrar la conjetura de Poincaré.
De todas las maneras, avanzar en el conocimiento de las cosas no resulta nada fácil, y, aunque el avance es exponencial (cuanto más datos vamos teniendo más rápidamente avanzamos), hay algunos enigmas de la Naturaleza que, de momento, seguirán en la oscuridad de nuestra profunda ignorancia.
emilio silvera
Abr
25
El secreto está en las estrellas
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
El Tiempo es inexorable y su transcurrir va dejando atrás las cosas del presente. Lejos queda ya aquellas efemérides y celebraciones del año 2009, cuando se conmemoró el Año Internacional de la Astronomía y me cupo el honor de (humildemente), colaborar con aquellas celebraciones. Con orgullo luzco en el hojal de mi chaqueta el astrolabio que nos dieron en Madrid, a todos los invitados, a la fiesta de inauguración en la que estaban presentes muchos astrónomos y astrofísicos del mundo entero.
Tuve el honor de estar invitado en aquel acontecimiento
Lo cierto es que, en su momento, ya desde el inicio del año 2.009 en el que se celebró el Año Internacional de la Astronomía, en muchos de mis artículos publicados en la colaboración que con la Organización Internacional tuve el honor de prestar y fueron publicados, se hablaba de todos esos interesantes temas que, el Universo nos presenta y que, inciden en el saber de la Naturaleza y del Mundo que nos acoge que, como nosotros… ¡También es Universo!
LA QUÍMICA DE LAS ESTRELLAS
Los cambios se estaban produciendo a una velocidad cada vez mayor. Al siglo de Newton también pertenecieron, entre otros, el matemático Fermat; Römer, quien midió la velocidad de la luz; Grimaldi, que estudió la difracción; Torricelli, que demostró la existencia del vacío; Pascal y Boyle, que definieron la física de los fluidos…La precisión de los telescopios y los relojes aumentó notablemente, y con ella el número de astrónomos deseosos de establecer con exactitud la posición de las estrellas y compilar catálogos estelares cada vez más completos para comprender la Vía Láctea.
La naturaleza de los cuerpos celestes quedaba fuera de su interés: aunque se pudiera determinar la forma, la distancia, las dimensiones y los movimientos de los objetos celestes, comprender su composición no estaba a su alcance. A principios del siglo XIX, William Herschel (1738-1822), dedujo la forma de la Galaxia, construyó el mayor telescopio del mundo y descubrió Urano. Creía firmemente que el Sol estaba habitado.
Hasta llegar a conocer nuestra situación astronómica…
Al cabo de pocos años, nacía la Astrofísica, que a diferencia de la Astronomía (ya llamada -”clásica o de posición”-), se basaba en pruebas de laboratorio. Comparando la luz emitida por sustancias incandescentes con la recogida de las estrellas se sentaban las bases de lo imposible: descubrir la composición química y la estructura y el funcionamiento de los cuerpos celestes. Estaba mal vista por los astrónomos “serios” y se desarrolló gracias a físicos y químicos que inventaron nuevos instrumentos de análisis a partir de las demostraciones de Newton sobre la estructura de la luz.
El H es el elemento más abundante en el universo. Él solo representa el 92 % de los átomos que existen en el cosmos, lo que equivale a un porcentaje del 75 % en masa de todos los que hay. Le sigue en abundancia el He, con un 7 % de los átomos y un 24 % en masa. Todos los demás elementos poseen abundancias muy inferiores, que equivalen a algo menos del 1 % de átomos y algo más del 1 % en masa. Después de H y He los siguientes ocho elementos más abundantes son Carbono, Nitrógeno, Oxígeno, Neón, Magnesio, Silicio, Azufre y Hierro. Cabe destacar especialmente el pico del Hierro sobre su entorno y también que las masas atómicas de todos esos elementos son múltiplos de cuatro, de acuerdo con el “proceso alfa” de su formación. Todos ellos ocupan los picos de los dientes de sierra del gráfico. También resulta llamativa la escasez, como ya comentamos en su momento, de los elementos situados entre el Helio, y el Carbono, es decir, Li, Be y B.+
En 1814, Joseph Fraunhofer (1787-1826) realizó observaciones básicas sobre las líneas que Wollaston había visto en el espectro solar: sumaban más de 600 y eran iguales a las de los espectros de la Luna y de los planetas; también los espectros de Pólux, Capella y Porción son muy similares, mientras que los de Sirio y Cástor no lo son. Al perfeccionar el espectroscopio con la invención de la retícula de difracción (más potente y versátil que el prisma de cristal), Fraunhofer observó en el espectro solar las dos líneas del sodio: así se inició el análisis espectral de las fuentes celestes.
