domingo, 27 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Qué historias! ¡Qué personajes! ¡Qué tiempos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

VIKINGOS-ARTE-PINTURA-CASCOS-BARCOS-EXPRESIONES-NAVEGANTES-GUERREROS-ESCANDINAVIA-PINTAR-HISTORIA-ARTISTA-PINTOR-ERNEST  DESCALS - Ragguaglio ArtitsaLibros para regalar a aventureros, exploradores y viajeros de cualquier  edad | Mejores libros para regalarGrandes Exploradores del Mundo Historia y Descripcion de los Viajes -  BIOGRAFÍAS e HISTORIA UNIVERSAL,ARGENTINA y de la CIENCIABlog de Historia : Las crónicas más antiguas de la Amazonía, por el  navegante florentino Américo Vespucio, en 1499

Los navegantes, tal como narraba Shakespeare, gustaban de exagerar sus experiencias y hablaban de hombres  cuyas cabezas nacían abajo de los hombros, o que no tenían cabeza, o de aquellos que, como los patagones, sólo tenían un pie muy grande, o los de Labrador, que tenían cola. Todo esto originó un “renacimiento de la superstición”. Aquellos viajeros crearon en sus mentes escenarios fantásticos, que los situaban más allá del tiempo y del espacio, en mundos ignotos donde nuevos órdenes de razas monstruosas de animales fantásticos existían. Dado que es casi tan difícil inventarse un animal  como descubrirlo, a las criaturas míticas y folklóricas conocidas se les añadieron otros rasgos imaginarios.

Así, la era del descubrimiento trajo consigo un renacimiento de la fábula. Las serpientes marinas de ciento cincuenta metros de largo se multiplicaron como nunca, y, era raro el marinero que habiendo viajado a lejanos horizontes de nuevas tierras, no contaba, a su regreso, fantásticas historias de animales que sobrepasaban la fantasía de la imaginación más creadora: Sirenas y Tritones, Unicornios y  bellas mujeres de larga cabellera que andaban suavemente por encima del agua de maravillosos lagos de cascadas de increíble belleza.

Alen: Claridad de Pensamientos: La Historia de las Sirenas, Tritones y el  Dios NeptunoQue es un TRITON? ✓ Blog y Tienda de SIRENASTritón/Sirena | Wiki Reino Animalia | Fandom

Las leyendas dudosas eran  confirmadas por jesuitas misioneros, por adinerados plantadores de azúcar y por sobrios capitanes de barcos. A las quimeras de la fantasía medieval se añadían ahora criaturas reales cuyas noticias llegaban con cada viaje procedente de las Américas, de China y de otros lejanos horizontes.  Los que no leían latín podían disfrutar de las numerosas ilustraciones que acompañaban a los textos que abundaban para deleite de los más soñadores.

Imágenes como esas de arriba,  eran las que adornaban aquellas pioneras publicaciones en las que se contaban las historias de marineros-aventureros que, viniendo de lugares lejanos, siempre traían consigo narrativas de leyendas que dejaban boquiabiertos a los lectores u oyentes de las mismas.

Todo aquello inspiró el surgir de una nueva generación de enciclopedistas de la Naturaleza. El más destacado de todos ellos, Konrad Gesner (1516-1565), tenía habilidad para combinar lo  con lo antiguo. Gesner, que conocía extraordinariamente bien varias lenguas, se debatía entre lo que había leído y lo que veía.

A los 20 años escribió un diccionario Griego-Latín. Durante los treinta años que siguieron produjo treinta volúmenes sobre todos los temas imaginables. Su monumental Biblioteca Universal en cuatro volúmenes (1545-1555) pretendía ser un catálogo de todos los escritos producidos en griego, latín y hebreo a lo largo de la historia.

Gesner clasificó mil ochocientos autores y los títulos de us obras manuscritas e impresas, acompañadas de un resumen de su contenido. De este modo ganó el título de “padre de la bibliografía”. La bibliografía sería para las Bibliotecas lo que la cartografía para los exploradores de la tierra y de los mares.

En la Biblioteca de los Fugger, Gesner encontró un manuscrito griego enciclopédico del siglo  II que le inspiró para convertirse en un Plinio moderno. Por fin, su Historia Animalium, que seguía la disposición de Aristóteles, recogían todo lo que se conocía, especulaba, imaginaba o contaba de cada uno de los animales conocidos. Como Plinio, Gesner produjo una miscelánea, pero añadió los  que se habían acumulado en el milenio y medio transcurrido desde entonces. Sin bien era algo más crítico que Plinio, él tampoco desmintió las leyendas increíbles, y mostró una serpiente marina de noventa metros de largo. Pero describió la caza de ballenas e incorporó la primera ilustración de una ballena que estaba siendo despellejada para obtener la grasa.

Qué historias! ¡Qué personajes! ¡Qué tiempos! : Blog de Emilio Silvera V.Arte Unicornio Fotos e Imágenes de stock - AlamyFotos de Unicornio, Imágenes de Unicornio ⬇ Descargar | Depositphotos200 ideas de UNICORNIOS en 2021 | arte de unicornio, fotos de unicornios,  imagenes de unicornios

    Unicornios montados por bellas y misteriosas amazonas y otras fantásticas criaturas llenaban las mentes con la única libertad que se nos ha dado ¡El Pensamiento! ¿Quién no ha pensado alguna vez en fantásticos mundos poblados por criaturas de inimaginable belleza, o, también, de fealdad indescriptible.

La duradera influencia de la obra de Gesner emanaba de su sentido del folklore y de su capacidad para presentar la fantasía y la realidad con la misma convincente veracidad. Cuando alguien escribe con pasión y plasma en el papel lo que siente, de alguna manera, es más fácil que pueda llegar al lector que, presiente, el mensaje que el autor le quiere hacer llegar.

Al cabo de un siglo, el lector inglés ya tenía acceso a la popular enciclopedia de Gesner gracias a la traducción de Edward Topsell, que éste tituló Historias de las bestias de cuatro patas, de las serpientes y de los insectos, 1658. Allí podemos saber con respecto a la górgona que…

File:Gorgon at the Corfu Archaelogical Museum.jpg

La górgona, flanqueada por leonas y mostrando su cinturón de serpientes, tal como aparece en el pedimento del templo del siglo VII a. C. expuesto en el Museo arqueológico de Corfú. Todos estos mitos y leyendas han llegado a nuestro tiempo de las maneras más diversas cuando, aquellos personajes del pasado querían escenificar todas aquellas “historias” y las plasmaban en dibujos y relieves o quedaban escritas hasta en las piedras.


