miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Sabremos alguna vez? ¡Es tan grande el Universo…!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pero ¿Qué es un cuásar? (debajo tenéis algunos)

 Definición de quasar - Qué es, Significado y ConceptoQué es un Quasar? ¿Cómo Funciona? - Ciencia y educación en Taringa!▷ ¿Qué son los quásares? — AstrobitácoraHubble Space Telescope Spies Galaxy/Black Hole Evolution in Action

El cuásar es la fuente astronómica de energía electromagnética que incluye radiofrecuencia y luz visible

 

Los cuásares están entre los objetos más distantes en el universo. La palabra cuásar o “cuásar” es una contracción de las palabras “cuasi” y “stellar”, por ello son llamados así por su apariencia estelar. El cuásar más lejano hasta ahora es SDSS 1030 +0524 y se halla a unos 13000 millones de años-luz de distancia apenas unos 700 millones después de nacer el universo. La medición de la distancia de estos objetos se toma de la velocidad de alejamiento que presentan, dato que nos lo da el desplazamiento al rojo (z). Se cree que un cuásar nace cuando se fusionan dos galaxias y sus agujeros negros centrales quedan convertidos en este potente y energético objeto.

El cuásar 3C191 fue localizado con un desplazamiento al rojo de 1,95 y por eso su luz salió cuando el universo tenía sólo una quinta parte de su edad actual, hace casi once mil millones de años, llevando información codificada sobre el valor de la constante de estructura fina en ese momento. Con la precisión de las medidas alcanzables entonces, se encontró que la constante de estructura fina era la misma entonces que ahora dentro de un margen de unos pocos por ciento:

α (z = 1,95/α(z = 0) = 0,97 ± 0,05

2018 noviembre : Blog de Emilio Silvera V.2017 julio 06 : Blog de Emilio Silvera V.

Poco después , en 1967, Bahcall y Schmidt observaron un par de líneas de emisión de oxígeno que aparecen en el espectro de cinco galaxias que emiten radioondas, localizadas con un desplazamiento hacia el rojo promedio de 0,2 (emitiendo así su luz hace unos dos mil millones de años: Aproximadamente la época en que el reactor de Oklo estaba activo en la Tierra y obtuvieron un resultado consistente con ausencia de cambio en la constante de estructura fina que era aún diez veces más fuerte:

α (z = 0,2)/α(z = 0) = 1,001 ± 0,002

Estas observaciones excluían rápidamente la propuesto por Gamow de que la constante de estructura fina estaba aumentando linealmente con la edad del universo. Si hubiese sido así, la razón α(z = 0,2)/α(z = 0) debería haberse encontrado con un valor próximo a 0,8.

La Constante de la Estructura Fina - www.pedroamoros.com

 

 

Ciencias Planetarias y Astrobiología : La constante de estructura fina en  nuestro Universo Por qué hay una relación entre la constante de estructura fina, las  estrellas y galaxias? - Quora

 

La constante de estructura fina de Sommerfeld (símbolo α) es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética.  La expresión que la define y el valor recomendado por CODATA 2002 es:

{\displaystyle \alpha ={\frac {e^{2}}{4\pi \epsilon _{0}\ \hbar c}}}

 

En 1997, el astrónomo John Webb y su equipo de la Universidad de Nueva Gales del Sur en Sydney analizaron la luz proveniente de quásares distantes. En su viaje de 12 mil millones de años, la luz había pasado a través de nubes interestelares de metales tales como el hierro, el níquel y el cromo, y los investigadores descubrieron que esos átomos habían absorbido algunos de los fotones de la luz quásar, pero no los que se esperaba que lo hicieran.

 

Las constantes de la Naturaleza : Blog de Emilio Silvera V.

