Acotan la vida media del electrón en, al menos, 66.000 cuatrillones de años. Un nuevo resultado experimental pone a prueba la Ley de la Conservación de la Carga Eléctrica.
El experimento Borexino, un detector de neutrinos subterráneo instalado en los Laboratorios Nacionales del Gran Sasso, en Italia, ha establecido la mayor cota obtenida hasta ahora para la vida media del electrón. Según un análisis publicado hace unos días en Physical Review Letters, la vida media de esta partícula elemental sería, como poco, de 66.000 cuatrillones de años (6,6·1028 años); es decir, unos 5 trillones de veces la edad actual del universo. El resultado, que mejora en dos órdenes de magnitud las estimaciones experimentales previas sobre la estabilidad del electrón, impone serias restricciones a cualquier teoría que viole la ley de conservación de la carga eléctrica.
El electrón es una de las partículas elementales más ligeras que existen. La conservación de la energía implica que una partícula solo puede desintegrarse en otras de menor masa. Sin embargo, todas las partículas conocidas más ligeras que el electrón son neutras, por lo que, si el electrón se desintegrase en ellas, el proceso violaría la ley de conservación de la carga eléctrica. Esta ley no es un postulado, sino una consecuencia de la estructura matemática profunda del modelo estándar. Por tanto, detectar una violación de dicha ley, por pequeña que fuese, echaría por tierra los cimientos matemáticos de la teoría que los físicos vienen empleando desde hace décadas para describir las partículas elementales y sus interacciones.
En concreto, los investigadores de la colaboración Borexino han considerado la posibilidad de que el electrón se desintegre en un fotón y un neutrino. El experimento de Gran Sasso fue diseñado para estudiar neutrinos de baja energía procedentes del Sol. El corazón del detector consta de cientos de toneladas de un líquido centellador que, al paso de los neutrinos, emite luz. No obstante, la técnica de detección empleada y el hecho de que el laboratorio se encuentre bajo tierra y muy bien aislado del entorno lo convierten también en un experimento óptimo para estudiar la estabilidad del electrón. Si alguno de los electrones que componen el líquido centellador (del orden de 1032) se desintegrase en un fotón y un neutrino, el suceso debería dejar una impronta medible en los fotomultiplicadores del experimento.
Esplendoroso Arco de la Vía Láctea desde Monument Valley en los Estados Unidos. Aquí, como en otros muchos rincones de nuestro planeta, la Tierra, podemos contemplar esa inmensidad, ese carrusel de estrellas, gas y polvo que conforma la Galaxia.
Cientos de miles de millones de galaxias cuajadas de estrellas que están acompañadas por cientos de miles de millones de de mundos que también podrán ser el hábitat de criaturas inteligentes que, como nosotros, se ven allí confinadas sin poder recorrer “infinitas” distancias que las separan de otras civilizaciones situadas a decenas, cientos, miles y millones de años-luz.
Para que nosotros hayamos podido existir, han tenido que pasar diez mil millones de años durante los que, las estrellas, han estado “fabricando” los materiales de los que estamos hechos los seres vivos que, a partir de aquellas primeras células vivas replicantes evolucionaron a distintos niveles de inteligencia en los distintos ecosistemas de un mundo acondicionado para que ello fuese posible. Sin embargo, sabiendo que el Universo es igual en todas partes, también en todas partes pueden estar ocurriendo las mismas cosas.
La Paradoja de Fermi: ¿Dónde está todo el mundo?
Si existen miles de millones de posibilidades de que haya civilizaciones inteligentes ¿Por qué ninguna ha contactado todavía con nosotros? Eso es lo que se preguntaba el famoso Físico de origen italiano.
Situados ante la inmensidad (para nosotros infinita), que supone el Universo, nos planteamos preguntas
Todo el mundo siente algo cuando está en un sitio desde el que se ven muy bien las estrellas en una noche especialmente estrellada y mira hacia arriba y ve un escenario como el de la imagen de abajo.
Algunos prefieren lo tradicional y se sobrecogen por la belleza épica del universo o les impresiona su absurda escala. Yo, personalmente, me decanto por la clásica “crisis existencial y posterior comportamiento extraño durante la siguiente media hora”. Pero todo el mundo siente algo.
Un cielo repleto de estrellas parece enorme… pero lo que vemos no es más que nuestro vecindario más próximo. En las mejores noches posibles podemos ver hasta 2.500 estrellas (aproximadamente una cienmillonésima parte de las estrellas de nuestra galaxia), y casi todas ellas están a menos de 1.000 años luz de nosotros (o un 1% del diámetro de la Vía Láctea). Así que a lo que realmente estamos mirando es un espacio tan reducido como el abajo señalado.
Nick Risinger
Cuando se enfrentan al tema de las estrellas y galaxias, una pregunta que atormenta a la mayoría de los humanos es: “¿Hay más vida inteligente ahí fuera?”. Veamos algunos números.
Hay tantas estrellas en nuestra galaxia (100.000 – 400.000 millones) como galaxias hay en el universo observable, aproximadamente, así que por cada estrella en la colosal Vía Láctea hay toda una galaxia ahí fuera. Si las sumamos todas llegamos al intervalo típicamente citado de entre 1022 y 1024 estrellas en total, lo que significa que por cada grano de arena en cada playa de la Tierra hay 10.000 estrellas ahí fuera.
El mundo científico no acaba de ponerse de acuerdo sobre qué porcentaje de esas estrellas son de “tipo solar” (similares al Sol en tamaño, temperatura y luminosidad): las opiniones suelen estar entre el 5% y el 20%. Quedándonos con el cálculo más conservador (5%), y el extremo más bajo del número total de estrellas (1022), nos da 500 trillones o 500 millones de billones de estrellas de tipo solar.
El Sol está en el interior del Brazo de Oríón de la Galaxia
También hay un debate sobre qué porcentaje de esas estrellas de tipo solar podrían ser orbitadas por un planeta similar a la Tierra (uno con temperatura y condiciones similares que pudiese tener agua líquida y albergar potencialmente una vida similar a la de la Tierra). Algunos dicen que serían hasta el 50% de ellas, pero vamos a quedarnos con el más conservador 22% que se extrajo de un estudio reciente de la PNAS. Esto sugiere que hay un planeta potencialmente habitable como la Tierra orbitando alrededor de al menos un 1% del total de estrellas del universo —un total de 100 millones de billones de planetas parecidos a la Tierra.
Así que hay 100 planetas análogos a la Tierra por cada grano de arena del mundo. Piensa en ello la próxima vez que estés en la playa.
A partir de aquí no tenemos más remedio que entrar completamente en el terreno de la especulación. Imaginemos que después de millones y millones de años de existencia, un 1% de esos planetas parecidos a la Tierra desarrollan vida (si eso es verdad, cada grano de arena representaría un planeta con vida en él). E imagina que, en el 1% de esos planetas, la vida avanza hasta un nivel inteligente como lo hizo aquí en la Tierra. Esto significa que habría 10.000 billones de civilizaciones inteligentes en el universo observable.