“En la mitología griega, una górgona (en griego antiguo γοργώ gorgō o γοργών gorgōn, ‘terrible’) era un despiadado monstruo femenino a la vez que una deidad protectora procedente de los conceptos religiosos más antiguos. Su poder era tan grande que cualquiera que intentase mirarla quedaba petrificado, por lo que su imagen se ubicaba en todo tipo de lugares, desde templos a cráteras de vino, para propiciar su protección. La górgona llevaba un cinturón de serpientes, entrelazadas como una hebilla y confrontadas entre sí”.

 

Górgonas y Medusas

 

…se planteó la cuestión de si el veneno que había emitido procedía de su aliento o de los ojos. Es más probable que, como el basilisco, matara con la mirada y también lo hiciera con el aliento de su boca, lo cual no es comparable con ninguna otra bestia del mundo… Al considerar esa bestia, se demostró de modo evidente la divina sabiduría y providencia del Creador, que había vuelto los ojos de  criatura hacia la tierra, como si así enterrara su veneno y evitara que dañara al hombre, y los había ensombrecido con un cabello fuerte, largo y áspero, para que los rayos envenenados no pudieran dirigirse hacia arriba, hasta que la bestia se viera azuzada por el miedo o la ira…

Tras recurrir al indiscutible testimonio del salmo nonagésimo segundo, Gesner declara que los Unicornios son sagrados porque “reverencian a las vírgenes y a las jóvenes doncellas” y muchas veces al verlas se vuelven mansos y se acercan a dormir a su lado… ocasión que los cazadores indios y etíopes aprovechan para apoderarse de la bestia. Toman a un hombre joven, fuerte y hermoso, lo visten de mujer y lo adornan con diversas flores y especias olorosas”.

                                                                   De la obra de Gesner

Pese a la fantasía de su texto, el millar de grabados de Gesner contribuyó a que la biología tomara un rumbo distinto. Al igual que los padres alemanes de la botánica, Gesner colaboró con los artistas y presentó los dibujos más realistas hechos hasta el momento de todos los tipos de criaturas,  el “vulgar ratoncillo” al sátiro, la esfinge, el gato, el topo y el elefante. Durero fue el autor de su ilustración del rinoceronte, “la segunda maravilla de la naturaleza…como el elefante era la primera”. Estos incunables de la ilustración biológica empezaron a liberar a los lectores de los herbarios y los bestiarios.

La obra de Gesner, reimpresa, traducida y resumida, dominó la zoología post-aristotélica hasta los innovadores estudios modernos de Ray y Linneo, que no estaban ilustrados. Sus notas inéditas fueron la base, el el siglo siguiente, del primer tratado completo que se escribió sobre los insectos. Para su Opera Botánica recogió cerca de un millar de dibujos, algunos realizados por él mismo, pero no llegó a terminar su gran  sobre las plantas, que habían sido su primer amor.

La invasion mulsumana y sus consecuencias - Apuntes de Historia - DocsityQué historias! ¡qué cosas! : Blog de Emilio Silvera V.Conrad Gesner - Historiae Animalium liber primus De - Catawikigesner, libro de las aves (s. xvii), facsímil - Comprar en todocoleccion -  150164946Conrad Gesner Fotos e Imágenes de stock - AlamyHistoria Animalium. Liber I de Quadrupedibus viviparis De Alce - De Mure  agresti maiore . Liber II de Quadrupedibus oviparis. 2 Bände: Amazon.es:  Gesner, Conrad: Libros

Gesner nunca se liberó completamente de su obsesión filológica. En su libro de 158 páginas Mitrídates, u observaciones sobre las diferencias existentes entre las lenguas que han  o están en uso en las diversas naciones del mundo entero (1555), intentó hacer con las lenguas lo que ya estaba haciendo con los animales y las plantas. Tomando como base su traducción del padrenuestro, Gesner describió y comparó “la totalidad” de las ciento treinta lenguas del mundo. Por vez primera,  incluyó un vocabulario del lenguaje de los gitanos.

                Nadie nunca se hubiera atrevido a querer visitar las misteriosas cumbres de las montañas

Al revelar públicamente su intención de explorar las altas montañas, que hasta entonces habían inspirado pasmo y terror, Gesner halló un modo típicamente suizo de  la naturaleza. La Europa renacentista había presenciado un breve y prematuro surgir de la fascinación por la aventura de las montañas. Petrarca (1304-1374) había sido el precursor, con su ascensión al monte Ventoux, cerca de Avignon, en 1336. En la cumbre leyó en un ejemplar de las confesiones de san Agustín que se sacó del bolsillo una advertencia dirigida a los hombres que “van a admirar las altas montañas y la inmensidad del océano y el curso de los astros… y se olvidan de sí mismos”. Leonardo da Vinci exploró el monte Bo en 1511 con ojos de artista y naturalista. El reformista y humanista suizo Joachim Vadian (1484-1551), amigo de Lutero y defensor de Zwinglio, llegó a la cumbre de Gnepfstein, cerca de Lucerna, en 1555, escribió su pequeña obra clásica.

Deportes de montaña | ¡Entrena en la naturaleza y diviértete!Disfruta de la naturaleza con actividades de montaña

“Si deseáis ampliar vuestro campo de visión, dirigid la mirada a vuestro alrededor y contemplad todas las cosas que hay a lo largo y a lo ancho. No faltan atalayas y riscos,  donde os parecerá que teneis la cabeza en la nubes. Si, por otra parte, preferís reducir la visión, podéis mirar los prados y los verdes bosques, o adentraros en ellos; y si la queréis reducir todavía más, podéis observar los oscuros valles, las sombrías rocas y las oscuras cavernas… En verdad, en ningún otro lugar se encuentran tal variedad en tan reducido espacio con en las montañas, en las cuales… en un solo día se puede contemplar y sentir las cuatro estaciones del año, verano, otoño, primavera e invierno. Además, desde los picos más altos de las montañas, la cúpula entera de nuestro cielo se tenderá audazmente abierta ante nuestra mirada, y podréis presenciar la salida y la puesta de las constelaciones sin ningún estorbo, y comprobareis que el Sol se pone mucho después y sale mucho antes.”

Excursión de día completo independiente a Chamonix y Mont Blanc desde  Ginebra | 2021 | Viator

 

Pero resultaba tan difícil vencer los temores primitivos que tendrían que transcurrir dos siglos entre las excursiones de Gesner y los verdaderos comienzos del montañismo moderno. El Mont Blanc (4.810 m), el pico más alto de Europa aparte del Cáucaso, no fue escalado hasta 1786 por un montañero que se proponía cobrar la recompensa que había ofrecido un geólogo suizo, Horace-Bénedict de Saussure (1740-1779), veinticinco años antes.