Mientras, en el laboratorio, John Herschel observó por primera vez la equivalencia entre los cuerpos y las sustancias que los producen, Anders J. Anhström (1814-1868) describía el espectro de los gases incandescentes y los espectros de absorción y Jean Foucault (1819-1874) comparó los espectros de laboratorio y los de fuentes celestes. Gustav Kirchhoff (1824-1887) formalizó las observaciones en una sencilla ley que cambió la forma de estudiar el cielo; “La relación entre el poder de emisión y de absorción para una longitud de onda igual es constante en todos los cuerpos que se hallan a la misma temperatura”. En 1859, esta ley empírica, que relacionaba la exploración del cielo con la física atómica, permitía penetrar en la química y la estructura de los cuerpos celestes y las estrellas. De hecho, basta el espectro de una estrella para conocer su composición. Y, con la espectroscopia, Kirchhoff y Robert Bunsen (1811-1899) demostraron que en el Sol había muchos metales.
La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.
EL DIAGRAMA HR: EL CAMINO HACIA EL FUTURO
El padre Ángelo Secchi (1818-1878) fue el primero en afirmar que muchos espectros estelares poseen características comunes, una afirmación refrendada hoy día con abundantes datos. Secchi clasificó las estrellas en cinco tipos, en función del aspecto general de los espectros. La teoría elegida era correcta: el paso del color blanco azulado al rojo oscuro indica una progresiva disminución de la temperatura, y la temperatura es el parámetro principal que determina la apariencia de un espectro estelar.
El efecto Zeeman que ayuda a medir el campo magnético del Sol
Más tarde, otros descubrimientos permitieron avanzar en Astrofísica: Johan Balmer (1825-1898) demostró que la regularidad en las longitudes de onda de las líneas del espectro del hidrógeno podía resumirse en una sencilla expresión matemática; Pieter Zeeman (1865-1943) descubrió que un campo magnético de intensidad relativa influye en las líneas espectrales de una fuente subdividiéndolas en un número de líneas proporcional a su intensidad, parámetro que nos permite medir los campos magnéticos de las estrellas.
En otros descubrimientos empíricos la teoría surgió tras comprender la estructura del átomo, del núcleo atómico y de las partículas elementales. Los datos recogidos se acumularon hasta que la física y la química dispusieron de instrumentos suficientes para elaborar hipótesis y teorías exhaustivas. Gracias a dichos progresos pudimos asistir a asociaciones como Faraday y su concepto de “campo” como “estado” del espacio en torno a una “fuente”; Mendeleiev y su tabla de elementos químicos; Maxwell y su teoría electromagnética; Becquerel y su descubrimiento de la radiactividad; las investigaciones de Pierre y Marie Curie; Rutherford y Soddy y sus experimentos con los rayos Alfa, Beta y Gamma; y los estudios sobre el cuerpo negro que condujeron a Planck a determinar su constante universal; Einstein y su trabajo sobre la cuantización de la energía para explicar el efecto fotoeléctrico, Bohr y su modelo cuántico del átomo; la teoría de la relatividad especial de Einstein que relaciona la masa con la energía en una ecuación simple…Todos fueron descubrimientos que permitieron explicar la energía estelar y la vida de las estrellas, elaborar una escala de tiempos mucho más amplia de lo que jamás se había imaginado y elaborar hipótesis sobre la evolución del Universo.
En 1911, Ejnar Hertzsprung (1873-1967) realizó un gráfico en el que comparaba el “color” con las “magnitudes absolutas” de las estrellas y dedujo la relación entre ambos parámetros. En 1913, Henry Russell (1877-1957) realizó otro gráfico usando la clase espectral en lugar del color y llegó a idénticas conclusiones.
