May
31
¿Cómo será el futuro? Me gustaría conocerlo
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Lo cierto es que, cada vez que ha salido alguien, que como el precursor de la ciencia ficción, el entrañable Julio Verne, nos hablaba de viajes imposibles y de mundos insólitos, nadie pudo creer, en aquellos momentos, que todas aquellas “fantasías” serían una realidad en el futuro más o menos lejano. Todo lo que él imagino hace tiempo que se hizo realidad y, en algunos casos, aquellas realidades fantásticas, han sido sobrepasadas como podemos contemplar, en nuestras vidas cotidianas. Ingenios espaciales surcan los espacios siderales y, otros, lo hacen por el misterioso oceánico como fue predicho hace ahora más de un siglo.
Las fluctuaciones del vacío entre una esfera y una plana
En un estudio por un equipo de físicos con avanzados aparatos, han hallado un resultado del que nos dicen:
“La materia se construye sobre frágiles objetos. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vacío cuántico. Los investigadores simularon la frenética actividad que sucede en el interios de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común.”
Las consecuencias de la existencia del cuanto mínimo de acción fueron revolucionarios para la comprensión del vacío. Mientras la continuidad de la acción clásica suponía un vacío plano, estable y “realmente” vacío, la discontinuidad que supone el cuanto nos dibuja un vacío inestable, en continuo cambio y muy lejos de poder ser considerado plano en las distancias atómicas y menores. El vacío cuántico es de todo menos vacío, en él la energía nunca puede quedar estabilizada en valor cero, está fluctuando sobre ese valor, continuamente se están creando y aniquilando todo tipo de partículas, llamadas por eso virtuales, en las que el de su energía por el tiempo de su existencia efímera es menor que el cuanto de acción. Se llaman fluctuaciones cuánticas del vacío y son las responsables de que exista un que lo inunda todo llamado de punto cero.
Ahora, los profetas modernos resultan ser Físicos que nos hablan de sucesos cuánticos que no llegamos a comprender y que, son ¡tan extraños! que nos resultan poco familiares y como venidos de “otro mundo”, aunque en realidad, son fenómenos que ocurren en las profundidades de la materia.
Cada vez van siendo menor los visionarios y más los estudiosos científicos, tanto teóricos como experimentadores que, en todos los , nos llevan, sin que nos demós cuenta, hacia el futuro que, ¡puede ser de tántas maneras! Precisamente por eso, será bueno que nuestras mentes, no se resignen a que estémos confinados aquí, en esta nave espacial que llamamos Tierra y que surca el espacio interestelar a muy buena velocidad aunque no todos sean conscientes de ello.
Ascensor Espacial Erkki Halkka
Los avances que veremos en este mismo siglo, en todos los ámbitos del saber humano, serán sorprendentes y cambiaran nuestras vidas, nuestra Sociedad para el próximo siglo, será ya muy diferentes a ésta que conocemos. Nuestras propias vidas darán un salto cuantitativo y cualitativo en su período de duración y en su calidad de bienestar, podremos vivir un siglo y medio y tendremos menos enfermedades que ahora. las posibles innovaciones tecnológicas en tan dispares como la salud, la economía, la demografía, la energía, la robótica, el espacio, las telecomunicaciones y los transportes, darán un vuelco a nuestra forma de vida y entraremos en otra fase del futuro que viene y del pasado que dejamos atrás.
Estos serán los materiales con los que se construirá ese ascensor “imposible” que nos llevará 500 Km lejos de la Tierra, hacia las Estaciones Espaciales con las que se podrá acoplar, sin ninguno de los riesgos que conllevan los transbordadores actuales impulsados por Hidrógeno líquido de combustión, es decir, los pasajeros van montados sobre una bomba volante y, al mejor fallo…
Los ascensores espaciales eran hasta hace muy poco materia de ficción pura, pues ningún material conocido podía soportar la enorme tensión producida por su propio peso. Actualmente ciertos materiales comienzan a parecer viables como materia prima: los expertos en nuevos materiales consideran que teóricamente los nanotubos de carbono pueden soportar la tensión presente en un ascensor espacial.3 Debido a este avance en la resistencia de los nuevos materiales, varias agencias están estudiando la viabilidad de un futuro ascensor espacial:
En Estados Unidos, un ingeniero de la NASA llamado Bradley C. ha elaborado un proyecto preliminar que también están estudiando científicos de la NASA.Edwards afirma que ya existe la tecnología necesaria, que se necesitarían 20 años para construirlo y que su costo sería 10 veces menor que el de la Estación Espacial Internacional. El ascensor espacial de Edwards no se parece a los presentes en las obras de ficción, al ser mucho más modesto y a la vez innovador en lo que concierne a su eventual método de construcción.
Este sería el del recorrido y estaría preparado para conectar con bases espaciales. Ahora nos parece un suelo paero hace tiempo ya que se está trabajando, de manera muy seria, en su construcción en un futuro próximo y, desde luego, conseguirlo será un buen logro.
Existen algunos tratamientos con células madre, pero la mayoría todavía se encuentran en una etapa experimental. Investigaciones médicas, anticipan que un día con el uso de la tecnología, derivada de investigaciones para las células madre adultas y embrionarias, se podrá tratar el cáncer, diabetes, heridas en la espina dorsal y daño en los músculos, como también se podrán tratar otras enfermedades. Se les presupone un destino lleno de , que van desde patologías neurodegenerativas, como la enfermedad de Alzheimer o de Parkinson, hasta la fabricación de tejidos y órganos destinados al trasplante, pasando por la diabetes y los trastornos cardíacos.