Volviendo a nuestra galaxia y haciendo el mismo cálculo con la estimación más baja de estrellas en la Vía Láctea (100.000 millones), obtendríamos que hay mil millones de planetas análogos a la Tierra y 100.000 civilizaciones inteligentes en nuestra galaxia.
El SETI (Search for Extraterrestial Intelligence, o Búsqueda de inteligencia extraterrestre) es una organización dedicada a prestar atención a las señales de vida inteligente. Si estamos en lo cierto y hay 100.000 civilizaciones inteligentes o más en nuestra galaxia, e incluso si solo una fracción de ellas está enviando ondas de radio o rayos láser u otros modos de intentar contactar con otros, ¿no debería la colección de satélites del SETI estar captando todo tipo de señales?
Pero no lo ha hecho. Ni una. Nunca.
“¿Dónde está todo el mundo?”
Y la cosa se vuelve aún más extraña. Nuestro sol es bastante joven comparado con la edad del Universo. Hay estrellas mucho más viejas con planetas parecido a la Tierra mucho más viejos, lo que en teoría debería haber dado civilizaciones mucho más avanzadas que la nuestra. Por poner un ejemplo, vamos a comparar nuestra Tierra de 4.540 millones de años con un hipotético Planeta X de 8.000 millones de años de edad.
Si el Planeta X tiene una historia parecida a la de la Tierra, veamos en qué punto estaría su civilización a día de hoy (usamos como referencia el periodo naranja para mostrar lo enorme que es el periodo verde):
La tecnología y el conocimiento de una civilización tan solo 1.000 años por delante de nosotros nos resultarían tan chocantes como lo sería nuestro mundo para una persona medieval. Una civilización con un millón de años de adelanto con respecto a la nuestra sería tan incomprensible para nosotros como lo es nuestra cultura humana para los chimpancés. Y el Planeta X nos lleva 3.400 millones de años de ventaja…
Hay algo llamado Escala de Kardashov que nos ayuda a agrupar civilizaciones inteligentes en tres amplias categorías según la cantidad de energía que usan:
Una Civilización Tipo I tiene la habilidad de usar toda la energía de su planeta. Nosotros no llegamos a ser un Tipo I del todo, pero nos quedamos cerca (Carl Sagan creó una fórmula para esta escala que nos sitúa en una civilización Tipo 0,7).
Una Civilización Tipo II puede aprovechar toda la energía de su estrella anfitriona. Nuestros débiles cerebros apenas pueden imaginar cómo se podría hacer esto, pero lo hemos intentado lo mejor que hemos podido, imaginando cosas como la esfera de Dyson.
Una Civilización Tipo III arrasa a las otras dos, accediendo a un poder comparable al de toda la galaxia de la Vía Láctea.
Si este nivel de avance parece difícil de creer, recuerda el Planeta X de antes y sus 3.400 millones de años de desarrollo de ventaja. Si una civilización del Planeta X fuera parecida a la nuestra y hubiera sido capaz de sobrevivir hasta llegar al nivel del Tipo III, lo natural es que probablemente ya hubiera dominado el viaje interestelar, incluso podría haber colonizado toda la galaxia.
Otra hipótesis de cómo podría producirse la colonización galáctica sería creando maquinaria que pueda viajar a otros planetas, pasarse unos 500 años autorreplicándose usando las materias primas del nuevo planeta y después mandar dos réplicas a hacer lo mismo. Incluso sin viajar a una velocidad que no se acerque ni a la de la luz, este proceso colonizaría toda la galaxia en 3,75 millones de años, un relativo abrir y cerrar de ojos cuando hablamos de una escala de miles de millones de años:
Siguiendo con la especulación, si un 1% de la vida inteligente sobrevive el tiempo suficiente como para llegar a ser una civilización Tipo III colonizadora de galaxias, nuestros cálculos de antes sugieren que debería haber al menos 1.000 civilizaciones Tipo III solo en nuestra galaxia —y teniendo en cuenta el poder de tal civilización, lo más probable es que su presencia fuera bastante notoria. Y, aun así, no vemos nada, no oímos nada y no nos visita nadie.
Bienvenido a la paradoja de Fermi. Sin embargo, que no los podamos detectar no niega su existencia
No tenemos respuesta para la paradoja de Fermi —como mucho podemos ofrecer “posibles explicaciones”. Y si preguntas a diez científicos distintos cuál creen que es la correcta, te darán diez respuestas distintas. ¿Recuerdas cuando los humanos del pasado debatían sobre si la Tierra era redonda o si el Sol giraba alrededor de la Tierra o pensaban que ese rayo había caído por Zeus, y ahora nos resultan tan primitivos y desinformados? Pues así es cómo estamos nosotros con este tema.
Para echarle un vistazo a algunas de las explicaciones posibles de la paradoja de Fermi más debatidas, vamos a dividirlas en dos amplias categorías —aquellas explicaciones que entienden que si no hay ningún indicio de las civilizaciones de Tipo II y Tipo III es porque no existe ninguna de ellas ahí fuera, y aquellas otras que asumen que sí que están ahí fuera, pero no estamos viendo ni oyendo nada de ellas por otras razones:
No pocos creen que están ahí fuera
Grupo 1 de explicaciones: no hay indicios de civilizaciones superiores (Tipo II y III) porque no existen civilizaciones superiores.
Aquellos que suscriben las explicaciones del Grupo 1 señalan algo llamado el problema de la no exclusividad, que rechaza cualquier teoría que diga “hay civilizaciones superiores, pero ninguna de ellas ha establecido ningún tipo de contacto con nosotros porque todas”. La gente del Grupo 1 se fija en los cálculos que dicen que debería haber tantos miles (o millones) de civilizaciones superiores que al menos una de ellas debería ser la excepción a la regla. Incluso si esa teoría afectara al 99,99% de las civilizaciones, el otro 0,01% se comportaría de forma distinta y seríamos conscientes de su existencia.
Por tanto, dicen las explicaciones del Grupo 1, debe ser que no existen civilizaciones super avanzadas. Y como los cálculos sugieren que hay miles de ellas tan solo en nuestra galaxia, algo más debe de estar pasando.
Ese algo más se llama El Gran Filtro.
La teoría del Gran Filtro dice que, en algún punto desde la pre-vida hasta la inteligencia Tipo III, hay un muro contra el que todos o casi todos los intentos de vida chocan. Hay alguna etapa del largo proceso evolutivo que es extremadamente improbable o imposible que la vida supere. Esa etapa es el Gran Filtro.
Si esta teoría es cierta, la gran pregunta es ¿en qué punto de la línea temporal ocurre el Gran Filtro?.
Resulta que, cuando estamos hablando del destino de la humanidad, esta pregunta es muy importante. Dependiendo de dónde ocurra el Gran Filtro, nos deja tres realidades posibles: somos excepcionales, somos los primeros, o estamos jodidos.
1. Somos excepcionales (el Gran Filtro está detrás de nosotros)
Una esperanza que tenemos es que el Gran Filtro esté detrás de nosotros —hemos conseguido superarlo, lo que significaría que es extremadamente inusual que la vida llegue a nuestro nivel de inteligencia. El diagrama de abajo muestra solo a dos especies consiguiendo pasarlo, y nosotros somos una de ellas.