 

           Si las observaciones son correctas, la única explicación vagamente razonable es que una constante física conocida como la “constante de estructura fina”, o alfa, tenía un valor diferente en el momento en que la luz atravesó esas nubes. Pero eso es herejía. Alfa es una constante extremadamente importante que determina la forma en la luz interactúa con la materia, y no debería cambiar. Su valor depende de, entre otras cosas, la carga del electrón, de la velocidad de la luz y de la constante de Planck. ¿Podría haber cambiado alguna de ellas? En el mundo de la física nadie deseaba creer en estas mediciones.

Por años, Webb y su equipo han estado tratando de descubrir un error en sus resultados. Pero hasta ahora no lo han encontrado. Los resultados de Webb no son los únicos que sugieren que falta algo en nuestro conocimiento de alfa. Un análisis reciente del único reactor nuclear natural conocido, que estuvo activo hace casi dos mil millones de años en lo que hoy es Oklo, en Gabón, sugiere también que algo ha cambiado en la interacción de la luz con la materia.

Los reactores nucleares naturales de Oklo

Un reactor nuclear atípico

Pero en el año de 1972 se dio a conocer un fenómeno realmente curioso en la compañía de minas: se encontró un contenido demasiado bajo de uranio-235 en su producto. Rastreando el fenómeno, se descubrió que ese mineral provenía precisamente de la cantera de Oklo. Este yacimiento de uranio abarca una superficie de aproximadamente 35 000 km2. Allí, hace ahora 2.000 millones de años, se produjo la fisión nuclear espontanea y natural del uranio y se creó un reactor nuclear.

4. Megaminería de uranio | Hablemos de MegamineríaEL CUADERNO DEL URANIO: EL CUADERNO DEL URANIO

           La cantidad de ciertos isótopos radiactivos producidos en un reactor de ese tipo depende de alfa, de modo que observar los productos de fisión que se encuentran en Oklo proporciona una forma de deducir el valor de la constante en la época de su formación. Utilizando este método, Steve Lamoreaux y sus colegas del Laboratorio Nacional de Los Álamos en Nuevo México sugieren que alfa pudo haber disminuido en más de un cuatro por ciento desde que Oklo se encendió (Physical Review, vol 69, p 121701). Todavía hay quienes disputan cualquier cambio en alfa.

[nebulosa20111%255B3%255D.jpg]

Una de las cuestiones más controvertidas en la cosmología es porque las constantes fundamentales de la naturaleza parecen finamente ajustadas para la vida. Una de estas constantes fundamentales es la constante de estructura fina o alfa, que es la constante de acoplamiento de la fuerza electromagnética (usualmente denotada g, es un número que determina la fuerza de una interacción) y equivale a 1/137,03599911.

Todas estas ideas y experimentos han establecido un escenario para que los astrónomos mejoren nuestro conocimiento de la constancia de constantes particulares de la Naturaleza a medida que la sensibilidad mejorada de los telescopios y detectores electrónicos permitan hacer observaciones  a desplazamiento al rojo cada vez mayores, retrocediendo cada vez más en el tiempo.

La estrategia general  consiste en comparar dos transiciones atómicos en un lugar astronómico y aquí ahora en el laboratorio. Por ejemplo, si hay doblete de elementos como carbono, silicio o magnesio, que se ven normalmente en nubes de gas con altos desplazamientos hacia el rojo, entonces las longitudes de onda de dos líneas especiales, digamos λ1 y λ2, estarán separadas por una distancia proporcional  a α2. El desplazamiento de líneas realtivo viene dado por una fórmula:

1 – λ2)/(λ1 – λ2) ∞ α2

Ahora necesitamos medir las longitudes de onda λ1 y λ2 de forma muy parecida aquí en el laboratorio, y muy lejos aquí por observaciones astronómicas. Calculando el miembro izquierdo de nuestra fórmula con gran exactitud, en ambos casos podemos dividir nuestros resultados para encontrar si la constante de estructura fina ha cambiado entre el momento entre el momento en el que salió la luz y el presente.