En un futuro se espera utilizar células madre de cordón umbilical en terapia génica: podemos así tratar enfermedades causadas por la deficiencia o defecto de un determinado gen, introduciendo un determinado gen en la proliferación de las células madre In Vitro y trasplantar tales células en el paciente receptor. El uso de otros tipos de células como portadores de genes buenos en pacientes con enfermedades causadas por deficiencias o déficits genéticos, está siendo testeado a clínico. El primer trasplante de órgano bio-artificial en humanos, por su parte, confían en que pueda ver la luz dentro de “unos cinco o diez años”.
La bioinformática o la biotecnología consiste en la aplicación de tecnología informática en el análisis de biológicos . Los principales esfuerzos de investigación en estos incluyen el alineamiento de secuencias , la predicción de genes , predicción de la expresión génica y modelado de la evolución . Algunos ejemplos son el diseño de organismos para producir antibióticos , el desarrollo de vacunas más seguras y nuevos fármacos, los diagnósticos moleculares, las terapias regenerativas y el desarrollo de la ingeniería genética para curar enfermedades a través de la manipulación génica . Veamos algunas de ellas…
Formas nuevas de comunicarse y de adquirir datos
La fusión, energía limpia y barata y, todo, inagotable
Y mientras el mundo está pendiente de la crisis económica internacional, científicos e ingenieros trabajan intensamente en lo que podría ser la solución a los problemas energéticos del futuro. La clave es “fusión”. Al contrario que la tradicional energía nuclear, la energía de fusión es limpia y no contamina y, sus residuos, es el Helio fácilmente aprovechable. El Proyecto ITER sigue adelante.
La ciencia de la está avanzando a pasos agigantados. Los últimos avances en medicina que se dieron en estos diez o quince años pasados han sido sorprendentes, y podemos esperar un salto muy grande en la medicina dentro de los próximos años.
Algunos descubrimientos todavía no están al alcance de los pacientes, a pesar de que ya se han revelado como grandes avances científicos son necesarios muchos estudios y pruebas antes de que se puedan . No perdamos de vista en este ámbito del saber humano, ni la genética ni las nuevas nanotecnologías, lo que llaman el ojo biónico, la sangre artificial…
Cambiaran nuestras ciudades y nuestras Sociedades serán diferentes, los nuevos conocimientos llegarán también, a la vida cotidiana del hábitat humano y a su forma de , de viajar, e, incluso los alimentos del futuro no muy lejano, nos harán recordar con cierta nostalgia, estos que ahora criticamos.
Los modernos celulares irán insertados en el brazo
Cualquier será controlada por mecanismos informáticos
Este programa va más allá de los avances actuales para revelar la tecnología e inventos que nos permitirán ver a través de las paredes, viajar en el tiempo y en el espacio y colonizar planetas distantes. La tecnología inteligente que llevará ayudantes robóticos a los hogares, ciudades enteras a la Internet, y sistemas de entretenimiento que harán los sueños realidad en forma . Sí, virtual hoy pero… ¿Y mañana?
¡Tantas galaxias y estrellas, tantos mundos, tantas maravillas! Si no podemos en un futuro más o menos lejano, visitarlas, ¿Para qué tanta diversidad y tanta belleza? Si están , por algo será y, nosotros, aunque parezca que somos una ínfima cuestión en tan vasto Universo, seguramente seremos, unos privilegiados llamados a realizar grandes cosas. A pesar de nuestras muchas faltas y carencias…¡Lo estamos logrando!
Ya hemos dado los primeros y, nuestros ingenios espaciales tecnológicos robotizados, han realizado para nosotros las tareas que, de momento nos están vedadas pero, denle tiempo al tiempo y, sin duda alguna, en ese futuro soñado, estaremos en las estrellas y en esos otros mundos que presentimos hermanos de la Tierra y que podrán acoger a la Humanidad que, dentro de otros cincuenta años, llegará a la cifra de 8.000 millones de seres y, nuestro planeta, no puede con todo.
El futuro convive ya con nosotros y, al tenerlo tan cercano, no le atención a esos muchos cambios que con nosotros conviven. Lo cierto es que debe ser así, de otra manera, los cambios tan bruscos que se están produciendo, nos traumatizaría y, sin embargo, lo tomamos -unas veces por comprenderlos y otras por ignorarlos- con toda la normalidad. Esa es la manera en la que se desenvuelve el mundo de nuestra especie.
La Tierra del mañana nada tiene que ver con la Tierra de hoy. Será calcinada por la Gigante roja en que se convertirá el Sol antes de pasar a la fase final de enana blanca.
¿Cómo no podemos predecir que le puede pasar a la Tierra en el futuro?, mejor será ir “preparando las maletas” que, como decía mi padre, un viejo marinero curtido en mil tempestades: ¡”Más vale un por si acaso, que un yo creí”!
emilio silvera
May
30
¿Qué habrá más allá del Modelo Estándar de la Física de Partículas?
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
“Inicialmente, se presenta, de modo simplificado, el Modelo Estándar como una teoría sofisticada que identifica las partículas elementales y sus interacciones. Después, en el ámbito de esa teoría, se enfocan aspectos – el vacuo no es vacío; partículas desnudas y vestidas; materia oscura y viento oscuro; materia y antimateria; el campo y el bosón de Higgs; neutrinos oscilantes – que pueden ser motivadores desde el punto de vista de la enseñanza y del aprendizaje de la Física. Finalmente, se discute la probable superación de esa teoría por otra más completa.”