El Diagrama de Hertzsprung-Russell (diagrama HR) indica que el color, es decir, la temperatura, y el espectro están relacionados, así como el tipo espectral está ligado a la luminosidad. Y debido a que esta también depende de las dimensiones de la estrella, a partir de los espectros puede extraerse información precisa sobre las dimensiones reales de las estrellas observadas. Ya solo faltaba una explicación de causa-efecto que relacionara las observaciones entre si en un cuadro general de las leyes.
El progreso de la física y de la química resolvió esta situación, pues, entre otros avances, los cálculos del modelo atómico de Bohr reprodujeron las frecuencias de las líneas del hidrógeno de Balmer. Por fin, la Astrofísica había dado con la clave interpretativa de los espectros, y las energías de unión atómica podían explicar el origen de la radiación estelar, así como la razón de la enorme energía producida por el Sol.
Las líneas espectrales dependen del número de átomos que las generan, de la temperatura del gas, su presión, la composición química y el estado de ionización. De esta forma pueden determinarse la presencia relativa de los elementos en las atmósferas estelares, método que hoy también permite hallar diferencias químicas muy pequeñas, relacionadas con las edades de las estrellas. Así, se descubrió que la composición química de las estrellas era casi uniforme: 90 por ciento de hidrógeno y 9 por ciento de helio (en masa, 71% y 27%, respectivamente). El resto se compone de todos los elementos conocidos en la Tierra.
Así mismo, el desarrollo de la Física ha permitido perfeccionar los modelos teóricos y explicare de forma coherente que es y como funciona una estrella. Dichos modelos sugirieron nuevas observaciones con las que se descubrieron tipos de estrellas desconocidas: las novas, las supernovas, los púlsares con periodos o tiempos que separan los pulsos, muy breves…También se descubrió que las estrellas evolucionan, que se forman grupos que luego se disgregan por las fuerzas de marea galácticas.
La Radioastronomía, una nueva rama de la Astronomía, aportó más datos sobre nuestra Galaxia, permitió reconstruir la estructura de la Vía Láctea y superar los límites de la Astronomía óptica.
Se estaban abriendo nuevos campos de estudio: los cuerpos galácticos, los cúmulos globulares, las nebulosas, los movimientos de la galaxia y sus características se estudiaron con ayuda de instrumentos cada vez más sofisticados. Y cuanto más se observaba más numerosos eran los objetos desconocidos descubiertos y más profusas las preguntas. Se descubrieron nuevos y distintos tipos de galaxias fuera de la nuestra; examinando el efecto Doppler, se supo que todas se alejaban de nosotros y, lo que es más, que cuanto más lejanas están más rápidamente se alejan.
El Telescopio Hubble nos muestra esta imagen del Universo Profundo
Acabábamos de descubrir que el Universo no terminaba en los límites de la Vía Láctea, sino que se había ampliado hasta el “infinito”, con galaxias y objetos cada vez más extraños. Sólo en el horizonte del Hubble se contabilizan 500 millones de galaxias. Y los descubrimientos continúan: desde el centro galáctico se observa un chorro de materia que se eleva más de 3.000 a.l. perpendicular al plano galáctico; se observan objetos como Alfa Cygni, que emite una energía radial equivalente a diez millones de veces la emitida por una galaxia como Andrómeda; se estudian los cuásares, que a veces parecen mas cercanos de lo que sugieren las mediciones del efecto Doppler; se habla de efectos de perspectiva que podrían falsear las conclusiones… Y nos asalta una batería de hipótesis, observaciones, nuevas hipótesis, nuevas observaciones, dudas…
Todavía no se ha hallado una respuesta cierta y global. Un número cada vez mayor de investigadores está buscándola en miles de direcciones. De esta forma se elaboran nuevos modelos de estrellas, galaxias y objetos celestes que quizá sólo la fantasía matemática de los investigadores consiga concretar: nacen los agujeros negros, los universos de espuma, las cadenas…
Encontrar Grafeno en el espacio ya no es una sorpresa, toparnos de bruces con océanos de metano… ¡tampoco!, hallar colonias de bacterias vivienda a muchos kilómetros de altura no es una niovedad, saber que en las estrellas se fabrican los materiales aptos para hacer posible la química de la vida… nos maravilla pero ya, no es causa de asombro. Cada día damos un paso más hacia el saber del “mundo”, de la Naturaleza, del Universo en fin.