En tanto los naturalistas dispusieran las plantas y los animales por orden alfabético, el estudio de la naturaleza estaba condenado a seguir siendo teórico…Pero, ¡esa es otra historia que no toca hoy!

Lo cierto es que, leyendo estas historias del pasado nos podemos situar en aquel tiempo y llegar a comprender cómo la gente tenían aquellos pensamientos, el desconocimiento del mundo y de las cosas y los seres que lo pueblan hacen que la imaginación desbocada vague por caminos que, en la mayoría de los casos, están aconsejados por la ignorancia. Pero, el tiempo pasa y las sociedades y sus gentes evolucionan, los descubrimientos no cesan y la ciencia avanza. Ahora, todo aquello ¡nos queda tan lejano!

emilio silvera

Historias como estas son contadas por Daniel J. Boorstin en sus libros titulados Los Descubridores…La Naturaleza. Los podéis encontrar en la Biblioteca de Divulgación Científica (1986 Editorial Crítica, S.A.) ISBN (Obra completa): 84-873-0174-5. Cuatro Caminos s/n. Sant Vicentç dels Hirts (Barcelon

¿La singularidad de la que surgió todo? ¿Será cierto eso?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

                                                       El Tiempo, el Universo, el Inicio de todo.

Se han llevado a cabo muchos modelos y las distintas teorías que circulan por ahí nos hablan de muchas cuestiones. Sin embargo, la singularidad -de la que suponemos que surgió todo- es lo que predice la relatividad general para aquel pasado, y cerca de ella la curvatura (del espacio) debe de ser muy alta; la singularidad anula la relatividad clásica, y habrá que tomar en cuenta los efectos cuánticos. A fin de comprender las condiciones iniciales del universo, debemos dirigirnos a la mecánica cuántica, y el estado cuántico del universo determinará las condiciones del universo clásico. De hecho, hasta el momento nadie ha podido ir más allá, para llegar al Tiempo de Planck, y, en consecuencia, no se sabe que pudo pasar en aquellas primeras fracciones de segundo después del Big Bang.

En realidad, lo que allí surgió fue una descripción de evolución cósmica de una extraña belleza. Todas las líneas del universo divergen de la singularidad de la génesis, como las líneas de longitud proceden del polo norte en el globo terráqueo.

Algunos dicen que la pregunta de cuándo empezó el tiempo o cuándo terminará no tiene ningún sentido: “Si es correcta la afirmación de que el espacio-tiempo es finito pero limitado, dijo Hawkins en una ocasión, la singularidad que nos predicen en el Big Bang es más bien como el polo norte de la Tierra. Preguntar qué ocurre antes de la singularidad es como preguntar que ocurre en la superficie de la Tierra dos kilómetros al norte del Polo norte. Es una pregunta sin sentido.”

El tiempo imaginario, en opinión de Hawkins, era el tiempo de antaño y el tiempo futuro, y el tiempo que nosotros conocemos no es más que la sombra de la simetría rota del tiempo original. Cuando una calculadora contesta “error” si se le pregunta el valor de la raíz cuadrada de -1, nos está diciendo, a su modo, que ella pertenece a este universo, y no sabe como indagar en el universo como era antes del momento de la génesis. Y este es el estado de la ciencia, hasta que tengamos las herramientas para explorar el régimen muy diferente que prevalecía cuando empezó el tiempo.

Postrados ante el tiempo inexorable que pasa, nada podemos hacer por detenerlo, estamos supeditados a su transcurrir y, el que se nos ha concedido, debe ser aprovechado para SABER, esa simple pabra que nos liberará y nos separá del resto de las criaturas de la Tierra a las que, de4 alguna manera, deberíamos tratar de entender. ¿Sabemos acaso si piensa una Ballena?

Otro enfoque cuántico de la génesis, defendida por John Wheeler, subraya la cuantización del espacio mismo. Así como la materia y la energía están hechas de cuántos, afirma esta línea de razonamiento, también el espacio debe ser cuantizado en sus cimientos. A Wheeler le gustaba comparar el espacio cuántico con el mar: contemplado desde una órbita, la superficie del océano parece lisa, pero si salimos en un bote de remos a recorrer la superficie, “vemos la espuma y las olas que rompen. Y con esta espuma es como describimos la estructura del espacio y las escalas más pequeñas”.

Nunca podremos escapar de las voraces faces del Tiempo, y de la misma manera, tampoco podremos hacerlo de la Singularidad de un agujero negro si osamos  traspasar el Horizonte de sucesos. En el universo actual, la estructura espumosa del espacio se manifiesta en la constante aparición de partículas virtuales. En el universo muy primitivo -lo cual significa antes del Tiempo de Planck-,  el espacio habría sido un mar encrespado, realmente, y su flujo cuánto zarandeado por las tempestades quizá dominó todas las interacciones. ¿Cómo nos orientaremos aquí?

Wheeler, un estadista mayor que aprendió ciencia de Einstein y Bohr, y a su vez educó a toda una generación de físicos, pensaba que la respuesta estaba en la geometría del espacio-tiempo. “¿Qué más hay allí con lo cual construir una partícula, excepto la geometría misma?” preguntaba. Wheeler comparó el flujo cuántico del universo primitivo con un complicado nudo marinero, de tal tipo que parece imposible de desenredar, pero que se logra si uno encuentra el cabo de la cuerda y le da un tirón del modo adecuado. En la analogía, el nudo es la geometría hiperdimensional del universo original, la cuerda enredada el universo que habitamos hoy.

          J. Wheeler

Penrose había dicho: “No creo que pueda alcanzarse nunca una verdadera comprensión de la naturaleza de las partículas elementales sin una simultánea comprensión más profunda de la naturaleza del mismo espacio-tiempo.” Para Wheeler, esto era verdad con respeto al universo como un todo:

“El espacio es un continuo.” En décadas pasadas, esto se suponía desde el comienzo cuando se preguntaba: “¿Por qué el espacio tiene tres dimensiones? Hoy, en cambio, preguntamos: “¿Cómo logra el mundo dar la impresión de que tiene tres dimensiones?” ¿Cómo puede haber algo semejante en un continuo espaciotemporal excepto en los libros? ?De qué modo podemos considerar el espacio y la “dimensionalidad”, si no es como palabras próximas para designar un soporte, un sustrato,  una “pregeometría”, que no tiene ninguna propiedad tal como la dimensión.

