viernes, 31 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El secreto está en las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

El Tiempo es inexorable y su transcurrir va dejando atrás las cosas que del Presente, van situándose en el Pasado, que solo podemos recordar y rememorar momentos vividos que ya son recuerdos. Lejos quedan ya aquellas efemérides y celebraciones del año 2009, cuando se conmemoró el Año Internacional de la Astronomía y me cupo el honor de (humildemente), colaborar con aquellas celebraciones.

Astrolabio de al-Sahli, del siglo XI (M.A.N., Madrid). El astrolabio es un antiguo instrumento que permite determinar la posición y altura de las estrellas sobre la bóveda celeste. El astrolabio era usado por los navegantes, astrónomos y científicos en general para localizar los astros y observar su movimiento, para determinar la hora a partir de la latitud o, viceversa, para averiguar la latitud conociendo la hora. También sirve para medir distancias por triangulación.

Con orgullo luzco en el ojal de mi chaqueta el astrolabio que nos dieron en Madrid, a todos los invitados, a la fiesta de inauguración en la que estaban presentes muchos astrónomos y astrofísicos del mundo entero.

Infoastro.com - Bienvenidos al Año Internacional de la Astronomía 2009El 2009, Año Internacional de la Astronomía: «El Universo para que lo  descubras» | News | CORDIS | European CommissionCanal UNED - Mujeres en las estrellas. 2009. Año Internacional de la  Astronomía

La Asamblea de Naciones Unidas declara 2009 como 'Año Internacional de la  Astronomía' | elmundo.es100 Conceptos básicos de Astronomía

Lo cierto es que, en su momento, ya desde el inicio del año 2.009 en el que se celebró el Año Internacional de la Astronomía, en muchos de mis artículos publicados en la colaboración que con la Organización Internacional tuve el honor de prestar, se hablaba de todos esos interesantes temas que, el universo nos presenta y que, inciden en el saber de la Naturaleza y del Mundo que nos acoge que, como nosotros… ¡También forman parte del Universo!

 

LA QUÍMICA DE LAS ESTRELLAS

Los cambios se estaban produciendo a una velocidad cada vez mayor. Al siglo de Newton también pertenecieron, entre otros, el matemático Fermat; Römer, quien midió la velocidad de la luz; Grimaldi, que estudió la difracción; Torricelli, que demostró la existencia del vacío; Pascal y Boyle, que definieron la física de los fluidos…La precisión de los telescopios y los relojes aumentó notablemente, y con ella el número de astrónomos deseosos de establecer con exactitud  la posición de las estrellas y compilar catálogos estelares cada vez más completos para comprender la Vía Láctea.

La naturaleza de los cuerpos celestes quedaba fuera de su interés: aunque se pudiera determinar la forma, la distancia, las dimensiones y los movimientos de los objetos celestes, comprender su composición no estaba a su alcance. A principios del siglo XIX, William Herschel (1738-1822), dedujo la forma de la Galaxia, construyó el mayor telescopio del mundo y descubrió Urano. Creía firmemente que el Sol estaba habitado.

     Hasta llegar a conocer nuestra situación astronómica…

Al cabo de pocos años, nacía la Astrofísica, que a diferencia de la Astronomía (ya llamada  -”clásica o de posición”-), se basaba en pruebas de laboratorio. Comparando la luz emitida por sustancias incandescentes con la recogida de las estrellas se sentaban las bases de lo imposible: descubrir la composición química y la estructura y el funcionamiento de los cuerpos celestes. Estaba mal vista por los astrónomos “serios” y se desarrolló gracias a físicos y químicos que inventaron nuevos instrumentos de análisis a partir de las demostraciones de Newton sobre la estructura de la luz.

En 1814, Joseph Fraunhofer (1787-1826) realizó observaciones básicas sobre las líneas que Wollaston había visto en el espectro solar: sumaban más de 600 y eran iguales a las de los espectros de la Luna y de los planetas; también los espectros de Póllux, Capella y Proción son muy similares, mientras que los de Sirio y Cástor no lo son.