La ilustración muestra cómo los rayos X de un cuásar distante, son filtrados al pasar por una nube de gas intergaláctico. Midiendo la cantidad de la disminución de la luz debido al oxígeno y otros elementos presentes en la nube los astrónomos pudieron estimar la temperatura, densidad y la masa de la nube de gas – puede ver el espectro del cuasar PKS 2155-304 al ampliar la imagen.

Actualmente, el más potente método utilizado en estos experimentos dirige todo su potencial en la búsqueda de pequeños cambios  en la absorción por los átomos de luz procedentes de cuásares lejanos.  En lugar de considerar pares de líneas espectrales  en dobletes del mismo elemento, como el silicio,  considera la separación entre líneas causada por la absorción de la luz del cuásar por diferentes elementos químicos en nubes de gas situadas entre el cuásar y nosotros. Y, a todo esto, las cuatro fuerzas fundamentales siguen estando presentes.

 Max Planck, energía humana. - LOFF.ITGeorge Johnstone Stoney - Wikiwand

                                                 Planck y Stoney

No debemos descartar la posibilidad de que, seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el Universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que se cree la escala logarítmica de tamaño desde el átomo a las galaxias.  Todas las estructuras del Universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras, la  atracción (Expansión) y la repulsión (contracción).  Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla, así, el resultado es la estabilidad de la estrella.  En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos.  Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, ћ, c, G y mprotón.

α = 2πeћc ≈ 1/137
αG = (Gmp2)ћc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como α (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.  Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el Universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales.  Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios.  Los átomos pueden tener propiedades diferentes.  La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la Naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas, no se puede llegar a saber porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Es un gran mérito por nuestra parte que, nuestras mentes, puedan haber accedido a ese mundo mágico de la Naturaleza para saber ver primero y desentrañar después, esos números puros y adimensionales que nos hablan de las constantes fundamentales que hacen que nuestro Universo sea como lo podemos observar.

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137.  Ese número encierra más de lo que estamos preparados para comprender, me hace pensar y mi imaginación se desboca en múltiples ideas y teorías.  Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”.  El gran físico creía que no podríamos llegar a las verdades de la naturaleza solo por la observación y la experimentación.  Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.

“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben.  En el cartel solo pondría esto: 137.  Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.

Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba.  La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón,  por el producto de la velocidad de la luz y la constante de Planck.

Número 137, la enciclopedia de los números - Numero.wiki

Lo más notable de éste número es su adimensionalidad.  La velocidad de la luz, c, es bien conocida y su valor es de 299.792.458 m/segundo, la constante de Planck racionalizada, ћ, es ћ/2 = 1,054589 ×10 julios/segundo, la altura de mi hijo Emilio, el peso de mi amigo Kike (hay que cuidarse), etc., todo viene con sus dimensiones.  Pero resulta que cuando uno combina las magnitudes que componen alfa ¡se borran todas las unidades! El 137 está sólo: se exhibe desnudo a donde va.  Esto quiere decir que los científicos del undécimo planeta de una estrella lejana situada en un sistema solar de la Galaxia Andrómeda, aunque utilicen quién sabe qué unidades para la carga del electrón y la velocidad de la luz y que versión utilicen para la constante de Planck,  también les saldrá el 137.  Es un número puro.  No lo inventaron los hombres.  Está en la naturaleza, es una de sus constantes naturales, sin dimensiones.

Recorremos interminables pasillos buscando esa puerta luminosa que nos lleve hasta las respuestas que nadie nos supo dar. La Naturaleza esconde secretos insondables que debemos desvelar y, para ello, sólo contamos con una herramienta: Nuestra Mente.

La física se ha devanado los sesos con el 137 durante décadas.  Werner Heisember (el que nos regaló el Principio de Incertidumbre en la Mecánica Cuántica), proclamó una vez que, todas las fuentes de perplejidad que existen en la mecánica cuántica se secarían si alguien explicara de una vez el 137.