La Física actual busca una teoría más amplia que el modelo estándar . Una teoría que dé una descripción completa, unificada y consistente de la estructura fundamental del universo. ¿Será la compleja Teoría de cuerdas, que integra también la interacción gravitatoria?
El modelo estándar es una poderosa herramienta pero no cumple todas las expectativas; no es un modelo perfecto. En primer lugar, podríamos empezar por criticar que el modelo tiene casi veinte constantes que no se pueden calcular. Desde luego, se han sugerido numerosas ideas para explicar el origen de todos estos parámetros o números inexplicables y sus valores, pero el problema de todas estas teorías es que los argumentos que dan nunca han sido enteramente convincentes. ¿Por qué se iba a preocupar la naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el principio de la relatividad, pero no queremos abandonar todos los demás principios que ya conocemos. Ésos, después de todo, han sido enormemente útiles en el descubrimiento del modelo estándar. El mejor lugar para buscar un nuevo principio es precisamente donde se encuentran los puntos débiles de la presente teoría y, construímos máquinas como el LHC para que nos diga lo que no sabemos.
Una regla universal en la física de partículas es que para partículas con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo. El modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero existen varias razones para sospechar que sus predicciones pueden, finalmente (cuando podamos emplear más energía en un nivel más alto), resultar equivocadas.
Vistas a través del microscopio, las constantes de la naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático no hay nada que objetar, pero la credibilidad del modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas, o lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas. ¿Y por qué debería ser el modelo válido hasta aquí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables. ¿Dónde está la partícula de Higgs? ¿Cómo se esconde de nosotros el gravitón?
Parece que el Modelo estándar no admite la cuarta fuerza y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.
Claro que las cosas no son tan sencilla y si deseamos evitar la necesidad de un delicado ajuste de las constantes de la naturaleza, creamos un nuevo problema: ¿cómo podemos modificar el modelo estándar de tal manera que el ajuste fino no sea necesario? Está claro que las modificaciones son necesarias, lo que implica que muy probablemente haya un límite más allá del cual el modelo tal como está deja de ser válido. El modelo estándar no será nada más que una aproximación matemática que hemos sido capaces de crear, de forma que todos los fenómenos que hemos observado hasta el presente están reflejados en él, pero cada vez que se pone en marcha un aparato más poderoso, tenemos que estar dispuestos a admitir que puedan ser necesarias algunas modificaciones del modelo para incluir nuevos datos que antes ignorábamos.
Más allá del modelo estándar habrá otras respuestas que nos lleven a poder hacer otras preguntas que en este momento, no sabemos ni plantear por falta de conocimientos. Si no conociéramos que los protones están formados por Quarks, ¿Cómo nos podríamos preguntar si habrá algo más allá de los Quarks?
El gobierno de Estados Unidos, después de llevar gastados miles de millones de dólares, suspendió la construcción del super-colisionador superconductor de partículas asestando un duro golpe a la física de altas energías, y se esfumó la oportunidad para obtener nuevos datos de vital importancia para el avance de este modelo, que de momento es lo mejor que tenemos.
“Esta relación del modelo estándar se consigue con bosones de Higgs elementales en dobletes electrodébiles; está verificado experimentalmente a más del 1%. Aquí, g y g′ son acoplamientos gauge SU(2) y U(1) y tanθW = g′/g define el ángulo de mezcla débil.
La importante idea de una nueva interacción fuerte de gauge de fermiones sin masa en la escala electrodébil FEW que conducen a la ruptura espontánea de su simetría quiral, de la cual un sugrupo SU(2) ⊗ U(1) es de gauge débil, fue propuesta por primera vez en 1979 por S. Weinberg and L. Susskind. Este mecanismo “technicolor” es natural ya que no necesita ajuste fino de parámetros.”
Se han estado inventando nuevas ideas, como la supersimetría y el technicolor. Los astrofísicos estarán interesados en tales ideas porque predicen una gran cantidad de nuevas partículas superpesadas, y también varios tipos de partículas que interaccionan ultra-débilmente, los technipiones. Éstas podrían ser las WIMP’s (Weakly Interacting Massive Particles, o Partículas Masivas Débilmente Interactivas) que pueblan los huecos entre las galaxias, y serían así las responsables de la masa perdida que los astrofísicos siguen buscando y llaman “materia oscura”.
Que aparezcan “cosas” nuevas y además, imaginarlas antes, no es fácil. Recordemos cómo Paul Dirac se sintió muy incómodo cuando en 1931 dedujo, a partir de su ecuación del electrón, que debería existir una partícula con carga eléctrica opuesta.
Esa partícula no había sido descubierta y le daba reparo perturbar la paz reinante en la comunidad científica con una idea tan revolucionaria, así que disfrazó un poco la noticia: “Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió. Cuando poco después se identificó la auténtica antipartícula del electrón (el positrón) se sorprendió tanto que exclamó: “¡Mi ecuación es más inteligente que su inventor!”. Este último comentario es para poner un ejemplo de cómo los físicos trabajan y buscan caminos matemáticos mediante ecuaciones de las que, en cualquier momento (si están bien planteadas), surgen nuevas ideas y descubrimientos que ni se podían pensar. Así pasó también con las ecuaciones de Einstein de la relatividad general, donde Schwarzschild dedujo la existencia de los agujeros negros.