En la actualidad, el número de investigadores centrados en problemas relacionados con la evolución estelar, la Astrofísica y las teorías cosmo-genéticas es tan elevado que ya no tiene sentido hablar de uno en particular, ni de un único hilo de investigación. Al igual que ocurre con otras ramas científicas las Astronomía se ha convertido en un trabajo de equipo a escala internacional que avanza sin cesar en una concatenación de innovaciones, inventos, nuevos instrumentos, interpretaciones cada vez más elaboradas y, a menudo más difíciles de entender incluso para los investigadores que avanzan con infinidad de caminos paralelos. Es una situación que ya vaticinaba Bacon en tiempos de Galileo.
Hasta la Astronomía se ha hiper-especializado y, por ejemplo, quienes estudian problemas particulares de la física de las estrellas pueden desconocerlo todo sobre planetas y galaxias. También el lenguaje es cada vez más técnico, y los términos, capaces de resumir itinerarios de investigación, son complejos de traducir al lenguaje común. Así, mientras la divulgación avanza a duras penas entre una jungla de similitudes y silogismos, las informaciones que proceden de otras disciplinas son aceptadas por los científicos y los resultados de cada cual se convierten en instrumentos para todos.
La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.
Las investigaciones sobre planetas, estrellas, materia interestelar, galaxias y Universo van paralelas, como si fueran disciplinas independientes, pero en continua osmosis. Y mientras la información sobre el Sol y los cuerpos del Sistema solar es más completa, detallada y fiable, y las hipótesis sobre nuestra Galaxia hallan confirmación, el Universo que empezamos a distinguir más allá de nuestros limites no se pareced a lo que hace un siglo se daba por sentado. Y mientras los modelos matemáticos dibujan uno o mil universos cada más abstractos y complejos, que tienen más que ver con la filosofía que con la observación, vale la pena recordar como empezó nuestro conocimiento hace miles de años.
Otros nos indicaron la dirección a seguir pero, la dureza del camino…, esa, la tuvimos que hacer nosotros. Es decir, en cada época y lugar, los que estuvieron, miraron hacia atrás para ver lo que hicieron sus ancestros y, con aquellas enseñanzas, tener la guía del camino a seguir, o, por el contrario, si los resultados no fueron buenos, rechazarlos. Lo cierto es que, al igual que nosotros, los que vengan detrás partirán con alguna ventaja aunque tengan que hacer su propio recorrido que, ni mucho menos tienen el camino despejado y, la niebla de la ignorancia sigue siendo espesa, aunque algo más suave que la que nosotros nos encontramos.
Sí, la niebla de la ignorancia nos hace transitar caminos a ciegas. No permite que vayamos más allá de lo permitido en cada Tiempo. Y, sobre eso, habría que comprender que cada “cosa” tiene su propio Tiempo, y, adelantarse a él… ¡No sería bueno!
Ahora, amigos, después de este breve repaso por una pequeña parte de la Historia de la Astronomía, al menos tendréis una idea más cercana del recorrido que, la Humanidad, ha tenido que realizar para conocer mejor el Universo.
Los datos aquí reseñados tienen su origen en diversas fuentes que, de aquí y de allá, han sido tomadas para recomponer un mensaje que les lleve a todos algunos mensajes de como ocurrieron los acontecimientos en el pasado para que fuera posible nuestro presente.
emilio silvera
Abr
25
¿La Humanidad en el Espacio? ¿Para cuándo?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Bumper 8
El 24 de julio de 1950 se llevó a cabo el primer lanzamiento con éxito de un cohete en Cabo Cañaveral, en la costa este del estado de Florida, Estados Unidos. El cohete, el Bumper 8, era un misil V-2 alemán modificado con una segunda etapa fabricado por el ejército de los Estados Unidos.
Mirando la escena que la imagen de arriba nos presenta, nos resulta algo antigua y pasada de moda si la comparamos con los vuelos que en el presente se programan y los ingenios espaciales que las modernas tecnologías nos permiten enviar al espacio exterior a la búsqueda de otros mundos que, aunque en nuestro propio Sistema solar, debemos conocer para saber, qué nos puede esperar en regiones más lejanas que, algún día en el futuro, tendremos que visitar buscando cobijo a una Humanidad que no tendrá bastante con el pequeño mundo que ahora ocupa.