     La geometría del espacio-tiempo está determinada por la materia

Así lo demostró Riemann y también otros

Para responder a tales preguntas, argüía Wheeler, la ciencia tendría que elevarse por encima de sí misma en un nuevo ámbito, “un mundo de leyes sin leyes”, en el que, como enseña el principio cuántico de indeterminación, la respuesta depende de la pregunta formulada. El mundo, creíamos antaño, existe “allí fuera”, independiente de todo acto de observación. Pensábamos que el electrón,  dentro del átomo, tenía en cada momento una posición definida y un momento definido. Lo cierto es que, las respuestas, no siempre dependen de quién las formule, sino que, vendrán razonadas siempre conforme al que las pueda contestar. No siempre obtenemos las mismas respuestas a las mismas preguntas. Las perspectivas de las cosas pueden ser distintasd en función del conocimiento que se tenga de ellas.

Algún día tendremos en nuestras manos los secretos de la física cuántica que es, tanto como decir, que conocemos por fín la materia y sus interacciones, es decir, las fuerzas que intervienen para que sean posibles todos los cambios de fase que producen elevaciones el nivel de complejidad hasta llegar a la fase química-biológica que conduce, de manera irremediable, a la vida.

En el mundo real de la física cuántica, ningún fenómeno es un fenómeno hasta que es un fenómeno registrado.

Nos queda, pues, una imagen de la génesis como un castillo silencioso e insustancial, donde nuestros ojos que arrojan ondas homéricas innovadoras y las únicas voces son las nuestras. Después de anunciarlo y de hacer nuestros deberes científicos de manera reverente y diligente, planteamos lo mejor que podemos la pregunta de cómo se formó la creación. Llega la respuesta, resonando a través de cámaras abovedas donde se encuentran la mente y el Cosmos. Es un Eco, que aún, no hemos sabido descifrar.

Lástima que el gráfico de arriba no esté centrado para poder ver las complejidades que nos podemos encontrar en cualquiera de las cosas que deseamos comprender, nada resulta fácil y, por supuesto, su dificultad nos lleva a unos beneficios directamente proporcionales a las mismas, de ahí, la importancia de saber.

A base de estas pequeñas parcelas del pensamiento podemos ir avanzando por el camino de la Ciencia que nos lleva hacia lugares donde encontramos las respuestas deseadas y, desde luego, necesarias para poder continuar preguntando. El conocimiento siempre es parcial, los triunfos limitados. Dado que la Naturaleza es “infinita” y tiene por ello, infinidad de cuestiones que debemos resolver, la única manera que tenemos de hacerlo es ir cumpliendo etapas a medida que nuestras mentes evolucionan al compás de los nuevos descubrimientos que nos abren la perspectiva de otros nuevos horizontes hacia los que dirigirnos para poder encontrar aquello que buscamos.

¿Quién le hubiera dicho a E. Rutherford que el átomo era, en realidad, un conjunto conformado en un 99% de espacio vacío y que, su núcleo era, en realidad, 1/100 000 veces más pequeño que el resto? Y, como aquello se descubrió por casualidad como otros tantos secretos del Universo, en los que buscando una cosa nos encontramos con otra muy diferente, los hechos nos marcan la pauta y dejan al descubierto que, posiblemente, sea la misma Naturaleza la que nos lleve y guie hacia el lugar que debemos observar. Es decir, colabora con nosotros en nuestra andadura a la conquista del saber, nos pone delante las cuestiones que no siempre sabemos comprender  y, no siempre sabemos “ver”.

Sin embargo, nuestras mentes evolucionan y las conquistas parciales que se van consiguiendo, se unifican en más amplias teorías que posibilitan llegar a regiones desconocidas de la Naturaleza en el ámbito de la Materia, de la Biología, la Química y, por supuesto, de las estrellas y Galaxias que pueblan nuestro Universo que, por grande y extenso que pueda ser, es, al fin y al cabo nuestra casa. Tan grande y descomunal que tiene cientos de miles de compartimentos, habitaciones y trasteros que, estando llenos de auténticas maravillas, por nuestra juventud, aún no hemos podido buscar los medios para poder llegar hasta ellos y comprobar de qué se trata y que es lo que nos puede decir que nosotros no sepamos.

En cualquier región de nuestro Universo existen misterios, secretos que debemos desvelar. Las respuestas son llaves que nos permiten abrir puertas cerradas que nos llevarán más allá, a lugares fantásticos donde otras puertas cerradas nos esperan para que, tratemos de abrirlas y poder ver, las maravillas que allí permanecen escondidas.

La Historia, desde Babilonia y los Sumerios, ha seguido igual: Una Humanidad que busca incansable las respuestas y, para ello, mirando al cielo y a la tierra, ha tratado siempre de responder a los fenómenos observados y que, para ellos, no tenían explicación.

Muchas han sido las preguntas que encontraron la adecuada respuesta, y, muchas son las preguntas que están a la espera de  que puedan ser contestadas. Investigaciones y experimentos de todo tipo y en los ámbitos más dispares, observaciones con sofisticados aparatos tecnológicos, investigación de la materia en sus más íntimas propiedades, hemos llegado a poder clasificar de manera automática los espectros estelares mediante el uso de técnicas de I.A. sobre Archivos Astronómicos, o, aplicar el efecto de microlente en Cuásares, aprendido a detectar muones en el experimento CMS del LHC, se ha podido aplicar la Mecánica Cuántica relativista a la óptica, hemos sabido fabricar robot que buscan objetivos en entornos inciertos, en lo que se conoce como estrategia de memotaxis mediante la implantación robótica, y, un sinfín de caminos más que estamos recorriendo ahora mismo en muchos campos y, no digamos de las investigaciones en Física de materiales o de fluidos o de hiper-conductividad, o, por otra parte esos experimentos y estudios de bosones y fermiones tratando de cambias sus propiedades burlando el Principio de exclusión de Pauli de manera tal que, los fermiones se comporten como bosones y estos como fermiones (sería el futuro de los ordenadores cuánticos de millones de respuestas por segundo).

¿Nos suplirán un día? No puedo contestar a esa pregunta pero, me resisto a admitir que ellos, llegarán a tener sentimientos.

No siempre, la Ciencia, está asentada sobre bases firmes y creencias ciertas, ni los hombres que la forjaron resultan ser los titulares de los méritos que la Sociedad les arroga. ¿Es Edward Lorenz, en realidad, el Padre de la Teoría del Caos? Bueno, como esa pregunta podríamos plantearnos miles y, si nos ponemos a investigar, podremos encontrar que no todos los “descubridores” lo fueron al cien por ciento, sino que, tomaron de otros ideas que, finalmente, posibilitaron la conformación de teorías consistentes que nos llevaron hacia adelante en el largo camino del saber.

Resulta que, los conocimientos, también están cuantizados. Nadie los puede poseer todos.