Se piensa que al principio del comienzo del tiempo, cuando surgió el Big Bang, las energías eran tan altas que allí reinaba la simetría total; sólo había una sola fuerza que todo lo englobaba. Más tarde, a medida que el universo se fue expandiendo y enfriando, surgieron las cuatro fuerzas que ahora conocemos y que todo lo rigen. Tenemos los medios, en los supercolisionadores de partículas, para viajar comenzando por 1.000 MeV, hasta finalizar en cerca de 1019 MeV, que corresponde a una escala de longitudes de aproximadamente 10–30 cm. Howard Georgi, Helen Quinn y Steven Weinberg descubrieron que ésta es la región donde las tres constantes de acoplamiento gauge se hacen iguales (U(1), SU(2) y SU(3)); resultan ser lo mismo. ¿Es una coincidencia que las tres se hagan iguales simultáneamente? ¿Es también una coincidencia que esto suceda precisamente en esa escala de longitud? Faltan sólo tres ceros más para alcanzar un punto de retorno. Howard Georgi y Sheldon Glashow descubrieron un modelo genuinamente unificado en el dominio de energías de 1019 MeV tal que, cuando se regresa de allí, espontáneamente surgen las tres fuerzas gauge tal como las conocemos. De hecho, ellos encontraron el modelo; la fórmula sería SU(5), que significa que el multiplote más pequeño debe tener cinco miembros.
Materia y Energía Oscura… Un Misterio…Sin resolver.
Y, a todo esto, ¿dónde está esa energía oculta? ¿Y donde la materia? Podemos suponer que la primera materia que se creo en el Universo fue la que llamamos (algún nom,bre había que ponerle) “Materia Oscura”, esa clase de Ilem o sustancia primera del Universo que mejor sería llamarla invisible, ya que, de no ser así, difícil sería explicar cómo se pudieron formar las primeras estrellas y galaxias de nuestro Universo, ¿dónde está el origen de la fuerza de Gravedad que lo hizo posible, sino en esa materia escondida?
¡Lo dicho! Necesitamos saber, y, deseo que de una vez por todas, se cumpla lo que dejó dicho Hilbert en su tumba de Gotinga (Alemania): “Tenemos que saber, ¡sabremos!. Pero…
¡Que sea pronto!
emilio silvera
May
30
La maravilla de… ¡los cuantos!
por Emilio Silvera ~
Clasificado en General ~
Comments (2)
La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…
La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas producidas por las vibraciones de las partículas cargadas que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.
Ley de Planck para cuerpos a diferentes temperaturas.
Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.
Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.
Acero al “rojo vivo”, el objeto está radiando en la zona de la luz visible.
Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:
E = hv
Donde E es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.
Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.
El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.
Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.
No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.
Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?
Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.
Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.
Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.
No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.
¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?
Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.
Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.
Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.
Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.
Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.
Quizá funcione bien, pero ¿dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.
Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos, incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!
La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecano-cuánticos.
Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.
Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.
¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?
Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.
emilio silvera
May
29
¡Tenemos que saber! Y sabremos
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Cuando hablamos de “Estrellas de Quarks”, “Materia Oscura”, “Bosón de Higgs”, “Singularidad”, “vacío”, Supercuerdas”, o, Teoría de Todo” entre otros muchos conceptos de física, astrofísica o astronomía no podemos dejar de plantearnos una pregunta: ¿Estará la teoría realmente confirmada o, por el contrario será que los experimentadores han sucumbido bajo la pressión de los teóricos?
En una prestigiosa página de ciencia, en relación al Bosón de Higgs, el pasado día 13 de Julio, se planteaba ésta pregunta: ¿El bosón de Higgs descubierto en el LHC es el predicho por el modelo estándar?
La combinación de todos los resultados experimentales disponibles, tanto en el Tevatrón (CDF+DZero) como en el LHC (Atlas+CMS), indica que el bosón escalar con una masa de 125,5 GeV descubierto el 4 de julio es el bosón de Higgs del modelo estándar. Si no lo es y se trata de un “impostor” (yo suelo llamarle un “primo”), la diferencia entre ambos es muy pequeña. La figura que abre esta entrada muestra que el descubrimiento de la nueva partícula tiene 6,9 sigmas de confianza estadística (la banda gris marca ±1 σ). Además, el cociente entre la tasa de producción de la nueva partícula y la tasa de producción predicha por el modelo estándar es de solo μ = 1,02 ± 0,15, lo que implica un gran acuerdo con el valor predicho μ = 1. El mejor ajuste combinado para la masa del Higgs es m = 125,5 ± 0,54 GeV, como muestra la figura de abajo.
“En resumen, el ajuste entre la nueva partícula y el bosón de Higgs es muy bueno, luego mientras nadie demuestre lo contrario, se ha descubierto el bosón de Higgs del modelo estándar. Este análisis y las figuras anteriores aparecen en Pier Paolo Giardino, Kristjan Kannike, Martti Raidal, Alessandro Strumia, “Is the resonance at 125 GeV the Higgs boson?,” arXiv:1207.1347, Submitted on 5 Jul 2012. “
(la fuente en Francis (th)E mule Science’s News).
Hablamos de aproximación y nada es aún seguro, queda mucho trabajo por delante para poder confirmar, asegurando que se trata de hecho, del famoso Bosón de Higgs. Pero, tal y como están las cosas, la inmensa cantidad de dinero que se ha empleado en el Proyecto, las personas que están implicadas en el mismo… nos llevan a plantearnos otra pregunta: ¿Son esos resultados reales o son simplemente el producto de los buenos deseos? Esto último es lo que aveces sospechan los críticos y los historiadores de la Ciencia. Parece que si la teoría no lo necesita, no existe, mientras que si la teoría lo requiere, todos los experimentadores lo verán rápidamente.