El cohete ruso Vostok, creado durante la década de 1950 por Serguéi Koroliov. El 4 de octubre de 1957 fue lanzado desde el cosmódromo de Baikonur, en Kazajistán –por entonces, una república de la Unión Soviética o URSS–, el Sputnik 1, el primer satélite artificial.
Aquellos sucesos fueron todo un acontecimiento, una nueva era de los viajes espaciales que comenzó en aquel mes de Julio de 1950 ¡El primer cohete lanzado desde Cabo Cañaveral, Florida: el Bumper II. Como una prueba o investigación para probar los sistemas y, al mismo tiempo, investigar la atmósfera superior de la Tierra con sensores especiales que medían las distintas características de la alta atmósfera así como los impactos de los rayos cósmicos. Hasta pasados siete años, la Unión Soviética no lanzó el Sputnik I y II, los primeros satélites que orbitaron la Tierra.
El primer vuelo del Columbia – Imagen cortesía Wikipedia
El 12 de abril de 1981, despegaba la lanzadera espacial Columbia, la primera nave espacial reutilizable. La lanzadera espacial Columbia se entregó a la NASA el 25 de marzo de 1979. Tras su primer vuelo operativo, se mantuvo en servicio hasta el 1 de febrero de 2003; ese día, durante la reentrada en la atmósfera, la nave se desintegró causando la muerte de sus siete tripulantes.
Aquel Proyecto sobrepasó a la NASA que se vio sometida a enormes presiones para mantener el proyecto de lanzamientos de las lanzaderas que, como todos conocemos ahora, fue apresurado a pesar de las muchas dificultades técnicas. Estas circunstancias estarían en la base del accidente del Challenger que nos sobrecogió a todos.
Está claro que la imagen de arriba nos producía otra impresión, nos transmite poderío y seguridad. Sin embargo, tampoco el sistema fue el idóneo para lo que buscamos, lo que queremos, lo que necesitamos pero, pensar en viajes espaciales tripulados… ¡No es ninguna bagatela!
El accidente del transbordador espacial Challenger se produjo el 28 de enero de 1986. La Imagen de la desintegración del Challenger, tras 73 segundos de haber iniciado su viaje permanece en la mente de todos los que, en directo pudimos contemplar tan fatídico suceso. Las juntas fallaron debido principalmente a la sobre-compresión repetida durante el montaje y que las bajas temperaturas agravaron aún más. Esta anomalía fue advertida por los ingenieros de Morton Thiokol, los fabricantes de las partes del impulsor, se advirtió a la NASA, pero por presión de la misma NASA los ingenieros de Morton Thiokol cedieron y autorizaron el despegue.
El Discovery asciende por el cielo al inicio de la STS-31, mientras, por primera vez desde 1986, el segundo transbordador, el Columbia, espera su turno para ser lanzado. Cuando se lanzó el Hubble al espacio la Humanidad emprendió el camino hacia el verdadero conocimiento del Universo lejano.
Ya situado en orbita, el Hubble durante su despliegue.
Ya situado en su preciso lugar, pudo realizar el trabajo para el que fue construido y, su rentabilidad -a pesar de las protestas de muchos- no tiene dudas.
El lanzamiento del Telescopio más rentable hasta el momento que nos ha podido llevar en un viaje hasta el espacio profundo y enseñarnos galaxias que vivieron hace doce mil millones de años, es decir, muy cercanas en el tiempo, al nacimiento del Universo mismo. Con el Hubble, hemos captado imágenes de impagable precio al poder localizar y ver objetos antes misteriosos como los púlsares, estrellas de neutrones, enanas blancas, agujeros negros y Quásares situados en el centro de galaxias activas. No digamos de rica diversidad de la familia de Nebulosas y de algunas explosiones super-nocas.
Todo eso formará parte de nuestro bagaje intelectual cuando un día lejano en el futuro, tengamos esas naves idóneas para poder hacer (ahora sí) esos viajes a otros mundos que ahora tanto añoramos y que, de ninguna manera estamos capacitados a realizar por falta de medios tecnológicos y humanos que no deben ser sacrificados, a cualquier precio: No a los viajes de Ida sin vuelta.