¡Menos mal! es un gran alivio que así sea, ya que, el saber compartido parece más democrático y, además nos da la sensación de más seguridad. ?Os imaginás alguien con todos los conocimientos del mundo? Si es verdad que el Poder Corrompe, que efecto causaría poseer todos los conocimientos.

emilio silvera

Un breve paseo por el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El LHC se adentra en la materia del universo primigenio

 

En los comienzos del universo, justo después del “Big Bang“, existió un ‘plasma de quarks y gluones, dos partículas confinadas hoy en la materia pero que entonces vagaban libremente… Ahora hemos construido aceleradores de partículas que tratan de recrear aquellos momentos para poder “ver” lo que allí pasó y, buscamos el origen de la masa y partículas exóticas que nos digan algo sobre esa supuesta masa “perdida”, o, que no alcanzamos a ver. En el LHC seguirán buscando los  indicios de las partículas WIMPs que se cree forman la “materia oscura”.

 

Descubierto un cinturón de polvo resultado de una "masacre" de cometas  alrededor de FomalhautEl Telescopio Espacial Spitzer de la NASA ha obtenido las primeras imágenes  infrarrojas del disco de polvo que rodea Fomalhaut, la 18ª estrella más  brillante en el cielo. Se cree que los

Esta fotografía muestra el anillo de polvo de la estrella Fomalhaut, situada a 25 años luz de distancia de la Tierra. En la segunda imagen, El Telescopio Espacial Spitzer de la NASA ha obtenido las primeras imágenes infrarrojas del disco de polvo que rodea Fomalhaut, la 18ª estrella más brillante en el cielo

NGC 2683 - Wikipedia, la enciclopedia libreObservatorio Astronomico SPAG Monfragúe

 

La galaxia NGC 2683 es una galaxia espiral que emula la forma clásica de las naves especiales en la ciencia ficción. La imagen de arriba combina datos e imágenes del Telescopio Espacial Hubble con los obtenidos desde el suelo por el telescopio Subaru. Numerosas galaxias distantes, dispersas por todo el campo de la vista cósmica, acompañan a NGC 2683.

La galaxia llamada NGC 1483, descubierta el 2 de septiembre de 1826 por James Dunlop.

Esta es la imagen más detallada que existe de Messier 9, una conjunción de estrellas en el centro de la Vía Láctea. 

 

El telescopio espacial Hubble ha logrado captar la imagen más detallada y nítida hasta el momento del Messier 9, un cúmulo globular de estrellas situado cerca del centro de nuestra galaxia, informó hoy la Agencia Espacial Europea (ESA) desde su central alemana de Garching, al sur del país.

Apenas perceptible para el ojo humano, el Hubble logra ver más de 250.000 estrellas dentro de ese cúmulo, que se encuentra a unos 25.000 años luz de la Tierra, cerca del centro de la Vía Láctea y a tal proximidad que las fuerzas gravitatorias del centro galáctico lo deforman ligeramente.

 

 

Rolscience - Divulgación científica: Página 36 de 365: El dorado

 

 

El Hubble produjo esta bella imagen de la galaxia espiral NGC 1483, localizada en el sur de la constelación Mahi-mahi. El Telescopio Espacial Hubble de la NASA ha producido esta bella imagen de la galaxia NGC 1483. NGC 1483 es ​​una galaxia espiral barrada ubicada en la constelación sur de Dorado: El pez delfín en español. La galaxia nebulosa presenta un bulto central brillante y brazos difusos con distintas regiones de formación estelar. En el fondo, se pueden ver muchas otras galaxias distantes.

La constelación de Dorado es el hogar del Grupo de galaxias Dorado, un grupo libre formado por aproximadamente 70 galaxias y ubicado a unos 62 millones de años luz de distancia. El grupo Dorado es mucho más grande que el Grupo local que incluye la Vía Láctea (y que contiene alrededor de 30 galaxias) y se acerca al tamaño de un cúmulo de galaxias. Los cúmulos de galaxias son los grupos más grandes de galaxias (y, de hecho, las estructuras más grandes de cualquier tipo) en el universo que se mantienen unidas por su gravedad. 


Galaxia Centauro A | Nombres del Universo

 

Como las nubes que asechan en un día de lluvia, el Hubble nos regala esta imagen de la galaxia Centauro.

 

Las nueve estrellas gigantes del cúmulo estelar R136 - El Universo Hoy

 

Este gigantesco grupo de jóvenes estrellas, llamado R136 está a sólo unos cuantos millones de años luz y reside en la galaxia Doradus Nebula, dentro de la gran Nube de Magallanes. 

 

La fascinante historia de 'Eta Carinae', la estrella que explotó en 1838 y  se convirtió en la segunda más brillante de la galaxiaEta Carinae - Wikipedia, la enciclopedia libreEta Carinae and the Keyhole Nebula | ESO EspañaPirulo Cósmico: Eta Carinae, la estrella condenada.

 

El Hubble captó esta imagen del sistema Eta Carinae la estrella masiva envuelta en gas y polvo que a pesar de su inmensa masa no podemos ver con claridad debido a que ella misma procura, para desalojar tensión, expulsar material al espacio.

 

Hubble observa el espectacular 'time-lapse' de una supernova | El Comercio

 

Un equipo de científicos ha recolectado suficientes fotos de alta resolución del Hubble durante 14 años, que es suficiente para crear un time-lapse.    Imágenes del telescopio Hubble se han reunido en una película de una titánica explosión estelar que desaparece en la galaxia espiral NGC 2525, ubicada a 70 millones de años luz de distancia.

 

25 años del Hubble, sus mejores imágenes. - Ciencia y e... en Taringa!25 años del Hubble, sus mejores imágenes. - Ciencia y e... en Taringa!

 

La primera imagen de un anillo de agujeros negros

En la segunda imagen, este gigantesco grupo de jóvenes estrellas, llamado R136 está a sólo unos cuantos millones de años luz y reside en la galaxia Doradus Nebula, dentro de la gran Nube de Magallanes.


Mira dentro del 'Ojo de Sauron' cósmico, si te atreves (fotos) -  22.05.2017, Sputnik MundoEl anillo de la estrella Fomalhaut – UNIVERSO Blog

 

Esta fotografía muestra el anillo de polvo de la estrella Fomalhaut, situada a 25 años luz de distancia de la Tierra

 


Noviembre 20, 2019. Arp 273: Galaxias Batallando vistas por el Hubble. –  ASTRONoviembre 20, 2019. Arp 273: Galaxias Batallando vistas por el Hubble. –  ASTRO

 

En la celebración del 21 Aniversario del Hubble, en abril de 2011, apuntaron hacia el grupo de galaxias llamado Arp 273 y rescataron esta bella imagen. 