Claro que, este comentario está hecho con el mayor respeto hacia los experimentadores a los que, de partida, no considero sospechosos, pero esas ganas de encontrar algo…te puede llevar a “ver” lo que no hay. Un buen científico debe subestimar más que sobreestimar los resultados y la precisión de los mismos y de manera muy especial si esos resultados resultan ser de tanta importancia. Hasta tal punto lo es en este caso que, el mismísimo Modelo Estándar de la Física de Partículas e interacciones, está pendiente de dicha confirmación para saber, de dónde procede la masa de las partículas.
Claro que, en este caso, otros experimentos posteriores nos darán las respuestas definitivas que vendrán, a confirmar aquella primera impresión positiva o, por el contrario (como pasó otras veces) delatará un error cometido. En ambos casos, tendremos la verdad y eso, ya es bastante para saber que caminos debemos o no debemos seguir.
En el tema de la materia oscura, nos encontramos también algo confusos y, tenemos experimentos para todos los gustos. Unos dicen que han detectado materia oscura alrededor de las galaxias y, más tarde, vienen a decir que no, que no era materia oscura y que la observación se había desviado hacia derroteros engañosos. Muchos son los que confiorman la materia oscura y muchos también, los que la niegan.
Claro que todos sabemos que “Materia oscura” es la materia hipotética de composición desconocida que no emite o refleja suficiente radiación electromagnética para ser observada directamente con los medios técnicos actuales pero cuya existencia puede inferirse a partir de los efectos gravitacionales que causa en la materia visible, tales como las estrellas o las galaxias, así como en las anisotropías del fondo cósmico de microondas. No se debe confundir la materia oscura con la energía oscura. De acuerdo con las observaciones actuales de estructuras mayores que una galaxia, así como la cosmología del Big Bang, la materia oscura constituye la gran mayoría de la masa en el Universo observable. Frits Zwicky la utilizó por primera vez para declarar el fenómeno observado consistente con las observaciones de materia oscura como la velocidad rotacional de las galaxias y las velocidades orbitales de las galaxias en los cúmulos, las lentes gravitacionales de objetos de fondo por los cúmulos de galáxias así como el Cúmulo Bala (1E 0657-56) y la distribución de temperatura de gas caliente en galaxias y cúmulos de galaxias. La materia oscura también juega un papel central en la formación de estructuras y la evolución de galaxias y tiene efectos medibles en la anisotropía de la radiación de fondo de microondas. Todas estas líneas de pruebas sugieren que las galaxias, los cúmulos de galaxias y el Universo como un todo contienen mucha más materia que la que interactúa con la radiación electromagnética: lo restante es llamado “el componente de materia oscura”. Claro que, también todo esas anomalías observadas pudieran ser debidas a una fuerza que no hemos podido observar o descubrir, y, también, a cualquier otro factor desconocido de los que tántos esconde el Universo.
Los físicos proponen un mecanismo que explica el origen tanto de la materia oscura como de la materia ordinaria. Este mapa en 3D muestra la distribución a gran escala de la materia oscura, reconstruida a partir de las mediciones realizadas por el método de las lentes gravitatorias débiles con el Telescopio Espacial Hubble. El campo de visión abarca cerca de nueve veces el tamaño de la Luna llena.
De la lecturta del último párrafo, uno sale convencido totalmente de que, nadie sabe lo que la “materia oscura” pueda ser. Es como aquel chiste que contaban en el que, un cazador que tenía temblores en los brazos y era el que más pájaros mataba. Uno del grupo, algo mosca, decía: “Claro es que apunta a todos los lados”.
De la misma manera, los “expertos, se curan en salud y dicen que la hipotética “materia oscura” pueden ser: ” los WIMPs y los axiones, cuerpos astronómicos como las estrellas enanas y marrones y los planetas (colectivamente llamados MACHO) y las nubes de gases no luminosos.” y, seguro que me dejo alguno por detrás, ya que me faltan los neutrinos y los agujeros negros que también, fueron candidatos a “materia oscura”.
En lo que al vacío se refiere, son muchos los conceptos que como vacío está en nuestras bocas y, podemos decir: “Se ha detectado un inmenso vacío en el Universo lejano”. En la página de Astronomía Of The Day de la Nasa, con esa imagen de arriba, nos decían:
“¿Qué ha creado este gigantesco volumen vacío en el Universo? Nadie está aún seguro. Es más: se sigue investigando incluso el tamaño del hueco, estimado en unos millones de años-luz. El vacío no es un “agujero en el espacio” como podría serlo un agujero negro, sino más bien una inmensa región del Universo en la que al parecer no hay materia normal, o, siquiera, materia oscura. Se cree que el vacío puede contener energía oscura, sin embargo, y es claramente transparente a la luz.
La existencia de esta zona vacía se postula como posible explicación para la inusuales zonas frías cartografiadas en elmapa de la misión WMAP del fondo cósmico de microondas (CMB). Una posibilidad es que esta región del fondo cósmico de microondas no esté realmente tan fría, sino que la luz proveniente de ella haya sufrido, de alguna manera, un desplazamiento cosmológico al rojo mayor que el esperado. Se conocen otros vacíos de estas características en el Universo, pero éste parece tener efectos gravitatorios inusualmente grandes, por lo que podría ser el mayor vacío del Universo conocido. En una investigación sobre el tema, un reciente estudio encontró un número extrañamente reducido de fuentes císmicas de radio entre la Tierra y esta zona fría del fondo cósmico de microondas, dato que llevó a inferir la existencia de esta inmensa zona vacía.” Es decir, continuamos dando palos de ciego y, cuando no sabemos, teorizados y emitimos conjeturas e hipótesis que, no siempre, reflejan la realidad.