El astrónomo suizo Michel Mayor. / Uly Martín (EL PAÍS)
La existencia de mundos fuera del sistema solar era una fantasía de muchos y una posibilidad (con algún indicio astronómico) para los científicos. Desde 1995, esa idea, los planetas extrasolares, es una realidad. Fueron el astrónomo suizo Michel Mayor y su entonces joven colaborador Didier Queloz los descubridores del primer cuerpo de este tipo.
51 Pegasi, en órbita de otra estrella distinta al Sol, y se abrió así un nuevo campo de investigación muy fecundo: Desde entonces han sido más de 4.000 planetas ya identificados y el conocimiento sobre cómo se forman y evolucionan los sistemas planetarios en el universo. Mayor y Queloz recibieron el Premio Fronteras del Conocimiento en Ciencias Básicas de la Fundación BBVA.
Mayor, a sus 70 años, profesor —ahora emérito— de la Universidad de Berna, siguió investigando en primera fila sobre los planetas extrasolares, a los que llegó desde su formación como astrofísico teórico y sus investigaciones sobre los brazos de las galaxias espirales. Lo definitivo, dice, fue la puesta a punto de un método de detección indirecta de esos planetas mediante la observación sutil de los movimientos que inducen gravitatoriamente en los astros que orbitan.
Cuando es preguntado sobre vida y otros mundos, el profesor nos dice:
“El hombre fue a la Luna y tardó unos tres días. Siendo muy optimistas, el planeta extrasolar habitable más próximo estaría a unos 30 años luz, es decir, 1.000 millones de veces más lejos que la Luna, así que se tardaría muchísimo. Cabe pensar en nuevas tecnologías para viajar más rápido, pero el coste energético sería descomunal, algo completamente loco, y viajar a una velocidad cercana a la de la luz… En realidad es un problema de leyes físicas, no de tecnología. Así que visitar esos mundos es impensable porque están muy lejos. Para aprender algo de ellos nos queda observarlos con telescopios.”
Acabábamos de descubrir (como aquel que dice) que el Universo no terminaba en los límites de la Vía Láctea, sino que se había ampliado hasta el “infinito”, con galaxias y objetos cada vez más extraños. Sólo en el horizonte del Hubble se contabilizan 500 millones de galaxias.
Y los descubrimientos continúan: desde el centro galáctico se observa un chorro de materia que se eleva más de 3.000 años luz perpendicular al plano galáctico; se observan objetos como Alfa Cygni, que emite una energía radial equivalente a diez millones de veces la emitida por una galaxia como Andrómeda; se estudian los cuásares, que a veces parecen mas cercanos de lo que sugieren las mediciones del efecto Doppler; se habla de efectos de perspectiva que podrían falsear las conclusiones… Y nos asalta una batería de hipótesis, observaciones, nuevas hipótesis, nuevas observaciones y, nuevas dudas…
Todavía no se ha hallado una respuesta cierta y global. Un número cada vez mayor de investigadores está buscándola en miles de direcciones. De esta forma se elaboran nuevos modelos de estrellas, galaxias y objetos celestes que quizá sólo la fantasía matemática de los investigadores podían concretar: nacen los agujeros negros, estrellas de Quarks, los universos de espuma, las cadenas…
Todos esos conocimientos que poco a poco vamos atesorando, serán la base del conocimiento que nos posibilitará en el futuro, llegar más lejos y más rápido a lugares que ahora nos resultan sólo un sueño, toda vez que, poco más de medio siglo de experiencias en viajes espaciales, viene a ser como nada, simplemente son los conocimientos básicos para mayores empresas que aún quedan muy lejos de nuestro alcance.
Aunque la NASA (que necesita subvenciones), ha anunciado la posibilidad de viajar al planeta rojo en 2.030, lo cierto es que, dicha empresa hay que ponerla en duda. No podemos garantizar la seguridad de los viajeros, no tenemos la nave adecuada para ese viaje, la tecnología del presente es insuficiente, la energía que se utiliza actualmente queda fuera de la realidad para un viaje de ese calibre.
Viajar hoy al mismo planeta Marte, queda fuera de nuestro alcance y enviamos sondas y naves que nos cuentan lo que allí pasa preparando el viaje. Un viaje largamente solado por muchos que, cuando han solicitado voluntarios se presentaron a miles. Sin embargo, por el momento, el viaje sería de irás y no volverás, lo cual, al no ser de recibo, impide que se realice ni ahora ni dentro de 5 o 10 años. Son muchas las medidas de seguridad y de tecnologías nuevas que habrá que tener para poder, al fín, visitar y estacionarnos en Marte.