Este escenario explicaría por qué no hay civilizaciones Tipo III… pero también significaría que nosotros podríamos ser una de las pocas excepciones ahora que hemos conseguido llegar tan lejos. Significaría que hay esperanza. Superficialmente, esto suena un poco a la gente de hace 500 años sugiriendo que la Tierra es el centro del universo —implica que somos especiales. Sin embargo, algo que los científicos llaman “sesgo antrópico” sugiere que cualquiera que se plantee su propia rareza forma parte inherentemente de un “caso de éxito” de la vida inteligente -y ya sean realmente inusuales o bastante comunes, los pensamientos que se plantean y las conclusiones que sacan serán idénticos. Esto nos obliga a admitir que ser especiales es, al menos, una posibilidad.
Y, si somos especiales, ¿exactamente cuándo nos convertimos en especiales? —esto es, ¿qué paso superamos en el que casi todos los demás se quedan atascados?
Una posibilidad: el Gran Filtro podría estar muy al principio —podría ser increíblemente inusual que la vida comenzase en absoluto. Esta es una candidata porque hicieron falta unos mil millones de años de existencia de la Tierra para que finalmente ocurriera, y porque hemos intentado minuciosamente replicar tal acontecimiento en laboratorios y nunca hemos podido hacerlo. Si este es efectivamente el Gran Filtro, significaría que no solo no hay vida inteligente ahí fuera, sino que puede que no haya ningún otro tipo de vida.
Otra posibilidad: el Gran Filtro podría ser el salto de la simple célula procariota a la compleja célula eucariota. Después de que las procariotas nacieran, se quedaron tal cual durante casi dos mil millones de años antes de dar el salto evolutivo de ser complejas y tener un núcleo. Si este es el Gran Filtro, significaría que el universo está repleto de células procariotas simples y casi nada más allá de eso.
Hay varias posibilidades más —algunos llegan a pensar que el salto más reciente que hemos dado hasta nuestra inteligencia actual es un candidato para ser el Gran Filtro. Aunque el paso de vida semi-inteligente (chimpancés) a vida inteligente (humanos) no parece a primera vista un salto milagroso, Steven Pinker rechaza la idea de un “ascenso” inevitable de la evolución: “Ya que la evolución no aspira a una meta sino que simplemente ocurre, usa la adaptación más útil para un nicho ecológico dado, y el hecho de que, en la Tierra, esto haya conducido a la vida inteligente solo una vez hasta el momento puede sugerir que este resultado de la evolución natural es infrecuente y por lo tanto de ningún modo es un desarrollo indiscutible de la evolución de un árbol de la vida”.
En el árbol de la vida sólo somos una insignificante ramita
La mayoría de los saltos no reúnen los requisitos para ser un candidato a Gran Filtro. Cualquier Gran Filtro tiene que ser un tipo de cosa entre un millón en la que una o más ocurrencias totalmente anormales tienen que ocurrir para facilitar una excepción absurda —por eso, algo como el paso de vida unicelular a pluricelular está descartado, porque ha ocurrido hasta 46 veces, en incidentes aislados, tan solo en nuestro planeta. Por la misma razón, en caso de encontrarnos una célula eucariota fosilizada en Marte, se descartaría el salto de más arriba de “célula simple a compleja” como posible Gran Filtro (así como cualquier cosa anterior a ese punto en la cadena evolutiva) —porque si ha ocurrido tanto en la Tierra como en Marte, casi con toda seguridad no se trata de una ocurrencia anómala de las de una-entre-un-millón.
Si en efecto somos excepcionales, podría ser por un acontecimiento biológico accidental, pero también podría atribuirse a lo que llamamos la Hipótesis de la Tierra Especial, que sugiere que, aunque puede que haya muchos planetas parecidos a la Tierra, las condiciones particulares de la Tierra —ya estén relacionadas con las particularidades de este sistema solar, su relación con la luna (una luna tan grande es inusual para un planeta tan pequeño y contribuye a nuestra meteorología y condiciones oceánicas particulares), o algo del propio planeta —son excepcionalmente acogedoras para la vida.
2. Somos los primeros
Para los Pensadores del Grupo 1, si el Gran Filtro no se encuentra detrás de nosotros, la única esperanza que nos queda es que las condiciones del universo estén desde hace poco, por primera vez desde el Big Bang, llegando a un punto que permitiría desarrollar vida inteligente. En ese caso, nosotros, junto con muchas otras especies, podríamos estar dirigiéndonos a la super inteligencia, y simplemente no habría ocurrido todavía. Estaríamos aquí justo en el momento adecuado para llegar a ser una de las primeras civilizaciones super inteligentes.
Un ejemplo de fenómeno que podría hacer esto realista es el predominio de brotes de rayos gamma, explosiones increíblemente grandes que hemos observado en galaxias lejanas. De la misma manera que la Tierra primigenia tardó unos cientos de millones de años antes de que amainaran los asteroides y los volcanes y la vida fuera posible, podría ser que el primer trozo de la existencia del universo estuviera lleno de acontecimientos catastróficos como los brotes de rayos gamma que incinerasen todo alrededor de vez en cuando e impidiesen que la vida se desarrollase más allá de una cierta fase. Tal vez ahora nos encontramos en un cambio de fase astrobiológica y esta es la primera vez que una forma de vida ha podido evolucionar tanto tiempo ininterrumpidamente.
3. Estamos jodidos (el Gran Filtro está por delante de nosotros)
Si no somos ni excepcionales ni precoces, los pensadores del Grupo 1 concluyen que el Gran Filtro debe estar en nuestro futuro. Esto sugeriría que la vida evoluciona periódicamente hasta donde estamos nosotros, pero que algo impide a la vida avanzar más allá y alcanzar una inteligencia superior en casi todos los casos —y es poco probable que nosotros seamos una excepción.
Un Gran Filtro futuro posible es un suceso natural catastrófico que ocurra periódicamente, como los brotes de rayos gamma que mencionamos antes, solo que desafortunadamente aún no han acabado y es solo cuestión de tiempo antes de que toda la vida de la Tierra sea aniquilada por uno de ellos. Otro candidato es la posible fatalidad de que casi todas las civilizaciones acaben autodestruyéndose una vez alcanzan un cierto nivel de tecnología.
Esto es por lo que el filósofo de la Universidad de Oxford Nick Bostrom dice que “el que no haya noticias es una buena noticia”. El descubrimiento de incluso vida sencilla en Marte sería devastador, porque eliminaría una gran cantidad de potenciales Grandes Filtros detrás de nosotros. Y si encontrásemos vida compleja fosilizada en Marte, Bostrom dice que “sería de lejos la peor noticia jamás impresa en la portada de un periódico”, porque significaría que el Gran Filtro estaría casi definitivamente por delante de nosotros —condenando a la larga a la especie. Bostrom cree que cuando se trata de la paradoja de Fermi, “el silencio del cielo nocturno vale oro”.
Grupo 2 de explicaciones: las civilizaciones inteligentes Tipo II y III están ahí fuera -y hay razones lógicas por las que podríamos no saber de ellas.