¿Por qué alfa es igual a 1 partido por 137? El 137 es un número primo. Su inversa, 1/137, es un valor muy cercano al de la constante alfa, que (según la electrodinámica cuántica) caracteriza la interacción entre fotones y electrones. El nombre técnico de alfa es “constante de estructura fina“, y es una de las constantes físicas cuya predicción teórica mejor coincide con los datos experimentales.

Los físicos han demostrado que el valor de alfa es el que tiene que ser para que exista un Universo como el nuestro. De hecho, si alfa variara apenas un poco (menos del 5%), el carbono no se produciría en los hornos estelares y, la vida, tal como la concemos, estaría ausente.

Archivo:CNO Cycle.png

El proceso CNO fue propuesto en 1938 por Hans Bethe

Esperemos que algún día aparezca alguien que, con la intuición, el talento y el ingenio de Galileo, Newton o Einstein, y nos pueda por fin aclarar el misterioso número y las verdades que encierra.  Menos perturbador sería que la relación de todos estos importantes conceptos (e, ћ y c) hubieran resultado ser 1 o 3 o un múltiplo de pí (π).  Pero ¿137?

Biografía de Arnold Sommerfeld (Su vida, historia, bio resumida)

Arnold Sommerfeld, percibió que la velocidad de los electrones en el átomo de hidrógeno es una fracción considerable de la velocidad de la luz, así que había que tratarlos conforme a la teoría de la relatividad,  vio que donde la teoría de Bohr predecía una órbita, la nueva teoría predecía dos muy próximas.

Esto explica el desdoblamiento de las líneas. Al efectuar sus cálculos, Sommerfeld introdujo una “nueva abreviatura” de algunas constantes.  Se trataba de 2πe/ ћc, que abrevió con la letra griega “α” (alfa).  No prestéis atención a la ecuación.  Lo interesante es esto: cuando se meten los números conocidos de la carga del electrón, e, la constante de Planck, ћ, y la velocidad de la luz, c, sale α = 1/137.  Otra vez 137 número puro.

Una cosa tenemos clara, lo mismo que no sabemos que puede haber más allá de los Quarks, tampoco sabemos que fuerzas gobiernan eso que llamamos fluctuaciones de vacío. De allí (es lo más probable) surgió nuestro Universo, nada puede surgir de donde nada hay, y, si surgió es porque había. Son muchas las cosas que aún, no podemos explicar con la seguridad inamovible que nos gustaría.

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la Gravedad actúa en todas las dimensiones y es consecuentemente más débil, su fuerza está más repartida.

Extra Dimensions

 

                ¿Dónde están esas dimensiones extras?

La última lección importante que aprendemos de la manera en  que números puros como µ (alfa) definen el mundo es el verdadero significado de que los mundos sean diferentes.  El número puro que llamamos constante de estructura fina, e indicamos con  α es como hemos dicho antes, una combinación de e, c y ћ (el electrón, la velocidad de la luz y la constante de Planck).  Inicialmente podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente.  Pero sería un error.  Si e, h y c cambian de modo que sus valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas pero el valor de α permaneciera igual, este nuevo mundo sería observacionalmente indistinguible de nuestro mundo.   Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la Naturaleza.

Claro que, si miramos con atención y aunamos todos los saberes que hemos podido conquistar a lo largo del tiempo, podemos decir sin temor a equivocarnos que hay cosas en el universo que no cambian, que permanecen y que siempre son las mismas. Así fue como nos lo dijo Einstein, “las leyes del Universo son las mismas en todas sus regiones” y, siendo así (que lo es) en cualquier lugar del Universo, por muy alejado que esté, ocurren las mismas cosas y veremos también lo mismo: Nebulosas y nuevas estrellas y mundos, explosiones supernovas, nebulosas planetarias, agujeros negros,  estrellas enanas blancas y de neutrones… Galaxias. ¡Siempre igual! y, en esa invariancia, como es de lógica pensar, también entra el parámetro biológico, es decir, la Vida está por todas partes y sólo nos queda ¡encontrarla!