Cassini-Huygens
Este sí fue un Proyecto que ha pasado todas las pruebas y, comparando el coste con su rentabilidad… ¡Los beneficios son infinitamente superiores al esfuerzo realizado! Y, con la gran cantidad de conocimiento que nos pudo suministrar de Saturno, Titan y otras lunas y de la región en general, nos ha facilitado el saber de lo que en estos lugares se gesta y como se comportan los planetas gaseosos y los pequeños “planetas” que, como Titán, podrían ser una fuente de sorpresas en un futuro no muy lejano.
Posiblemente, así veríamos Saturno desde Titán
Repetir aquí escenas y lugares de lo ya conseguido, por lo muy visto y manoseado en lugares como este, prefiero dejarlo de lado y, pasar de manera directa a ese futuro que presentimos y que, desde luego, será la consecuencia de todos estos “pilares” que posibilitan la construcción de ese primer “edificio del viaje espacial” que literalmente se pueda ganar ese nombre al ser un vuelo tripulado por seres de nuestra especie.
Lanzamiento de la histórica misión Mercury 6 en la que John Glenn se convirtió en el primer estadounidense en orbitar la Tierra. Dentro de unas décadas, estas imágenes nos parecerán tan viejas que nos recordaran aquella legendaria conquista del Oeste con sus carretas. Las futuras modernas naves espaciales no tendrán nada que ver con estos antiguos cohetes de los primeros pasos por el espacio cercano.
Ahora, tratemos de imaginar que a principios del próximo siglo, podemos construir una nave espacial-ciudad que pudiera estar preparada para alojar a familiar enteras, con sus escuelas y fábricas, sus centros de energías, sus hospitales y todo lo necesario para que, como aquí en la Tierra, tengan, durante el viaje todas las necesidades cubiertas. Además, para esas fechas, ya no son problema ni la gravedad artificial ni tampoco el repeler, mediante campos magnéticos alrededor de la Nave, a todas esas partículas nosivas provenientes del Sol y de otras estrellas.
Habremos entrado en otra era y se podrán leer cosas como…
“Ahora sí, parece que todo está bien controlado para poder realizar el sueño largamente retenido de viajar a otros mundos de fuera de nuestro propio Sistema Solar y, hecha una selección lógica, se ha elegido a Epsilón Eridani es una estrella de la constelación de Eridanus. Está situada a unos 10,5 años-luz de la Tierra, siendo una de las más próximas al Sistema solar y, la tercera más próxima visible a simple vista. Es una estrella de la secuencia principal, de Tipo Espectral K2, muy parecida al Sol, con una masa de 0,83 masas solares, un radio de 0,895 radios solares y una luminosidad estelar de 0,28 veces la solar. Su espectro óptico es muy variable, con muchas líneas espectrales de emisión. Tiene un campo magnético muy fuerte que gira aproximadamente cada 11 días. Su período de rotación es de 12 días. La razón para todo ello es su juventud: tiene sólo 600 millones de años cuando nuestro Sol tiene 4600 millones. Un lugar interesante para el estudio y, por los alrededores, pueden haber planetas habitables.”
Escenas del futuro
Lo cierto es que la expedición con todos los honores y en presencia de Autoridades y Público en General, partió para aquella aventura -algo incierta- el 4 de Julio de 2.050 cargado de toda la ilusión de un proyecto magno puede transmitir a cada uno de los enamorados responsables del proyecto al que entregaron su vida misma y la vida de sus familias. Que estimaban garantizadas dado que, también habían buscado el remedio para soportar esas velocidades relativistas sin que el cuerpo humano, padeciera daños por esos cambios de inusitadas velocidades.
Así que la Nave salió y, desde luego, nuestras disciplinas científicas no se quedaron paradas; La Física, la Biofísica y Astrofísica, la misma Astronomía, la Biología molecular y las Matemáticas, así como todas las teorías en marcha que van más alla de las cuerdas una vez conquistada la energía de Planck que pudo facilitar ese viaje a Epsilon Eridani, ahora las fluctuaciones de vacío no tienen secreto y se descubrió por fin, que “materia oscura” como el “eter” no existía y que un apéndice de la gravedad, era el causante de todo lo que podíamos observar y que no entraba en la normalidad de lo que sabíamos. Una constante cosmológica algo diferente a la de Einstein estaba allí y hacía que el espacio se expandiera.