Las explicaciones del Grupo 2 eliminan cualquier noción de que somos excepcionales o los primeros de nada —por el contrario, creen en el principio de mediocridad, cuyo punto de partida es que nuestra galaxia, sistema solar, planeta o nivel de inteligencia no tienen nada de inusual ni de excepcional hasta que se demuestre lo contrario. También son mucho menos proclives a asumir que la falta de pruebas de seres de inteligencia superior sea una prueba de su no existencia —haciendo hincapié en el hecho de que nuestra búsqueda de señales se extiende solo hasta unos 100 años luz de lejos de nosotros (0,1% de la galaxia) y sugiriendo una serie de posibles explicaciones. He aquí diez:
Posibilidad 1) La vida super inteligente bien podría haber visitado ya la Tierra, pero antes de que estuviésemos aquí. En el gran contexto del universo, los seres humanos conscientes solo han estado presentes unos 50.000 años, un segundillo. Si hubo contacto antes de eso, podría haber hecho flipar a unos patos que habrían salido corriendo hacia el agua y ya. Además, la historia escrita solo se remonta 5.500 años —un grupo de cazadores-recolectores podría haber experimentado una movida muy loca con aliens, pero no tenían ninguna forma de contárselo a nadie del futuro.
Posibilidad 2) La galaxia ya ha sido colonizada, pero resulta que vivimos en una zona rural y desierta de la galaxia. Los europeos podrían haber colonizado las Américas mucho antes de que nadie en una pequeña tribu inuit en el extremo norte de Canadá se hubiera enterado de lo que había pasado. Podría haber un elemento de urbanización en los asentamientos interestelares de las especies superiores, en que todos los sistemas solares cercanos son colonizados y comunicados entre sí, pero no sería práctico ni tendría sentido que nadie se dedicara a venir aquí a una parte remota de la espiral en la que vivimos.
Posibilidad 3) Todo el concepto de colonización física le resulta un concepto delirantemente atrasado a las especies más avanzadas. ¿Recuerdas la imagen de la civilización Tipo II de antes con la esfera sobre su estrella? Con toda esa energía, podrían haber creado el medio ambiente perfecto para sí mismos que satisficiera todas sus necesidades. Podrían tener formas demencialmente avanzadas de reducir su necesidad de recursos y ningún interés por dejar su feliz utopía para explorar el frío, vacío y subdesarrollado universo.
Una civilización aún más avanzada podría considerar todo el mundo físico como un lugar terriblemente primitivo, habiendo conquistado ya hace tiempo su propia biología y cargado sus cerebros en un paraíso de vida eterna en la realidad virtual. La vida en el mundo físico de la biología, mortalidad, deseos y necesidades podría ser para ellos como vemos nosotros a las especies oceánicas primitivas que viven en el mar gélido y oscuro. Para tu información, pensar en otra especie que haya dominado la mortalidad me hace sentir envidia y tristeza.
Nunca sabremos quiénes están escuchando
Posibilidad 4) Hay civilizaciones depredadoras aterradoras ahí fuera y la mayor parte de la vida inteligente sabe que es mejor no emitir señales al exterior y anunciar su ubicación. Este es un concepto desagradable y ayudaría a explicar la falta de señales recibidas por los satélites del SETI. También quiere decir que nosotros podríamos ser los novatos super ingenuos que están siendo increíblemente estúpidos y arriesgados al transmitir señales al exterior. Hay un debate ahora mismo sobre si deberíamos participar en METI (Messaging to Extraterrestrial Intelligence —lo contrario del SETI) o no, y la mayoría dice que no deberíamos. Stephen Hawking advierte de que “si los alienígenas nos visitasen, las consecuencias serían como cuando Colón llegó a América, lo que no salió muy bien para los nativos americanos”. Incluso Carl Sagan (un partidario por lo general de que cualquier civilización lo suficientemente avanzada para el viaje interestelar sería altruista, no hostil) llamó a la práctica de METI “profundamente imprudente e inmadura”, y recomendó que “los chicos más nuevos en un cosmos extraño e incierto deberían escuchar en silencio durante mucho tiempo, aprendiendo pacientemente sobre el universo y comparando apuntes, antes de gritarle a una jungla desconocida que no entendemos”. Miedo.
Lo cierto es que no podemos saberlo
Posibilidad 5) Solo hay un caso de vida con inteligencia superior -una civilización “super depredadora” (como lo son los humanos aquí en la Tierra)- que está mucho más avanzada que todas las demás y se mantiene en esa posición exterminando cualquier civilización inteligente una vez pasan un cierto nivel. Esto sería una mierda. Podría ser así: exterminar a todas las inteligencias emergentes es un uso ineficiente de recursos, seguramente porque la mayoría se extinguen solas. Pero pasado un cierto punto, los super seres mueven ficha —porque para ellos, una especie inteligente emergente se vuelve como un virus una vez empieza a crecer y expandirse. Esta teoría sugiere que el que fuera el primero de la galaxia en alcanzar la inteligencia ganó, y ahora nadie más tiene ninguna posibilidad. Esto explicaría la falta de actividad ahí fuera porque el número de civilizaciones super inteligentes sería solo una.
Posibilidad 6) Hay un montón de actividad y ruido ahí fuera, pero nuestra tecnología es demasiado primitiva y estamos prestando atención a las cosas equivocadas. Como si entrases en un edificio de oficinas moderno, encendieses un walkie-talkie, y cuando no escuchases ninguna actividad (que por supuesto no escucharías porque todo el mundo está hablando por WhatsApp, no usando walkie-talkies), concluyeras que el edificio debe de estar vacío. O tal vez, como ha señalado Carl Sagan, podría ser que nuestras mentes funcionan exponencialmente más rápido o más despacio que otra forma de inteligencia exterior —por ejemplo, ellos tardan 12 años en decir “Hola”, y cuando oímos esa comunicación, nos suena a ruido.
Posibilidad 7) Estamos contactando con otra vida inteligente, pero el gobierno lo oculta. Cuanto más leo sobre el tema, más me parece una teoría estúpida, pero tenía que mencionarla porque se habla mucho de ella.
Posibilidad 8) Las civilizaciones superiores son conscientes de nuestra existencia y nos están observando (también conocida como “la hipótesis del zoológico”). Por lo que sabemos, las civilizaciones super inteligentes existen en una galaxia firmemente regulada, y a nuestra Tierra la tratan como parte de un enorme parque natural protegido, con una política estricta de “se mira, pero no se toca” para planetas como el nuestro. Nosotros no los percibiríamos, porque si una especie mucho más lista quisiera observarnos, sabría hacerlo fácilmente sin que nosotros nos diéramos cuenta. A lo mejor hay una regla parecida a la “Primera Directiva” de Star Trek, que prohíbe a los seres super inteligentes establecer ningún contacto abierto con especies inferiores como nosotros o mostrarse de ningún modo hasta que la especie inferior haya alcanzado cierto nivel de inteligencia.