La Nebulosa del Capullo desde CFHT

 

 

¿Cuánta complejidad está ahí presente? Los cambios que se producen la en la materia, la radiación, la gravedad, la química y, ¿por qué no? los cambios de fase que nos llevan hacia una posibilidad biológica que, con el paso de algunos millones de años, hará que surja la Vida.

Einstein completó, con sus ideas,  un movimiento espectacular en la concepción física de la naturaleza que  fue  completado en el siglo XX.  Está marcado por una evolución que se aleja continuamente de cualquier visión privilegiada del mundo,  es decir, una visión humana localista, basada en la Tierra, o,  una visión basada en patrones humanos que, limitados por nuestras mentes aún no evolucionadas lo suficiente, no alcanza a comprender la grande del Universo. Tenemos que saber que,  la naturaleza tiene sus propios patrones.

Está claro que pensar siquiera en que en nuestro Universo, dependiendo de la región en la que nos encontremos, pudiera tener distintas leyes físicas, sería pensar en un Universo Chapuza.  Lo sensato es pensar como Einstein y creer que en cualquier parte del Universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario,  los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro Universo por muy remota que se encuentre, los elementos primordiales que lo formaron fueron siempre los mismos. Que interacciona con las cuatro fuerzas fundamentales naturales.

El Universo misterioso, ¿Cuantos secretos esconde?

¡Son tantos que, ni durante lo que duran las vidas de toda la Humanidad presente y futura…los podremos desvelar…todos!

emilio silvera

¡Conjeturar! Tratando de saber

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El principio antrópico y otras cuestiones

El principio antrópico - P. Carreira

Libros de Salvador Bayarri: El principio antrópico: ¿es el mundo así por  nosotros?

                                             ¡El Universo! ¿Sabía que nosotros íbamos a venir?

Parece conveniente hacer una pequeña reseña que nos explique que es un principio en virtud del cual la presencia de la vida humana está relacionada con las propiedades del Universo.  Como antes hemos comentado de pasada, existen varias versiones del principio antrópico.  La menos controvertida es el principio antrópico débil, de acuerdo con el cual la vida humana ocupa un lugar especial en el Universo porque puede evolucionar solamente donde y cuando se den las condiciones ademadas para ello.  Este efecto de selección debe tenerse en cuenta cuando se estudian las propiedades del Universo.

El principio antrópico - P. CarreiraEl Principio Antrópico, último bastión del Antropocentrismo | Astronomía  Accesible

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida.  La implicación de que el Universo fue de alguna manera diseñado para hacer posible la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que, nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida. Sin embargo, algunos han tratado de hacer ver lo imposible.

El misterio del Principio Antrópico ¿Somos controlados por entidades  superiores? – Granmisterio.org

“Basado en las propuestas del premio Nobel de física Paul Dirac sobre los ajustados, sincronizados y muy precisos valores de las constantes de la naturaleza, los físicos actuales comienzan a valorar aquello que han denominado el “principio antrópico¨, es decir, poco a poco, a lo largo de los años han entendido que siempre quedará un espacio de información faltante cuando intentamos teorizar o conceptualizar los inicios del universo supeditados exclusivamente sobre la capacidad contenida en las leyes de la física para explicar dichos inicios.”

Ciencias Planetarias y Astrobiología : La constante de estructura fina en  nuestro Universo

Una constante física es el valor de una magnitud que permanece invariable en los procesos físicos a lo largo del tiempo. Las magnitudes pueden variar, cosa que tiene sentido, o estaríamos ante un universo muerto. Sin embargo, como veíamos, existen valores que no lo hacen, convirtiéndose en auténticas piedras de toque existenciales. La constante de estructura fina y la velocidad de la luz en el vacío son dos buenos ejemplos.

 

Y si solo puede haber vida en nuestra región de Universo?ASTROciencia: ¿Pueden cambiar las constantes de la naturaleza?