Es el estado cuántico con la menor energía posible. Generalmente no contiene partículas físicas. El término “Energía del punto cero” es usado ocasionalmente como sinónimo para el vacío cuántico de un determinado campo cuántico. De acuerdo a lo que se entiende actualmente por vacío cuántico o “estado de vacío”, este “no es desde ningún punto de vista un simple espacio vacío”. , y otra vez: “es un error pensar en cualquier vacío físico como un absoluto espacio vacío.” De acuerdo con la mecánica cuántica, el vacío cuántico no está verdaderamente vacío sino que contiene ondas electromagnéticas fluctuantes y partículas que saltan adentro y fuera de la existencia.
La existencia del cuanto de acción supone, realmente, la desaparición del vacío como tal. La mínima energía posible en el espacio (fluctuaciones cuánticas) deja de ser cero para pasar a depender del inverso de la distancia considerada. A la menor distancia posible (longitud de Planck = 10-35 metros) , se le asocia una energía considerable, equivalente a una masa de 0,00002 gramos, y si mantuviéramos la misma relación, la masa correspondiente a un metro sería del orden de 1,2 x1024 toneladas. Pero la propia existencia del mínimo cuanto de acción – principio de incertidumbre – determina que las fluctuaciones de energía del vacío queden acotadas, y sean cada vez menores conforme aumenta la distancia. Para las distancias macroscópicas, cotidianas para nosotros, son prácticamente nulas.
Después de leer todo lo anterior, tenemos que pensar y hacernos preguntas sobre lo que es y lo que realmente puede ser. Cierto que, no estamos en disposición de discernir entre la verdad y la mentira de todo lo que se dice y, para no estar seguros, no sabemos, con certeza, ni siquiera si el Big Bang existió y fue el origen del Universo, o, por el contrario, el Universo ya estaba aquí, o, se formó de otra manera.
Muchas de las cosas que se nos presentan como ciertas…No lo son, y, sin embargo, ahí perduran en nuestras mentes como si de algo real se tratara y, pasado el tiempo, se descubre que aquello, no era tal como nos lo contaron sino que, se trataba de algo distinto y totalmente opuesto a lo que fue nuestro credo.
Así hemos venido caminando los componentes de este grupo que forma una especie que llamamos humanidad. Somos curiosos y queremos saber sobre todo lo que a nuestro alrededor pasa, saber cómo pasaron las cosas y llegar a comprender el por qué sucedió así y no de otra manera. Pero la ciencia, la única que nos podía dar una respuesta, no es fácil y exige de ciertas reglas que debemos cumplir y, desde luego, no siempre hemos estado preparados para cumplirlas y, la mejor herramienta que hemos tenido ha sido nuestra Mente. Imaginación y pensamientos que nos llevaron a dibujar en nuestras mentes un “mundo” que no siempre coincide con el mundo pero, de esa manera, hemos avanzado y lo seguimos haciendo.
Bueno, es cierto, y debemos reconocer que aún no sabemos “todo” y, sin embargo, hemos podido llegar a comprender muchas cosas que sí podríamos explicar, todas esas imágenes de arriba y muchas más pueden ser explicadas de manera muy detallada y con abundancia de datos. La Humanidad no está pasara, nunca dejó de moverse y la imaginación que genera sus mentes…evoluciona sin cesar, es una fuente de creación y, aunque sea lentamente (el ritmo lo impone el Universo), vamos sabiendo y, algún día sabremos lo que realmente pueda ser eso que llamamos “materia oscura”, sabremos si el Higgs es el dador de las masas, y podremos comprender sobre el vacío y sus verdaderas propiedades y, además, sabremos sobre otros muchos secretos que el Universo guarda y que, nosotros, humildes humanos, vamos a desvelar.
emilio silvera
May
28
Plasma, Nebulosas, Gases, elementos, moléculas.
por Emilio Silvera ~
Clasificado en General ~
Comments (2)
Plasma, ese otro estado de la Materia (el cuarto dicen) que, según sabemos, resulta ser el más abundante del Universo. Todos desde pequeños aprendimos aquellos tres estados de la materia que cantábamos en el patio del centro educativo durante el recreo, donde todos a una gritábamos como papagayos: “Sólido, líquido y gaseoso”. Nada nos decían del Plasma, ese estado de la materia que, en realidad, cubre el 99% de toda la materia en nuestro Universo (bueno, hablamos de la materia conocida, esa que llamamos bariónica y está formada por átomos de Quarks y Leptones). Sospecho que hay otros estados de la materia que nos son desconocidos, o, que puede existir alguna clase de materia que no hemos podido localizar hasta el momento.
Filamentos de plasma en los remanentes de Supernovas
“Ylem o hylem (forma aumentativa de la palabra griega ὑλη [hylé] = materia) es el nombre dado por Aristóteles a la que consideraba sustancia fundamental de la cual procedería todo ente de materia.”
Según la energía de sus partículas, los plasmas constituyen el cuarto estado de agregación de la materia, tras los sólidos, líquidos y gases. Para cambiar de uno al otro, es necesario que se le aporte energía o que disminuya o aumente la temperatura. Si aumentamos de manera considerable la temperatura de un gas, sus átomos o moléculas adquieren energía suficiente para ionizarse al chocar entre sí. de modo que a ~ 20.000 K muchos gases presentan una ionización elevada. Sin embargo, átomos y moléculas pueden ionizarse también por impacto electrónico, absorción de fotones, reacciones químicas o nucleares y otros procesos.
Aquí podemos contemplar una enorme región ionizada en la Nebulosa del Pelícano. Estrellas nuevas emiten potente radiación ultravioleta que ataca el espesor de la Nebulosa molecular y hace que, el gas se ionice fuertemente creando una luminosidad que “viste” de azul claro todo el contorno que circunda el radio de acción de las estrellas.