Posibilidad 9) Las civilizaciones superiores están aquí, a nuestro alrededor. Pero somos demasiado primitivos como para percibirlas. Michio Kaku lo resume así:
“Digamos que hay un hormiguero en medio del bosque. Y justo al lado del hormiguero construyen una superautopista de diez carriles. Y la pregunta es “¿Serían las hormigas capaces de entender qué es una superautopista de diez carriles? ¿Serían capaces las hormigas de entender la tecnología y las intenciones de los seres que construyen la autopista a su lado?”.
Así que no es que no podamos recibir las señales del Planeta X usando nuestra tecnología, es que ni siquiera podemos comprender qué son los seres del Planeta X o lo que intentan hacer. Está tan por encima de nosotros que incluso si realmente hubieran querido explicárnoslo, sería como intentar enseñarle a las hormigas qué es internet.
Así mismo, esto podría responder también a “Bueno, si hay tantas sofisticadas civilizaciones Tipo III, ¿por qué no han contactado con nosotros todavía?”. Para responder a eso, preguntémonos —cuando Pizarro se adentró en Perú, ¿se paró un momento en un hormiguero a intentar comunicarse? ¿Fue magnánimo, intentando ayudar a las hormigas del hormiguero? ¿Se volvió hostil y frenó su misión original para ponerse a destrozar el hormiguero? ¿O fue el hormiguero completamente irrelevante para Pizarro? Esa podría ser nuestra situación.
Situación 10) Estamos completamente equivocados con respecto a nuestra realidad. Hay muchas maneras de las que podríamos simplemente estar totalmente equivocados en todo lo que pensamos. El universo podría parecer de una forma y ser cualquier otra cosa completamente diferente, como un holograma. O a lo mejor nosotros somos los alienígenas y nos han plantado aquí como un experimento o como una forma de fertilizante. Incluso existe la posibilidad de que todos formemos parte de una simulación por ordenador de algún investigador de otro mundo, y que otras formas de vida simplemente no hubieran sido programadas en la simulación.
Mientras nuestra posiblemente inútil búsqueda de inteligencia extraterrestre continúa, no estoy del todo seguro de mi postura. Francamente, descubrir tanto que estamos oficialmente solos en el universo como oficialmente acompañados por otros sería escalofriante, lo que es común a todas las tramas surrealistas listadas anteriormente —sea cual sea realmente la verdad, es alucinante.
Más allá de su sorprendente componente de ciencia ficción, la paradoja de Fermi también me deja un profundo sentimiento de humildad. No solo la típica humildad de “oh, sí, soy microscópico y mi existencia dura tres segundos” que siempre despierta el universo. La paradoja de Fermi revela una humildad más afilada y personal, una que solo puede darse tras pasarte horas de investigación, escuchando a los científicos más reconocidos de tu especie presentar teorías demenciales, cambiar de opinión una y otra vez y contradecirse violentamente unos a otros —recordándonos que las generaciones futuras nos verán igual que vemos nosotros a los antiguos que estaban seguros de que las estrellas eran la cara inferior de la bóveda del cielo, y pensarán “madre mía, realmente no tenían ni idea de lo que ocurría”.
Siempre nos ha gustado fantasear con los extraterrestres
Para agravar la situación, está el golpe a la autoestima de nuestra especie que conlleva toda esta charla de civilizaciones Tipo II y III. Aquí en la Tierra somos los reyes de nuestro pequeño mundo, orgullosos de reinar sobre el enorme grupo de imbéciles con los que compartimos planeta. Y en esta burbuja sin competencia y sin nadie que nos juzgue, es poco frecuente que nos enfrentemos al concepto de ser una especie dramáticamente inferior a nadie. Pero después de pasar mucho tiempo con las Civilizaciones Tipo II y III, nuestro poder y orgullo parece un poco como de David Brent.
Dicho esto, dado que mi perspectiva habitual es la de que la humanidad es una huérfana solitaria en una roca minúscula en medio de un universo desierto, la lección de humildad de que probablemente no seamos tan listos como creemos y la posibilidad de que mucho sobre lo que estamos seguros pueda estar equivocado, suena maravilloso. Deja la puerta abierta, aunque solo sea una rendija, a que tal vez, solo tal vez, puede que haya algo más de lo que nos damos cuenta.
En este lugar encontré una exposición de rincones de la Naturaleza que merecen la pena ser vistos y, ante ellos, nos podemos hacer una idea de la rica variedad que nos ofrece el mundo y, si pensamos en los miles de millones de mundos que en las galaxias son… ¿Qué no podríamos encontrar en ellos?
1) Salar de Uyuni (Bolivia), el mayor espejo del mundo.
Durante la temporada de lluvias, el mayor desierto de sal del mundo se convierte en el espejo más grande del mundo. El Salar nació cuando varios lagos prehistóricos se unieron en uno solo.
2) Montañas Tianzi (China), la montañas de la película “Avatar”.
Estas montañas son únicas. Son tan extrañas que se utilizaron en la película “Avatar” de James Cameron. Formadas bajo el agua hace 380 millones de años. La tierra se elevó como resultado de la actividad volcánica. Algunos de los pilares han llegado a más de 4.000 metros sobre el nivel del mar.
3) Centinelas del Ártico, Finlandia.
Estos “centinelas” son realmente gigantescos árboles cubiertos de nieve y hielo. Esta extraña imagen se produce en invierno, cuando las temperaturas oscilan desde -40 hasta -15 grados centígrados.
4) Cuevas Reed Flute (China).
Este sistema de cuevas de 240 metros de longitud se encuentran en Guilin, y son una de las atracciones más populares en China durante más de 1.200 años. Las hermosas estalactitas, estalagmitas y columnas fueron creadas por la erosión del agua. Se destacan por sus múltiples luces de colores que crean un ambiente verdaderamente surrealista.
5) Skaftafell, cueva de hielo, en Islandia.
Las cuevas de hielo son estructuras temporales que se forman en el borde de los glaciares cuando el agua derretida forma un agujero. El hielo formado tiene muy pocas burbujas de aire y absorbe toda la luz excepto el azul, que da a la cueva ese color único.
6) Cañón del Antílope, Arizona, en Estados Unidos.
Este cañón se formó hace millones de años. El agua forjó una profunda grieta muy estrecha. Las paredes parecen ser de diferentes colores.
7) Mar de Estrellas, Isla Vaadhoo, Maldivas
Puede parecer normal durante el día, pero por la noche, esta playa cobra vida. El brillo en el agua proviene de microbios marinos llamados fitoplancton. La galaxia que se dibuja en la arena es impresionante.
La Gran Fuente Prismática, Wyoming
La Gran Fuente Prismática, en Wyoming, es el lugar más grande de aguas termales en los Estados Unidos. Los colores vivos son el resultado de los microbios pigmentados que crecen alrededor de los bordes del agua rica en minerales.
9) Dead Vlei, Namibia
Estas fotografías parecen un cuadro… pero son reales. Son fotografías del “valle muerto”, donde los árboles mueren frente a un fondo con una de las dunas de arena más altas del mundo. El desierto se va acercando y matando cualquier tipo de vida.
10) Lago Baikal, Siberia.