Si las constantes fuesen “menos” constantes con el paso del Tiempo… ¡No estaríamos aquí!

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la Naturaleza y entrar en el juego virtual de ¿Qué hubiera pasado si…? Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal a cual manera para ocurrir de ésta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para la Humanidad y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual, solo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto.  Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza ¿Quién sabe lo que pasará mañana?

Carga Eléctrica

Si la carga del electrón, o, la masa del protón variara, aunque sólo fuese una diez millonésima… El Universo sería otro

El problema de si las constantes físicas son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias conceptuales. Lo primero, uno de los pilares fundamentales de la relatividad especial es el postulado de que las leyes de la física son las mismas con independencia del observador. Esto fue una generalización de lo que ya se sabía cuando se comenzó a estudiar el campo electromagnético, pero todo lo que sabemos en la actualidad nos lleva a concluir que este postulado es bastante razonable.

Lo que ocurra en la Naturaleza del Universo está en el destino de la propia Naturaleza del Cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismos sometidos a principios y energías que, en la mayoría de los casos, se pueden escapar a nuestro actual conocimiento.

Cómo será la Tierra dentro de 5.000 millones de años?Cómo será el destino del Sol antes de morir - YouTube

El Sol se convertirá en gigante roja, las temperaturas arrasarán la Tierra, los océanos se evaporarán, las capas exteriores del Sol se convertirán en una Nebulosa planetaria, y, finalmente, lo que era antes el Sol se convertirá en una estrella enana blanca de inmensa densidad y que emitirá radiaciones en el ultravioleta.

Lo que le pueda ocurrir a nuestra civilización además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema Solar y la galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual, es decir, esa parcial disposición que tenemo0s  del “libre albedrío”.

                     ¿Cómo sería nuestro mundo si las constantes universales fueran diferentes?

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser  si….,  lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de Hidrógeno, Helio, Carbono, etc.,  para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras  que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la Gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro.  Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

                              El Sol será una Gigante roja y, cuando eso llegue, la Tierra…

Pero el problema no es tan fácil y, se extiende a la totalidad del Universo que, aunque mucho más tarde, también está abocado a la muerte térmica,  el frío absoluto si se expande para siempre como un Universo abierto y eterno. A estas alturas se ha descartado el Big Chunch y se saber que la expansión del Universo es imparable y que con el paso del tiempo las galaxias estarán más alejadas las unas de las otras hasta que, la energía, las temperaturas sean -273 ºC, un ámbito de muerte, allí nada -ni siguiera los átomos-, absolutamente nada se mueve.

La Muerte Térmica del UniversoSemana 7 CALOR Y LEYES DE LA TERMODINÁMICA

“Nuevos cálculos sugieren que el cosmos puede estar un poco más cerca a una muerte térmica.

“Para tener todo ese tumulto — estrellas en erupción, galaxias chocantes, agujeros negros que colapsan – el Cosmos es un lugar sorprendentemente ordenado. Los cálculos teóricos han demostrado desde hace mucho que la entropía del universo – una medida de su desorden – no es más que una diminuta fracción de la cantidad máxima permitida.

Un nuevo cálculo de la entropía mantiene este resultado general pero sugiere que el universo está más desordenador de lo que los científicos habían pensado — y ha llegado ligeramente más lejos en su gradual camino hacia la muerte, según concluyen dos cosmólogos australianos.

Es difícil saber lo que pasará dentro de miles de millones de años, y, sin embargo, los científicos realizan cálculos y construyen modelos encaminados a saber sobre las posibles transformaciones que, las actuales circunstancias del Universo llevará a ese Futuro lejano. Ya sabéis “Lo que vemos en el Presente se debe a lo que en el Pasado pasó, y, el Futuro… ¡Estará cargado del Presente!

Veremos el FIN del universo?