Un plasma es un gas muy ionizado, con igual número de cargas positivas y negativas. Las cargas otorgan al Plasma un comportamiento colectivo, por las fuerzas de largo alcance existente entre ellas. En un gas, cada partícula, independientemente de las demás, sigue una trayectoria rectilínea, hasta chocar con otra o con las grandes paredes que la confinan. En un plasma, las cargas se desvían atraídas o repelidas por otras cargas o campos electromagnéticos externos, ejecutando trayectorias curvilíneas entre choque y choque. Los gases son buenos aislantes eléctricos, y los plasmas, buenos conductores.
En la Tierra, los plasmas no suelen existir en la naturaleza, salvo en los relámpagos, que son trayectorias estrechas a lo largo de las cuales las moléculas de aire están ionizadas aproximadamente en un 20%, y en algunas zonas de las llamas. Los electrones libres de un metal también pueden ser considerados como un plasma. La mayor parte del Universo está formado por materia en estado de plasma. La ionización está causada por las elevadas temperaturas, como ocurre en el Sol y las demás estrellas, o por la radiación, como sucede en los gases interestelares o en las capas superiores de la atmósfera (ver trabajo más abajo), donde produce el fenómeno denominado aurora.
En aquellos primeros momentos el plasma era lo que prevalecía como materia cósmica primera
“Las partículas del gas no tienen tiempo de recombinarse. La presencia de partículas ionizadas (electrones, protones) se da en el espacio, por ejemplo. –O sea que el universo es un plasma. –El 99,99 por ciento de la materia visible del universo está en estado de plasma: el Sol, las estrellas, la materia interestelar…”
Así que, aunque escasos en la Tierra, el Plasma constituye la materia conocida más abundante del Universo, más del 99%. Abarcan desde altísimos valores de presión y temperatura, como en los núcleos estelares, hasta otros asombrosamente bajos en ciertas regiones del espacio. Uno de sus mayores atractivos es que emiten luz visible, con espectros bien definidos, particulares en cada especie. Algunos objetos radiantes, como un filamento incandescente, con espectro continuo similar al cuerpo negro, o ciertas reacciones químicas productoras de especies excitadas, no son plasmas, sin embargo, lo son la mayoría de los cuerpos luminosos.
Bombilla de incandescencia
Los Plasmas se clasifican según la energía media (o temperatura) de sus partículas pesadas (iones y especies neutras). Un primer tipo son los Plasmas calientes, prácticamente ionizados en su totalidad, y con sus electrones en equilibrio térmico con las partículas más pesadas. Su caso extremo son los Plasmas de Fusión, que alcanzan hasta 108 K, lo que permite a los núcleos chocar entre sí, superando las enormes fuerzas repulsivas inter-nucleares, y lograr su fusión. Puede producirse a presiones desde 1017 Pa, como en los núcleos estelares, hasta un Pa, como en los reactores experimentales de fusión.
Alcator C-Mod tokamak | Research | MIT Plasma Science and Fusion Center
Los reactores de fusión nuclear prácticos están ahora un poco más cerca de la realidad gracias a nuevos experimentos con el reactor experimental Alcator C-Mod del MIT. Este reactor es, de entre todos los de fusión nuclear ubicados en universidades, el de mayor rendimiento en el mundo.
Los nuevos experimentos han revelado un conjunto de parámetros de funcionamiento del reactor, lo que se denomina “modo” de operación, que podría proporcionar una solución a un viejo problema de funcionamiento: cómo mantener el calor firmemente confinado en el gas caliente cargado (llamado plasma) dentro del reactor, y a la vez permitir que las partículas contaminantes, las cuales pueden interferir en la reacción de fusión, escapen y puedan ser retiradas de la cámara.
Otros Plasmas son los llamados térmicos, con e ~lectrones y especies pesadas en equilibrio, pero a menor temperatura ~ 103 – 104 K, y grados de ionización intermedios, son por ejemplo los rayos de las tormentas o las descargas en arcos usadas en iluminación o para soldadura, que ocurren entre 105 y ~ 102 Pa. Otro tipo de Plasma muy diferente es el de los Plasmas fríos, que suelen darse a bajas presiones ( < 102 Pa), y presentan grados de ionización mucho menores ~ 10-4 – 10-6. En ellos, los electrones pueden alcanzar temperaturas ~ 105 K, mientras iones y neutros se hallan a temperatura ambiente. Algunos ejemplos son las lámparas de bajo consumo y los Plasmas generados en multitud de reactores industriales para producción de películas delgadas y tratamientos superficiales.
La tecnología nos acerca a regiones muy lejanas y nos cuenta lo que allí existe. Estos hallazgos están situados a 1.344 años luz de nuestro Sistema solar, la familiar Nebulosa de Orión que guarda muchos secretos que tratamos de desvelar.
El Observatorio Espacial Herschel de la ESA ha puesto de manifiesto las moléculas orgánicas que son la llave para la vida en la Nebulosa de Orión, una de las regiones más espectaculares de formación estelar en nuestra Vía Láctea. Este detallado espectro, obtenido con el Instrumento Heterodino para el Infrarrojo Lejano (Heterodyne Instrument for the Far Infrared, HIFI) es una primera ilustración del enorme potencial de Herschel-HIFI para desvelar los mecanismos de formación de moléculas orgánicas en el espacio. Y, para que todo eso sea posible, los Plasmas tienen que andar muy cerca.