El lago Baikal es el lago de agua dulce más grande y antiguo del mundo. En el invierno, el lago se congela pero el agua es tan clara que se puede ver 40 metros por debajo del hielo. En marzo, las heladas y el sol provocan grietas en la corteza de hielo y aparecen los fragmentos de hielo de color turquesa que vemos en la superficie.
11) Socotra, Yemen
Un tercio de la vida vegetal de la isla de Socotra no se encuentra en ningún otro lugar del planeta tierra. Una de las formas más extrañas es el árbol de sangre de dragón, que se asemeja a un paraguas.
Estas formaciones rocosas de colores son el resultado de los minerales que se han depositado durante 24 millones de años. El viento y la lluvia tallan formas increíbles en la roca, formando pilares naturales, torres, barrancos, valles y cascadas.
13) Túnel del Amor, Klevan, Ucrania
Este túnel se formó durante muchos años gracias a que los trenes hacían tres veces el mismo trayecto en un día y moldeaban los árboles circundantes. Ahora está abandonado y es un lugar romántico para una tarde de paseo.
14) Cuevas de Waitomo Glowworm (Nueva Zelanda)
Miles de diminutas luciérnagas cuelgan en el techo de esta gruta e irradian una luz luminiscente, creando una escena sacada de una película de ciencia ficción.
15) Las terrazas de arroz de Yuanyang, en China
Las técnicas de cultivo del condado de Yuanyang han creado un paisaje que es realmente sorprendente.
16) Lago Hillier, Australia
El color rosa de este lago es el resultado de un colorante creado por las algas y bacterias que hay en el agua. A pesar de la tonalidad extraña, el lago no parece tener efectos adversos en los seres humanos o la vida silvestre local.
17) La cascada blanca de Pamukkale, Turquía
Durante millones de años, las aguas termales de Pamukkale han transformado el paisaje. Aunque puede parecer que estas terrazas están hechos de hielo y nieve, Turquía tiene un clima cálido todo el año. El suelo está recubierto sólo de piedra caliza blanca.
18) Caño Cristales, Colombia.
Debido al extenso hábitat de fauna y flora, este río tiene una gran variedad de colores: amarillo, verde, azul, negro y rojo. Las rocas tienen alrededor de 1,2 mil millones de años, y los que lo visitan lo llaman el río más hermoso del mundo.
19) La Catedral de Mármol, en Chile
Formadas por miles de años gracias a las olas que chocan contra el carbonato de calcio. Estas cuevas tienen paredes lisas arremolinadas que reflejan las aguas azules del lago.
20) Calzada del Gigante, Irlanda del Norte
Hace unos 55 millones años, la intensa actividad volcánica de la zona formó una meseta de lava. Con el tiempo, la lava se enfrío y se fracturó creando columnas que son tan perfectas que casi parecen artificiales.
21) Géiser Fly, Nevada
Géiser Fly fue creado accidentalmente cuando se perforó un pozo. Los minerales y algas comenzaron a subir desde el géiser y se acumularon formando un montículo extraño.
22) Cascada bajo el agua, en Mauricio
Unas corrientes marinas muy fuertes empujan los sedimentos y la arena hacia abajo, creando esta cascada submarina.
23) Monte Roraima, Venezuela
Es uno de los montes más antiguos de la Tierra. Se remonta a dos mil millones años, cuando la tierra se levantó por encima del suelo por la actividad tectónica. Los lados de la montaña son escarpados acantilados verticales con varias cascadas. Es casi imposible de escalar.
24) Aogashima, Japón
Aogashima es una isla volcánica situada a 200 kilómetros de la costa de Tokio.
25) La cueva de Fingal, Escocia
Al igual que la Calzada del Gigante, esta cueva fue formada por el enfriamiento de la lava y su fracturación durante millones de años.
26) Río bajo el agua, Cenote Angelita, México
Debajo de las aguas del Cenote Angelita fluye un río lleno de sulfato de hidrógeno, que es mucho más pesado que el agua del río.
27) Mina de Naica, México
Esta mina de plata está recubierta de cristales enormes.
28) Playa Escondida, Islas Marietas, México
Esta magnífica playa escondida fue creada por una explosión militar en 1900. Sólo se puede acceder nadando a través de un túnel.
29) Lago Natron, Tanzania
Este lago tiene una forma única de alto contenido en sal. Los microorganismos amantes de la sal se desarrollan y producen un pigmento rojo que colorea el agua. Para otros animales, la sal es mortal: se calcifican y muchos acaban “convirtiéndose en piedra” después de entrar en contacto con el agua.
30) Estructura de Richat, Mauritania (El Ojo de África)
Se encuentra en medio del desierto del Sáhara. Es un lugar profundamente erosionado y tiene más de 24 kilómetros de diámetro. La formación natural es tan impresionante que, desde hace mucho tiempo, los científicos creían que era el sitio de un impacto de un asteroide.
31) Tierras Altas de Islandia
Las tierras altas de Islandia tienen algunos de los lugares naturales más magníficos del hemisferio norte. Glaciares alucinantes, cráteres, lagos y géiseres… pero cuando cae la noche, la zona se convierte en uno de los mejores lugares para presenciar la aurora boreal.
32) Parque nacional de los Lagos de Plitvice, Croacia
El Parque Nacional de Plitvice es el más grande de su tipo en Croacia y el más antiguo en el sudeste de Europa. Tiene hermosos lagos, cuevas y cascadas.
33) La Catedral de Sal, en Colombia.
Este lugar fue excavado por los mineros de sal. Un arquitecto reconvirtió ese lugar en una catedral para que los lugareños pudieran orar por tan sacrificados hombres.
34) Río Tinto, en España.
Es un río de color rojo debido a la interacción entre los metales pesados de la zona y unas bacteria existentes en río. El río tiene un alto contenido en azufre por lo que es muy interesante que puedan vivir dichas bacterias.
35) Lagunas de Cañada del Hoyo, Cuenca, España.
Son en total siete lagunas repartidas en una extensión no muy grande. Lo curioso de estas siete lagunas es que todas tienen un color diferente debido a los micro-organismos que viven en ellas y depende de cómo les de la luz.
Finaliza con una recomendación:
“Comparte estas fotos surrealistas con la gente que te encantaría viajar.”
Después de este viaje por rincones de nuestro mundo sorprendente, nos podemos preguntar, y, teniendo todo esto y mucho más, ¿Qué sentido tiene querer ir a otros mundos en los que no sabemos que podemos encontrar? A pesar de esta reflexión de sensatez, no cejaremos en el empeño de visitar otros lugares fuera de este nuestro… ¡El más hermoso!
Los cosmólogos la llaman Omega Negro al conjunto de la masa del Universo
La idea de la masa perdida se introdujo porque la densidad observada de la materia en el universo está cerca del valor crítico (10-29 g/cm3). Sin embargo, hasta comienzo de los ochenta, no hubo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. desde entonces la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado. Lo cierto es que la idea del universo inflacionista, estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico.
Diagrama de las tres posibles geometrías del universo: cerrado, abierto y plano, correspondiendo a valores del parámetro de densidad Ω0 mayores que, menores que o iguales a 1 respectivamente. En el universo cerrado si se viaja en línea recta se llega al mismo punto, en los otros dos no. ( Ω es lo que los cosmólogos llaman el Omega Negro, es decir, la cantidad de materia que hay en el Universo).