El irreversible final está entre los tres modelos que se han podido construir para el futuro del Universo, de todas las formas  que lo miremos es negativo para la Humanidad -si es que puede llegar tan lejos-.  En tal situación, algunos ya están buscando la manera de escapar. Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multi-universo. Como algunos otros él dice que existen múltiples universos conectados los unos a los otros.  Unos tienen constantes de la Naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Conferencia: La hipótesis del multiverso: ¿Son posibles muchos Universos? -  YouTube

Este sistema de inflación auto-reproductora nos viene a decir que cuando el Universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible.  Cada burbuja será un nuevo Universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

El escenario que describe la imagen, ha sido explorado y el resultado hallado es que en cada uno de esos universos, como hemos dicho ya, pueden haber muchas cosas diferentes, pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la Naturaleza, pudiendo unos albergar la vida y otros no. Claro que, sólo son pensamientos y conjeturas de lo que podría ser.

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferentes universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista.  Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la Gravedad-Cosmos y la Mecánica Cuántica-Átomo, no será posible  contestar a ciertas preguntas.

Existen en realidad, en nuestro Universo las cuerdas vibrantes de la Teoría M, o, simplemente se trata de un ejercicio mental complejo. Imaginar un Universo de once dimensiones… ¡No resulta nada fácil con una Mente tridimensional!

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, solo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10 ó 26 dimensiones, allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida  a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del Universo y de las fuerzas que en el actúan.

Compactación (física) - Wikipedia, la enciclopedia libreBonnie and Clyde? No, Kaluza y Klein | Cuentos Cuánticos

Científicamente, la teoría del Hiperespacio lleva los nombres de teoría de Kaluza-Klein y súper gravedad.  Pero en su formulación más avanzada se denomina teoría de supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo, diez dimensiones.  Así pues, trabajando en dimensiones más altas, esta teoría del Hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas.  Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.

TEORÍA DE KALUZA-KLEINGeometría antieuclidiana: La Teoría de Kaluza-Klein

Parece que algo no va, algunos parámetros se presentan difusos, la Gravedad no acabamos de entenderla, el mundo infinitesimal… es raro

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al al Universo: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil.  Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado.  Sin embargo, la teoría del Hiperespacio permite la posibilidad de explicar todas las fuerzas de la Naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del Hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo.  De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del Hiperespacio.

La tercera revolución de la teoría de cuerdas para celebrar las bodas de  plata (25 años) de la primera | Francis (th)E mule Science's NewsEntrevista a Edward Witten en Science sobre la física cuántica de los  agujeros negros | Francis (th)E mule Science's News

No, no será fácil llegar a las respuestas de éstas difíciles preguntas que la física tiene planteadas. Y, sin embargo, ¿cómo podríamos describir lo que en estas teorías han llegado a causar tanta pasión en esos físicos que llevan años luchando con ellas? Recuerdo haber leído aquella conferencia apasionante que dio E. Witten en el Fermilab. Su pasión y forma de encausar los problemas, sus explicaciones, llevaron a todos los presentes a hacerse fervientes y apasionados fans de aquella maravillosa teoría, la que llaman M. Todos hablaban subyugados mucho después de que el evento hubiera terminado. Según contó León Lederman, que asistió a aquella conferencia: “Yo nunca había visto nada igual, cuando Witten concluyó su charla, hubo muchos segundos de silencio, antes de los aplausos y, tal hecho, es muy significativo.

El bosón “de Higgs”XI Carnaval de la Física: Cómo verificar la teoría de cuerdas en la escala  de energías alcanzable en el LHC del CERN - La Ciencia de la Mula Francis

Parece que ni en el LHC se dispone de energía suficiente para verificar la Teoría de cuerdas que, según dicen, necesitaría la energía de Planck de 1019 GeV (de la que este mundo no dispone).