 

El violento (y bello) nacimiento de una estrella | Público

 

El telescopio espacial Hubble ha logrado captar la extrema violencia del proceso de formación de una estrella es su etapa final, en el que el objeto astronómico se rebela contra su nebulosa.

Siempre hay anillos de luz en torno a un agujero negroDescubren anillo de agujeros negros | México Nueva Era

        

     Esta es una imagen del un anillo de un agujero negro 

Un grupo de astrónomos descubrió, mediante el uso del Observatorio de rayos X Chandra de la NASA, un anillo de agujeros negros o estrellas de neutrones en la galaxia AM 0644, ubicada a 300 millones de años luz de la Tierra.

El hallazgo ayudará a que los científicos comprendan de mejor forma lo que sucede cuando las galaxias se estrellan entre sí, en impactos catastróficos, a pesar de que el anillo no ejerce poder sobre la Tierra Media.

 

NGC 602 y Más Allá – astronomia-iniciacion.com

 

Cerca de las afueras de la Pequeña Nube de Magallanes, una galaxia satélite a unos 200 mil años-luz de distancia, se encuentra el joven cúmulo estelar NGC 602, de 5 millones años de edad.

En este impresionante imagen del Hubble de la región vemos a NGC 602 rodeado de gas y polvo natal.

 

El telescopio Hubble capta imagen del corazón de la nebulosa de la Laguna |  CNN

                En el corazón de la Nebulosa Laguna. «La infrarroja pasa a través de los parches densos y oscuros de polvo y gas, revelando más estructuras intrínsecas bajo esa capa y revelando un paisaje diferente», afirma la ESA.

La estrella que se aprecia en el centro de las nubes oscuras se conoce como Herschel 36, según indica la Agencia Espacial.

«Esta estrella es responsable de esculpir la nube que la rodea, quitando el material sobrante e influenciando su forma. Herschel 36 es la fuente principal de la radiación ionizante (luz ultravioleta) en esta parte de la nebulosa», dice la ESA

 

La nebulosa IRAS 05437+2502, una pequeñuela cercana a la constelación de Tauro. 

La Nebulosa poco conocida IRAS 05437 + 2502 ondea entre las estrellas brillantes y las nubes de polvo oscuro que la rodean en esta llamativa imagen del Telescopio Espacial Hubble. Se ubica en la constelación de Tauro (el Toro), cerca del plano central de nuestra Vía Láctea. A diferencia de muchos de los objetivos de Hubble, este objeto no se ha estudiado en detalle y su naturaleza exacta no está clara. A primera vista, parece ser una región de formación de estrellas pequeña y bastante aislada, y se podría suponer que los efectos de la feroz radiación ultravioleta de las estrellas jóvenes y brillantes probablemente fueron la causa de las llamativas formas del gas. Sin embargo, la característica brillante, en forma de bumerán podría contar una historia más dramática. La interacción de una estrella joven de alta velocidad con la nube de gas y polvo puede haber creado este arco inusualmente afilado y brillante. Semejante estrella temeraria, habría sido expulsada de un cumulo estelar distante en donde había nacido y viajaría a 200.000 kilómetros por hora o más, atravesando la nebulosa. 

 

 

                           ¿Qué pintor podría llevar al lienzo esta belleza creadora de estrellas?

Gran Colisionador de Hadrones: qué hemos descubierto con él

Telescopio Espacial Hubble: los "Pilares de la Creación" y otros 4  hallazgos del instrumento científico que revolucionó lo que sabemos sobre  nuestro universo - BBC News MundoLa Estación Espacial Internacional se prepara para reciclar más agua

Los ingenios creados por nuestra civilización ha podido arrancar secretos de la Naturaleza que, ni soñar podrían nuestros abuelos. Sondas Espaciales, colisionador de Hadrones, Telescopio y Estación Espacial…

 

Qué pasó antes del Big Bang? - Quo
La Física actual no puede describir lo que sucedió en el Big Bang. La Teoría Cuántica y la Teoría de la Relatividad fracasan en éste estado inicial del Universo infinitamente denso y caliente. Tan solo una teoría de la Gravedad  Cuántica que integre ambos pilares fundamentales de la Física, podría proporcionar una idea acerca de cómo comenzó el Universo.
Las formas convenientes de la ecuación de Friedmann con el que examinar la temperatura y el tiempo de expansión para el modelo del Big Bang del universo son:
Además de la densidad y la constante de gravitación G, la ecuación contiene el parámetro de Hubble H, un parámetro de escala R, y un factor k que se llama parámetro de curvatura. El parámetro de curvatura indica si el universo es abierto o cerrado. Las ecuaciones anteriores no especifican la naturaleza de la densidad ρ. No incluyen las posibles interacciones de partículas que no sean la atracción gravitatoria. Tales interacciones de partículas como las colisiones, podrían especificarse en términos de presión, por lo que al modelo anterior se le refiere a veces como un universo “sin presión”. Las versiones más detalladas de la ecuación de Friedman incluyen tales efectos.
Científicos del Instituto Max Planck para la Física Gravitatoria (Instituto Albert Einstein) en Golm/Potsdam y el Instituto Perimeter de Canadá han hecho un descubrimiento importante en esta dirección. Según su teoría, el espacio está compuesto de diminutas “unidades elementales”. Tomando esto cómo punto de partida, los científicos han llegado a una de las ecuaciones fundamentales de la Cosmología, la Ecuación de Friedmann, que describe el Universo. Esto demuestra que se pueden unificar la Mecánica Cuántica y la Teoría de la Relatividad.

Por qué avanza el tiempo? Una nueva teoría apunta al Big BangEl Tiempo inexorable : Blog de Emilio Silvera V.El paso del tiempo

Todo lo cambia el inexorable paso del Tiempo, la Entropía sabe hacer su trabajo para que en nada esté presente la Eternidad. Tampoco lo infinito, todo comienza y todo finaliza.

El Tiempo sigue su inexorable e imparable caminar, siempre hacia adelante, hacia ese lugar que llamamos futuro en el que esperamos estará todo lo que buscamos pero, siempre tendremos preguntas que hacer y que nadie sabrá contestar pero, nuestro destino es seguir adelante y tratar de desvelar los secretos que la Naturaleza esconde…, ella, tiene todas las respuestas.

Esta es la galaxia que fotografió el telescopio Hubble el día de tu  cumpleaños

Una iniciativa de la NASA para celebrar el 30 aniversario de la puesta en órbita del Hubble: mira lo que veía el telescopio más famoso del mundo el día de tu cumpleaños.

La NASA está celebró los 30 años en órbita del telescopio Hubble. Y es que un 24 de abril del 1990, se lanzaba mediante el transbordador Discovery uno de los telescopios más grandes y potentes que jamás se habían inventado. Tal es así, que 30 años después sigue en pleno funcionamiento.