La predicción de Guht viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los muchos otros procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.
El proceso mediante el cual la fuerza nuclear fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; una botella de leche explotará si se deja en el exterior una noche fría del crudo invierno. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.
Lo que sí sorprende es la enorme magnitud de la expansión. El tamaño del universo aumentó en un factor no menor de 1050. Este número es tan inmenso que virtualmente no tiene significado para la mayoría de la gente. Y es lógico que así sea, ya que, si su altura aumentase de repente en un factor tan grande como ése, se extendería de un extremo del universo al otro y les faltaría sitio. Incluso un solo protón de un solo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el universo.
En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una buena naranja. No es extraño que el nombre inflación esté ligado a este proceso en un cambio de fase tan descomunalmente inusual.
Todas estas ideas han dado lugar a que los científicos se planteen el problema de la clase de universo en el que vivimos, y, se ha llegado a la conclusión de que será el que determine la cantidad de materia que contenga, es decir, conforme lo determine Ω, signo que significa toda la masa que contiene el universo y que será la que determine su geometría final y también, qué clase de final le espera en función de ese parámetro que llamamos Densidad Crítica del Universo y que según las medidas más afinadas está en 10-29 g/cm3.
Claro que cuando uno lee estas cosas y le dicen que el universo sufrió una expansión de tal magnitud, no se puede sustraer a la pregunta: ¿No violaría un crecimiento tan rápido las reglas de Einstein contra viajar más rápido que la luz? Si un cuerpo material viajó de un extremo de una naranja al otro en 10-35 segundos, su velocidad excedió la de la luz en una cantidad muy considerable.
Claro que la respuesta a tal objeción la podemos encontrar, de manera simple y sencilla, en un globo que tiene dibujadas algunas galaxias. A medida que le añadimos aire y el globo se hincha (se expande), podemos apreciar cómo las galaxias se van separando las unas de las otras. Sin embargo, no son las galaxias las que viajan velozmente a medida que el aire entra en el globo, sino que es, el espacio mismo dentro del globlo el que se infla haciendo que las galaxias se muevan y dando la sensación de que son éstas las que corren, cuando, en realidad, es el espacio el que se está expandiendo. Ningún cuerpo material, ninguna de las galaxias se mueve a altas velocidades en el espacio. Las reglas contra el viaje a velocidad mayor que la luz sólo se aplica al movimiento dentro del espacio, no al movimiento del espacio mismo. Así que, nunca se ha violado la regla impuesta por la relatividad especial y la velocidad de la luz es una constante del universo inviolable.
La consecuencia de la rápida expansión se puede describir mejor con referencia a la visión que tenía Einstein de la gravitación. Antes de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribución de la materia (su forma precisa no importa). A causa de esta materia, el espacio-tiempo tendrá alguna forma característica. Podríamos suponer que estaba algo arrugado o bamboleado, es decir, no era uniforme y en presencia de materia se curvaba en función de la masa allí presente. Pero llegó la inflación y comenzó una especie de estiramiento del espacio-tiempo que dejó al universo como lo podemos ver hoy, es decir, según la materia que parece que contiene, es casi perfectamente plano por lo general.
Se ha tratado de medir la Densidad Crítica del Universo para poder saber en qué clase de universo estamos y, parece que es plano
Universo cerrado
Si Ω>1, entonces la geometría del espacio sería cerrada como la superficie de una esfera. La suma de los ángulos de un triángulo exceden 180 grados y no habría líneas paralelas. Al final, todas las líneas se encontrarían. La geometría del universo es, al menos en una escala muy grande, elíptico.
En un universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del universo, después de lo que empezará a contraerse hasta que toda la materia en el universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el universo tiene una gran suma de energía oscura (como sugieren los hallazgos recientes), entonces la expansión será grande.
Universo abierto
Si Ω<1, la geometría del espacio es abierta, p.ej., negativamente curvada como la superficie de una silla de montar. Los ángulos de un triángulo suman menos de 180 grados (llamada primera fase) y las líneas paralelas no se encuentran nunca equidistantes, tienen un punto de menor distancia y otro de mayor. La geometría del universo sería hiperbólica.
Incluso sin energía oscura, un universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un universo abierto es, o la muerte térmica” o “Big Freeze” o “Big Rip”, dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.
Universo plano
Si la densidad media del universo es exactamente igual a la densidad crítica tal que Ω=1, entonces la geometría del universo es plana: como en la geometría euclidiana, la suma de los ángulos de un triángulo es 180 grados y las líneas paralelas nunca se encuentran.
Sin energía oscura, un universo plano se expande para siempre pero a una tasa continuamente desacelerada: la tasa de expansión se aproxima asintóticamente a cero. Con energía oscura, la tasa de expansión del universo es inicialmente baja, debido al efecto de la gravedad, pero finalmente se incrementa. El destino final del universo es el mismo que en un universo abierto, la muerte caliente del universo, el “Big Freeze” o el “Big Rip”. En 2005, se propuso la teoría del destino del universo Fermión-Bosón, proponiendo que gran parte del universo estaría finalmente ocupada por condensado de Bose-Einstein y la cuasi-partícula análoga al fermión, tal vez resultando una implosión. Muchos datos astrofísicos hasta la fecha son consistentes con un universo plano.
En un Universo abierto, la relatividad general predice que el Universo tendrá una existencia indefinida, pero con un estado donde la vida que se conoce no puede existir. Bajo este escenario, la energía oscura causa que las tasa de expansión del universo se acelere. Llevándolo al extremo, una aceleración de la expansión eterna significa que toda la materia del Universo, empezando por las galaxias y eventualmente todas las formas de vida, no importa cuán pequeñas sean, se disgregarán en partículas elementales desligadas. El estado final del Universo es una singularidad, ya que la tasa de expansión es infinita.
El Big Crunch. El eje vertical se puede considerar como tiempo positivo o negativo
La teoría del Big Crunch es un punto de vista simétrico del destino final del Universo. Justo con el Big Bang empezó una expansión cosmológica, esta teoría postula que la densidad media del Universo es suficiente para parar su expansión y empezar la contracción. De ser así, se vería cómo las estrellas tienden a ultravioleta, por efecto Doppler. El resultado final es desconocido; una simple extrapolación sería que toda la materia y el espacio-tiempo en el Universo se colapsaría en una singularidad espaciotemporal adimensional, pero a estas escalas se desconocen los efectos cuánticos necesarios para ser considerados -se aconseja mirar en Gravedad-Cuántica-..
Este escenario permite que el Big Bang esté precedido inmediatamente por el Big Crunch de un Universo precedente. Si esto ocurre repetidamente, se tiene un universo oscilante. El Universo podría consistir en una secuencia infinita de Universos finitos, cada Universo finito terminando con un Big Crunch que es también el Big Bang del siguiente Universo. Teóricamente, el Universo oscilante no podría reconciliarse con la segunda ley de la termodinámica:
la entropía aumentaría de oscilación en oscilación y causaría la muerte caliente. Otras medidas sugieren que el Universo no es cerrado. Estos argumentos indujeron a los cosmólogos a abandonar el modelo del Universo oscilante. Una idea similar es adoptada por el modelo cíclico, pero esta idea evade la muerte caliente porque de una expansión de branas se diluye la entropía acumulada en el ciclo anterior.