 

Claro que, a medida que la teoría ha ido topándose con unas matemáticas cada vez más difíciles y una proliferación de direcciones posibles, el progreso y la intensidad que rodeaban a las supercuerdas disminuyeron hasta un nivel más sensato, y ahora, sólo podemos seguir insistiendo y esperar para observar que nos puede traer el futuro de esta teoría que, es posible (y digo sólo posible) que se pueda beneficiar, de alguna manera, de las actividades del LHC que, en algunas de sus incursiones a ese mundo fantasmagórico de lo infinitesimal, podría -y digo podría- atisbar las sombras que puedan producir las supercuerdas.

Conjeturar… ¡Tratando de saber! : Blog de Emilio Silvera V.Un experimento pone a prueba una interpretación de la mecánica cuántica |  Actualidad | Investigación y Ciencia

Claro que, hoy se pone en entredicho hasta la Teoría cuántica que, en muchos de sus aspectos… ¡No se comprenden!

No son pocos los físicos capaces que están empeñados en demostrar esa teoría. Por ejemplo, Físicos de SLAC desarrollan una prueba de marco de trabajo dependiente para la Teoría de Cuerdas Crítica. La Teoría de Cuerdas resuelve muchas de las cuestiones que arruinan la mente de los físicos, pero tiene un problema importante — no hay actualmente ningún método conocido para comprobarla y, si las energías requeridas para ello, es la de Planck  (1019 GeV), la cosa se pone fea.

Hiperespacio – Astrocuriosidades

Extracto del movimiento warp o hiperespacio en rastro de estrella azul.  explosión y expansión de movimiento ilustración 3d | Foto PremiumLa Misión Imperial | Star Wars Imperio ·Amino· Amino

Está claro que, al tratar todas estas hipotéticas teorías, no pocos, han pensado que, algún día, se podría realizar el sueño de viajar por el Hiperespacio y, de esa manera, se habría logrado el medio para escapar de la Tierra cuando el momento fatídico, en el cual el Sol se convierta en gigante roja, no podamos seguir aquí.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el Hiperespacio (El Hiperespacio en ciencia ficción es una especie de región conectada con nuestro universo gracias a los agujeros de gusano, y a menudo sirve como atajo en los viajes interestelares para viajar más rápido que la luz), si llegara a ser posible, podría proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos de la muerte de este Universo cuando al final llegue el frío o el calor.

Teoría de cuerdas VS gravedad cuántica de bucles – Universo CuánticoTeoría de Cuerdas vs. Gravedad Cuántica de Bucles [Mega... en Taringa!

        También en la teoría de supercuerdas está incluida ¡la Gravedad-Cuántica! Otra Ilusión

Esta nueva teoría de supercuerdas, tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas, podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de Gusano que unan partes distantes de nuestro Universo.  Por desgracia, los resultados son desalentadores.  La energía requerida excede con mucho cualquier cosa que pueda  existir en nuestro planeta.  De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos.  Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el Hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Qué aún tardará mucho? Sí, pero el tiempo es inexorable y….,  la debacle llegará.

Por primera vez detectan una potente emisión de radio dentro de nuestra  propia galaxia | portalastronomico.comHallan el púlsar más cercano a un agujero negro | RTVE.esAvaruudessa havaittiin rajuin tunnettu gammapurkaus – onneksi ei  Linnunradassa, sillä se olisi voinut olla loppumme | Tiede | yle.fiTähdet ja avaruus: GPS-paikannus toimii jopa 70 000 kilometrin korkeudella

Sí, hemos logrado mucho. Arriba tenemos la  imagen de la emisión en radio de un magnetar

No existen dudas al respecto, la tarea que nos hemos impuesto es descomunal, imposible para nuestra civilización de hoy pero, ¿y la de mañana, no habrá vencido todas las barreras? Creo que, el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, solo necesita tiempo y, como nos ha demostrado DA14 en el presente, ese tiempo que necesitamos, está en manos de la Naturaleza y, nosotros, nada podemos hacer si ella, no nos lo concede. Y, si por desventura es así, todo habrá podido ser, un inmenso sueño ilusionante de lo que podría haber sido si…

emilio silvera