Este fue el primer telescopio óptico de relevancia que se colocó en el espacio, explorando las maravillas del universo las 24 horas del día y durante todo el año. De esta forma pudo observar y captar muchas de las maravillas cósmicas que hoy conocemos.

Sólo nos queda preguntar: ¿Qué nos traerá el James West.

emilio silvera

La rotación de las partículas y otros temas de física

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

solido9.gif (1625 bytes)

Momento angular de una partícula

 

Si hablamos de las partículas no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas.

Movimiento de una carga puntual en un campo magnético.

 

 

Movimiento en un campo eléctrico y/o magnéticoCampo Magnetico: Movimiento de una partícula cargada en un campo magnéticoCampo magnético (cargas en movimiento)CAMPO MAGNÉTICO (I). - ppt video online descargar

 

Los campos magnéticos no realizan trabajo sobre las partículas y no modifican su energía cinética. Veamos la imagen. cabe notar en la imagen que la fuerza magnética es perpendicular a la velocidad de la partícula haciendo que se mueva en una órbita circular. La fuerza magnética proporciona la fuerza centrípeta necesaria para que la partícula adquiera la aceleración v2 /r del movimiento circular.


 

Las partículas al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-Dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.

 

Resultado de imagen de partículas alfa y betaEL FÍSICO LOCO: Desintegración alfa, beta y gamma

 

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.

 

Los bosones tienen un momento angular nh/2π, donde n es cero o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre anti-simétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

MarkusFierz 1937.jpgETH-BIB-Pauli, Wolfgang.tif

Fierz y Pauli

 

“El teorema de la estadística del spin de la mecánica cuántica establece la relación directa entre el spin de una especie de partícula con la estadística que obedece. Fue demostrado por Fierz y Pauli en 1940, y requiere el formalismo de teoría cuántica de campos.”

 

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o anti-simétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

 

“Un anión es un ion (o ión) con carga eléctrica negativa, es decir, que ha ganado más electrones. Los aniones monoatómicos se describen con un estado de oxidación negativo. Los aniones poliatómicos se describen como un conjunto de átomos unidos con una carga eléctrica global negativa, variando sus estados de oxidación individuales.”

Debido al principio de exclusión de Pauli, no es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la super-fluidez.

 

Pauli Exclusion PrincipleQué dice el Principio de Exclusión de Pauli? - Curiosoando

 

A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un super-átomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

 

condensado de bose-einstein - INFIMIKIMIALa NASA crea el estado de materia conocido como condensado Bose-Einstein -  PDM Productos Digitales Móviles

 

Un condensado de Bose-Einstein

 

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma  un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

 

 

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en  definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).

 

Todo lo que rota crea un campo magnético

 

Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas:

 

¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.

Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.

 

 

 

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un anti-deuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros anti-núcleos más complicados aún si se abordara el problema con más interés.

Qué es la antimateria y por qué es tan importante para la ciencia?Una molécula fluorescente para explicar la asimetría materia-antimateria en  el universo — Cuaderno de Cultura Científica

 

Se habla de la asimetría materia-antimateria del Universo primitivo

 

Pero… ¿Existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.

No parece que dichas observaciones fuesen un éxito. ¿Es posible que el universo esté formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalente en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaría la otra, y el universo debería estar compuesto de iguales cantidades de la una y de la otra.

Los astrofísicos están divididos en relación con el candidato a la materia  oscura: Olhar Digital

 

“Se está produciendo una verdadera disputa de astrofísicos sobre un tema que ya es bastante controvertido: la composición de la materia oscura. Un estudio publicado en la revista Science propone descartar el neutrino inerte como candidato a partícula formando este misterioso elemento del universo, pero el resultado de la investigación ha dividido opiniones entre los científicos.”

 

Este es el dilema. La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los quásares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.

 

 

Reproducción

 

“Se está produciendo una verdadera disputa de astrofísicos sobre un tema que ya es bastante controvertido: la composición de la materia oscura. Un estudio publicado en la revista Science propone descartar el neutrino inerte como candidato a partícula formando este misterioso elemento del universo, pero el resultado de la investigación ha dividido opiniones entre los científicos.

 Todo comenzó en 2014, cuando las observaciones de galaxias cercanas y el centro de nuestra propia Vía Láctea revelaron un tenue brillo de rayos X con una energía específica, 3,5 kiloelectronvoltios (keV). La investigación atribuyó esta emisión a la desintegración de neutrinos inertes con una masa de 7 keV al atravesar las galaxias estudiadas.”
Diagrama de Feynman de una desintegración beta, proceso mediante el cual un neutrón puede convertirse en protón. En la figura, uno de los tres quarks del neutrón de la izquierda (quark d en azul) emite una partícula W, pasando a ser un quark (u); la partícula emitida (W) se desintegra en un antineutrino y un electrón.”
“Los neutrinos estériles son un hipotético tipo de neutrino que no interaccionan a través de ninguna de las interacciones fundamentales del Modelo Estándar excepto la gravedad. Es un neutrino dextrógiro ligero o un antineutrino levógiro que se puede añadir al Modelo Estándar y tomar parte de algunos fenómenos, como la oscilación de neutrinos. La búsqueda de estas partículas es una área muy activa en la física de partículas.”

Japón construirá el detector de neutrinos más grande del mundo | Muy  Interesante

              El detector de neutrinos de Japón

El neutrino inerte, o neutrino estéril, es una partícula hipotética. Los neutrinos normales, aunque abundantes en el Universo, son muy difíciles de detectar. Aunque son similares a los electrones, no tienen carga y tienen muy poca masa, por lo que apenas interactúan con la materia normal. Un neutrino estéril, según los físicos, no puede interactuar con la materia normal, excepto quizás gravitacionalmente.

Muy raramente, un neutrino inerte se descompone en un neutrino común y un rayo X, que tendría una energía igual a la mitad de la masa del neutrino estéril, muy débil, pero detectable. Estas características hicieron que estas partículas fueran candidatas a formar materia oscura, una sustancia invisible cuya inmensa gravedad ayuda a mantener las estrellas dentro del disco galáctico, a pesar de la velocidad a la que orbitan.

Reproducción

 

Otro dilema por resolver:

“Las cosas en los bordes exteriores de las galaxias se mueven más rápido de lo que deberían si estuvieran bajo la influencia gravitacional de la materia normal. Y las lentes gravitacionales, la forma en que la gravedad curva la trayectoria de la luz, son más fuertes de lo que esperábamos en estas regiones. A partir de estos efectos, los astrónomos estiman que aproximadamente el 85% de la materia del Universo es materia oscura.”

 

Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado, de la composición de la materia en lugares lejanos del universo. “Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible”.