En los Plasmas calientes de precursores moleculares, cuanto mayor es la ionización del gas, más elevado es el grado de disociación molecular, hasta poder constar solo de electrones y especies atómicas neutras o cargadas; en cambio, los Plasmas fríos procedentes de especies moleculares contienen gran proporción de moléculas y una pequeña parte de iones y radicales, que son justamente quienes proporcionan al Plasma su característica más importante: su altísima reactividad química, pese a la baja temperatura.
En la Naturaleza existen Plasmas fríos moleculares, por ejemplo, en ciertas regiones de las nubes interestelares y en las ionosfera de la Tierra y otros planetas o satélites. Pero también son producidos actualmente por el ser humano en gran variedad para investigación y multitud de aplicaciones.
En un número de la Revista Española de Física dedicado al vacío, el tema resulta muy apropiado pues no pudieron generarse Plasmas estables en descargas eléctricas hasta no disponer de la tecnología necesaria para mantener presiones suficientemente bajas; y en el Universo, aparecen Plasmas fríos hasta presiones de 10 ⁻ ¹⁰ Pascales, inalcanzable por el hombre.
Lo que ocurre en las Nubes moleculares es tan fantástico que, llegan a conseguir los elementos necesarios para la vida prebiótica que, más tarde situados en el planeta y ambiente adecuados, tras cumplirse las reglas y cubrir los parámetros adecuados, dan lugar al surgir de la vida.
El papel de las moléculas en Astronomía se ha convertido en un área importante desde el descubrimiento de las primeras especies poliatómicas en el medio interestelar. Durante más de 30 años, han sido descubiertas más de 150 especies moleculares en el medio interestelar y gracias al análisis espectral de la radiación. Muchas resultan muy exóticas para estándares terrestres (iones, radicales) pero buena parte de estas pueden reproducirse en Plasma de Laboratorio. Aparte del interés intrínseco y riqueza de procesos químicos que implican, estas especies influyen en la aparición de nuevas estrellas por su capacidad de absorber y radiar la energía resultante del colapso gravitatorio, y de facilitar la neutralización global de cargas, mucho más eficientemente que los átomos.
Su formación en el espacio comienza con la eyección de materia al medio interestelar por estrellas en sus últimas fases de evolución y la transformación de éstas por radiación ultravioleta, rayos cósmicos y colisiones; acabando con su incorporación a nuevas estrellas y Sistemas planetarios, en un proceso cíclico de miles de millones de años.
En las explosiones supernovas se producen importantes transformaciones en la materia que, de simple se transforma en compleja y dan lugar a todas esas nuevas especies de moléculas que nutren los nuevos mundos en los que podemos encontrar elementos como el oro y el platino que han sido creados en sucesos de una magnitud aterradora donde las fuerzas desatadas del Universo han quedado sueltas para transformarlo todo.
El H₂ y otras moléculas diatómicas homo-nucleares carecen de espectro rotacional. Detectando las débiles emisiones cuadru-polares del H₂ en infrarrojo, se ha estimado una proporción de H₂ frente a H abrumadoramente alto ( ~ 104) en Nubes Interestelares con densidades típicas de ~ 104 partículas /cm3; pero dada la insuficiente asociación radiactiva del H para formar H2, ya mencionada, el H2 debe producirse en las superficies de granos de polvo interestelar de Carbono y Silicio, con diámetros ~ 1 nm — μm, relativamente abundantes en estas nubes.
Experimentos muy recientes de desorción programada sobre silicatos ultra-fríos, demuestran que tal recombinación ocurren realmente vía el mecanismo de Langmuir-Hinshelwood, si bien los modelos que expliquen las concentraciones de H2 aún deben ser mejorados.
Por otro lado, ciertas regiones de las nubes en etapas libres de condensación estelar presentan grados de ionización ~ 10-8 – 10-7 a temperaturas de ~ 10 K. La ionización inicial corresponde principalmente al H2 para formar H2 +, que reacciona eficientemente con H2, dando H3 + + H (k = 2• 10-9 cm3 • s-1.
El H3, de estructura triangular, no reacciona con H2 y resulta por ello muy “estable” y abundante en esas regiones de Nebulosas interestelares, donde ha sido detectado mediante sus absorciones infrarrojas caracterizadas por primera vez en 1980 en descargas de H2 en Laboratorio.
La constelación de Orión contiene mucho más de lo que se puede ver, ahí están presentes los elementos que como el H2 que venimos mencionando, tras procesos complejos y naturales llegan a conseguir otras formaciones y dan lugar a la parición de moléculas significativas como el H2O o HCN y una gran variedad de Hidrocarburos, que podrían contribuir a explicar en un futuro próximo, hasta el origen de la vida.
La detección por espectroscopia infrarroja de COH+ y N2H+, formados en reacciones con H3 + a partir de CO y N2, permite estimar la proporción de N2/CO existente en esas regiones, ya que el N2 no emite infrarrojos. Descargas de H2 a baja presión con trazas de las otras especies en Laboratorio conducen casi instantáneamente a la aparición de tales iones y moléculas, y su caracterización puede contribuir a la comprensión de este tipo de procesos.
Así amigos míos, hemos llegado a conocer (al menos en parte), algunos de los procesos asombrosos que se producen continuamente en el Espacio Interestelar, en esa Nebulosas que, captadas por el Hubble u otros telescopios, miramos asombrados maravillándonos de sus colores que, en realidad, llevan mensajes que nos están diciendo el por qué se producen y que elementos son los causantes de que brillen deslumbrantes cuando la radiación estelar choca de lleno en esas nubes en la que nacen las estrellas y los nuevos mundos…y, si me apurais un poco, también la vida.
emilio silvera