Como podéis comprobar por todo lo anteriormente leído, siempre estamos tratando de saber en qué universo estamos y pretendemos explicar lo que pudo pasar desde aquel primer momento que no hemos podido comprender de manera exacta y científicamente autosuficiente para que sea una ley inamovible del nacimiento del universo. Simplemente hemos creado modelos que se acercan de la mejor manera a lo que pudo ser y a lo que podría ser.
Cuando pasen algunos miles de millones de años más, no sabemos que será del Universo ni que rumbo habrán tomado las cosas, toda vez que, el Universo es dinámico y cambiante. Si todo sigue como ahora lo podemos contemplar, lo que parece es que vamos, sin remisión, hacia una muerte térmica del Universo en el que el espacio continuará expandiéndose y las galaxias se alejaran las unas de las otras hasta que, la entropía deje sin energía a todo el universo que, como sistema cerrado, se verá abocado a quedar estático, en el frío más profundo de los -273,15 ºC. Allí, entonces, nada se moverá, ni los átomos tendrán la posibilidad de que sus componentes se muevan.
(“Según el tercer principio de la termodinámica, el cero absoluto es un límite inalcanzable. En septiembre de 2014, los científicos de la colaboración CUORE en el Laboratori Nazionali del Gran Sasso en Italia enfriaron un recipiente de cobre con un volumen de un metro cúbico a 0.006 kelvins (−273.144 °C) durante 15 días, estableciendo un récord para la temperatura más baja registrada en el universo conocido sobre un volumen contiguo tan grande. La dificultad para llegar a una temperatura tan baja en una cámara de enfriamiento es el hecho que las moléculas de la cámara, al llegar a esa temperatura, no tienen energía suficiente para hacer que esta descienda aún más.”)
Claro que, nada de todo lo anterior… ¡lo podemos asegurar!
“La tierra es el único planeta del sistema solar que alberga vida (hasta donde sabemos). Eso hace que la temperatura media del planeta sea de 15º C, eso hace que podamos encontrar agua en estado líquido. El agua es imprescindible para la vida, en ella se realizan la totalidad de las reacciones químicas de nuestro metabolismo.”
La Noticia: “La mecánica cuántica desentraña los misterios del agua.”
Un Modelo informático basado en la ecuación de Schrödinger descubre la interacción de sus moléculas.
La ecuación de Schrödinger, uno de los fundamentos de la teoría de la mecánica cuántica, ha desvelado el funcionamiento de las moléculas del agua gracias al uso de un conjunto de ordenadores super-potentes. Formada por dos átomos de hidrógeno y por uno de oxígeno, se cree que el secreto de las propiedades de este líquido tan común como misterioso radica en la capacidad de sus moléculas para formar determinados enlaces entre los átomos de hidrógeno. El desarrollo de este nuevo modelo informático podría tener múltiples aplicaciones, y quizá resuelva determinadas cuestiones como la razón por la que el agua, en estado sólido (hielo), no se hunde dentro de sí misma.
La Noticia de prensa por Yaiza Martínez.
Esencial para todas las formas de vida, y objetivo eterno de estudio, el agua es una sustancia con algunos misterios que aún no han podido ser revelados, al menos desde la física clásica.
El acercamiento a este extraño elemento constitutivo, sin embargo, desde la perspectiva de la física cuántica (desde la ecuación de Schrödinger para ser más exactos), y gracias al uso de un conjunto de ordenadores super-potentes, ha revelado la estructura subyacente del conjunto de moléculas aparentemente sencillas del agua, que están formadas “tan sólo” por dos átomos de hidrógeno y uno de oxígeno.
El logro lo ha alcanzado un equipo de científicos de la universidad norteamericana de Delaware y de la Radboud University de Holanda, que han desarrollado un nuevo método para desvelar las propiedades ocultas del agua, y sin necesidad de concienzudos experimentos de laboratorio: simplemente, informática.
Principios fundamentales
Y es que, en teoría, toda la química y la física de la materia a escala macroscópica podría ser descrita íntegramente por una enorme ecuación de Schrödinger aplicable a más de 10 elevado a 23 átomos de una unidad de materia.
Utilizar esta ecuación y aplicarla de manera eficaz es actualmente posible gracias al uso de ordenadores con una capacidad de cálculo super-potente, que permitirían comprender algunas de las enigmáticas propiedades del agua. Este tipo de herramienta informática de análisis ya se ha aplicado en otros campos, como la meteorología y la mecánica celeste.
Todo el mundo sabe que una molécula de agua es H2O, pero, aunque su composición parezca simple, el agua líquida en realidad es mucho más compleja que eso. Por ejemplo, señala Szalewicz, contrariamente a otros líquidos, el agua aumenta de volumen cuando se congela, lo que explica que el hielo flote en el agua. Por otro lado, el agua puede absorber grandes cantidades de calor antes de empezar a calentarse y lo libera lentamente mientras se enfría.
Las características únicas del agua parecen relacionarse con su estructura molecular y con la capacidad de sus moléculas para formar enlaces de hidrógeno con otras moléculas de agua. El hidrógeno de la molécula del agua tiene una carga ligeramente positiva, mientras que la carga del otro extremo de la molécula es ligeramente negativa.
Tradicionalmente se pensó que en el agua en estado líquido cada molécula se coordinaba con una media de otras cuatro moléculas gracias a estos enlaces de hidrógeno. Sin embargo, posteriormente se descubrió que esta coordinación tiene lugar sólo con dos moléculas.
Ambigüedades
Todas estas ambigüedades del agua han sido estudiadas desde la mecánica cuántica por Szalewicz y sus colegas, aplicando leyes de la física a un nivel microscópico.
El resultado: los investigadores han conseguido generar un nuevo marco teórico para describir la estructura y el comportamiento de la molécula del agua átomo a átomo, gracias a los ordenadores de última generación, multiprocesadores, capaces de aportar soluciones bastante ajustadas de las ecuaciones de la mecánica cuántica para la descripción de las fuerzas que ejercen unas moléculas del agua sobre otras. Esto debería permitir desvelar el porqué de las extrañas propiedades de este líquido.
Con un conjunto de ordenadores Linux funcionando en paralelo, y que realizaron cálculos a gran escala, el estudio tardó varios meses en completarse. El nuevo modelo puede predecir con bastante exactitud, tanto las propiedades de un par de moléculas de agua, como las del agua en estado líquido.
Las aplicaciones de este novedoso modelo, señalan los investigadores, van desde la posibilidad de comprender mejor el agua en diversos estados y en condiciones extremas, hasta el estudio de otros líquidos y sistemas moleculares, el ADN en biología o el llamado plegamiento de proteínas (proceso por el que una proteína alcanza su estructura tridimensional), entre otras.