 

 

CIFIWEEK día dos - Stargate

 

Este comentario se ha podido oír en alguna película de ciencia ficción. Podría ser verdad (un material desconocido), sin embargo, no porque la nave esté construida por una materia distinta, sino porque la aleación es distinta y más avanzada a partir de los materiales conocidos del universo. En cualquier parte del universo, por muy lejana que pueda estar, rigen los mismos principios y las mismas fuerzas: la materia y la energía son las mismas en cualquier parte. Lo único que puede diferir es la forma en que se utilice, el tratamiento que se le pueda dar, y sobre todo, el poseer el conocimiento y la tecnología necesarios para poder obtener el máximo resultado de las propiedades que dicha materia encierra, porque, en última instancia, ¿es en verdad inerte la materia?

 

Daniela☆ on Twitter: "Así como un simple átomo encierra los secretos de la  materia, nuestro cuerpo contiene los secretos del universo  https://t.co/dd27SkGVGp"

 

Nos valemos de ella para infinidad de cosas. Sin embargo, a ciencia cierta… ¡Tenemos muchas dudas!

 

Tiene y encierra tantos misterios la materia que estamos aún a años luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos, pero que tampoco sabemos, en realidad, a qué son debidas. Sí, sabemos ponerles etiquetas como la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio, y con mayor frecuencia, en los elementos que conocemos como transuránicos.

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de su ruptura, sobrepasando a la emisión de partículas alfa. ¡Parece que la materia está viva! Son muchas las cosas que desconocemos, y nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o el antineutrón), y por lo tanto, han sido denominados leptones (de la voz griega leptos, que dignifica “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1.940), el problema de su estructura, si la hay, aún no está resuelto. Conocemos su masa y su carga negativa que responden a 9’1093897 (54) × 10-31 Kg la primera, y 1’60217733 (49) × 10-19 culombios la segunda, y también su radio clásico r0 igual a e2/(mc2) = 2’82 × 10-13 cm. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve una carga eléctrica, sea la que fuese (sabemos cómo actúa y cómo medir sus propiedades, pero aún no sabemos qué es), que tenga asociada un mínimo de masa.

Lo cierto es que el electrón es una maravilla en sí mismo. El universo no sería como lo conocemos si el electrón fuese distinto a como es; bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

Aquí, un electrón e desviado por el campo eléctrico de un núcleo atómico produce. El cambio de energía E2 − E1 determina la frecuencia f del fotón emitido.

Sistemas aislados. Choques

Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tiene asociada ninguna masa en absoluto, es decir, ninguna masa en reposo. Por ejemplo, las ondas de luz y otras formas de radiación electromagnética se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones). Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda, se denomina fotón, de la palabra griega que significa “luz”.

 

La materia: El fotón. Onda, no corpúsculo – 2 - Historia de la VidaTeoría cuántica - Asociación Ciencia de Paz

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma de que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este término se reserva para la familia formada por el electrón, el muón y la partícula tau, con sus correspondiente neutrinos: υe, υμ y υτ.

 

 

 

Existen razones teóricas para suponer que cuando  las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitaciones. Esas ondas pueden, así mismo, poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La forma gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón, y por tanto, ha de ser inimaginablemente difícil de detectar.

tenemos a todos bien localizados pero… ¿Dónde está el Gravitón?

    Seguramente riéndose de nuestra ignorancia

 

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm de longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas) desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegase a captar la cien-billonésima parte de un centímetro.

Ondas gravitacionales simplificadas – Rustico Abstracto

Las débiles ondas de los gravitones, que proceden del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitacionales. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaron el hallazgo de Weber.

En cualquier caso, no creo que a estas alturas alguien pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es Cero, su carga es Cero, y su espín es 2. Como el fotón, no tiene antipartícula; ellos mismos hacen las dos versiones.

emilio silvera

Los neutrinos serán testigos del final del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Acotan la vida media del electrón en, al menos, 66.000 cuatrillones de años. Un nuevo resultado experimental pone a prueba la Ley de la Conservación de la Carga Eléctrica.

 

Atomo De GIF - Atomo De Bohr - Discover & Share GIFs

El experimento Borexino, un detector de neutrinos subterráneo instalado en los Laboratorios Nacionales del Gran Sasso, en Italia, ha establecido la mayor cota obtenida hasta ahora para la vida media del electrón. Según un análisis publicado hace unos días en Physical Review Letters, la vida media de esta partícula elemental sería, como poco, de 66.000 cuatrillones de años (6,6·1028 años); es decir, unos 5 trillones de veces la edad actual del universo. El resultado, que mejora en dos órdenes de magnitud las estimaciones experimentales previas sobre la estabilidad del electrón, impone serias restricciones a cualquier teoría que viole la ley de conservación de la carga eléctrica.

La mitad de los neutrinos producidos dentro de la Tierra proceden del manto  • Tendencias21Borexino observó neutrinos de la primera reacción pp en el núcleo del Sol -  La Ciencia de la Mula Francis

La mitad de los neutrinos producidos dentro de la Tierra proceden del manto  • Tendencias21Looking into the Earth's interior with geo-neutrinos – CERN Courier

El electrón es una de las partículas elementales más ligeras que existen. La conservación de la energía implica que una partícula solo puede desintegrarse en otras de menor masa. Sin embargo, todas las partículas conocidas más ligeras que el electrón son neutras, por lo que, si el electrón se desintegrase en ellas, el proceso violaría la ley de conservación de la carga eléctrica. Esta ley no es un postulado, sino una consecuencia de la estructura matemática profunda del modelo estándar. Por tanto, detectar una violación de dicha ley, por pequeña que fuese, echaría por tierra los cimientos matemáticos de la teoría que los físicos vienen empleando desde hace décadas para describir las partículas elementales y sus interacciones.

Scientists Now Have the Most Detailed Picture Yet of the Neutrino Factory  Inside Our Sun | Live Science

En concreto, los investigadores de la colaboración Borexino han considerado la posibilidad de que el electrón se desintegre en un fotón y un neutrino. El experimento de Gran Sasso fue diseñado para estudiar neutrinos de baja energía procedentes del Sol. El corazón del detector consta de cientos de toneladas de un líquido centellador que, al paso de los neutrinos, emite luz. No obstante, la técnica de detección empleada y el hecho de que el laboratorio se encuentre bajo tierra y muy bien aislado del entorno lo convierten también en un experimento óptimo para estudiar la estabilidad del electrón. Si alguno de los electrones que componen el líquido centellador (del orden de 1032) se desintegrase en un fotón y un neutrino, el suceso debería dejar una impronta medible en los fotomultiplicadores del experimento.

Noticias