Nos creíamos los dueños del átomo y también de las galaxias y, como si de dioses se tratara, “jugábamos con lo grande y con lo pequeño para tratar de entrar en sus entrañas, conocer sus contenidos y saber, de una vez por toda, esos secretos de la materia que se nos resistieron durante años. Ahora, era posible el viaje, a más de 10 años- luz de la Tierra.
Una cosa que, aunque podía ser previsible, no había sido prevista: Veamos, la Nave ciudad construida tal efecto, viajaría a 300.000 kilómetros por hora, máxima velocidad conseguida hasta esa fecha, y, recorrer más de 10 años-luz a esa distancia implicaría un tiempo considerable de unos 9 460 730 472 580,8 km por año viajando a 299.792,458 Km/s. Lo que nos distanciaría de la velocidad de la luz a una distancia abismal, es decir, sólo podríamos viajar a la décima parte de la velocidad de la luz.
Se turnarían cada 5 años durante varias generaciones hasta llegar al destino
A pesar de todo eso y creyéndonos en posesión del dominio de los átomos y las galaxias, el viaje partió hacia su futuro en Epsilon Eridani y todos, sin excepción, estaban tan contentos como ilusionados al partir sin tener en cuenta que, en tan largo viaje muchas cosas podrían pasar. A pesar de que la tripulación sería criogenizada por turnos, seguramente no llegarían todos los que salieran de la Tierra hacia aquella otra “Tierra” prometida.
Se descubrió la manera de viajar por el Hiperespacio
Sólo habían pasado 25 años desde la partida de la Nave y, en la Tierra, sucedieron cosas que, aunque podían haber sido previstas, estas cosas surgen cuando tienen que surgir , de manera inesperada, cuando algún físico descubre la manera de poder obtener de la Naturaleza, aquello que ésta le ofrece y que antes, nadie había podido observar ni comprender que allí estaba a disposición de todos, aquella maravilla que, sin tener que doblegar la velocidad de la luz -cosa que es imposible-, sí, podía, sin embargo, burlarla para poder llegar a lugares que, de la otra manera, necesitarían años, milenios y millones de años para poder conseguirlo viajando a la relativamente lenta, velocidad de la luz si la ponemos en el contexto del Universo de cuyas distancias ya sabemos algo.
Así que, una vez perfeccionado, en unos pocos años el viaje a través del Hiperespacio, resultó que se enviaron naves y demás elementos para poder instalarse en el planeta objeto del destino de los Viajeros que, cuando llegaron muchos, muchos, muchísimos años más tarde, se pudieron encontrar con el trabajo terminado y aterrizaron en las afueras de la más hermosa ciudad futurista que podían haber imaginado.
Llegaron a pensar en manejar 100 TeV
Cada logro tiene su tiempo y, si queremos hacer las cosas antes de tiempo… ¡Las consecuencias no son buenas! Los del LHC, deberían tener esa premisa muy en cuenta, no sería bueno tontear con un “juguete” tan peligroso, sobre todo, sin saber de antemano qué resultados podríamos obtener de nuestros jueguecitos.
Tanto los trajes Espaciales incómodos y poco idóneos de hoy, como las naves y la energía utilizada, son inoperantes para realizar un viaje a un planeta hostil, poco amigable para los humanos
Si no podemos ir allí, teniéndolo tan cerca… ¿Cómo pensar en visitar estrellas lejanas?
Con todo esto quiero significar que, a veces, no conviene correr tanto, hay que dar tiempo al tiempo al tiempo. Las cosas no llegan por que sí, sino que vienen a nuestras mentes, a nuestra comprensión, cuando estas están preparadas para utilizar dicho conocimiento. El precipitarnos nos puede llevar a situaciones que como la que aquí constamos, podían haber sido evitadas en vidas, en trabajo y esfuerzo y en mucho tiempo perdido. Mejor esperar los momentos idóneos para cada cosa que, por otra parte, no nos resultará fácil.
emilio silvera