Pollux de estrella fija - Tarot y horoscopoCapella es la estrella más brillante en la constelación de Auriga.NIKON  P1000 - YouTube

Póllux la estrella fija                                                                La estrella más brillante de la constelación

 

Position Alpha Cmi.png

Localización de Proción en el Can Menor

 

“Procyon, (Alpha Canis Minoris). Es la estrella más importante de la constelación de Canis Minor (El Perro Menor) y la octava más brillante del cielo nocturno, con una magnitud estelar de +0.50. Es una binaria cuya componente principal Procyon “A” es una subgigante de color blanco-amarillento 2,1 veces mayor que el Sol y 7,3 veces más brillante. Procyon “B” por su parte es una enana blanca muy difícil de observar desde la Tierra, pues posee una magnitud estelar de +10,82 y orbita a la estrella principal con una frecuencia de 40,8 años.”

Al perfeccionar el  espectroscopio con la invención de la retícula de difracción (más potente y versátil que el prisma de cristal), Fraunhofer observó en el espectro solar las dos líneas del sodio: así se inició el análisis espectral de las fuentes celestes.

Mientras, en el laboratorio, John Herschel observó por primera vez la equivalencia entre los cuerpos y las sustancias que los producen, Anders J. Anhström (1814-1868) describía el espectro de los gases incandescentes y los espectros de absorción y Jean Foucault (1819-1874) comparó los espectros de laboratorio y los de fuentes celestes. Gustav Kirchhoff (1824-1887) formalizó las observaciones en una sencilla ley que cambió la forma de estudiar el cielo; “La relación entre el poder de emisión y de absorción para una longitud de onda igual es constante en todos los cuerpos que se hallan a la misma temperatura”. En 1859, esta ley empírica, que relacionaba la exploración del cielo con la física atómica, permitía penetrar en la química y la estructura de los cuerpos celestes y las estrellas. De hecho, basta el espectro de una estrella para conocer su composición. Y, con la espectroscopia, Kirchhoff y Robert Bunsen (1811-1899) demostraron que en el Sol había muchos metales.

Líneas de Fraunhofer - Wikipedia, la enciclopedia libreLíneas de Fraunhofer - Wikipedia, la enciclopedia libreMiden señales en dos líneas espectrales de la radiación del Sol | Ciencia |  Agencia EFE

Líneas de Fraunhofer

La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un  nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron  que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.

                          EL DIAGRAMA HR: EL CAMINO HACIA EL FUTURO

El padre Ángelo Secchi (1818-1878) fue el primero en afirmar que muchos espectros estelares poseen características comunes, una afirmación refrendada hoy día con abundantes datos. Secchi clasificó las estrellas en cinco tipos, en función del aspecto general de los espectros. La teoría elegida era correcta: el paso del color blanco azulado al rojo oscuro indica una progresiva disminución de la temperatura, y la temperatura es el parámetro principal que determina la apariencia de un espectro estelar.

Más tarde, otros descubrimientos permitieron avanzar en Astrofísica: Johan Balmer (1825-1898) demostró que la regularidad en las longitudes de onda de las líneas del espectro del hidrógeno podía resumirse en una sencilla expresión matemática; Pieter Zeeman (1865-1943) descubrió que un campo magnético de intensidad relativa influye en las líneas espectrales de una fuente subdividiéndolas en un número de líneas proporcional a su intensidad, parámetro que nos permite medir los campos magnéticos de las estrellas.

En otros descubrimientos empíricos la teoría surgió tras comprender la estructura del átomo, del núcleo atómico y de las partículas elementales. Los datos recogidos se acumularon hasta que la física y la química dispusieron de instrumentos suficientes para elaborar hipótesis y teorías exhaustivas.

Gracias a dichos progresos pudimos asistir a asociaciones como Faraday y su concepto de “campo” como “estado” del espacio en torno a una “fuente”; Mendeleiev y su tabla de elementos químicos; Maxwell y su teoría electromagnética;  Becquerel y su descubrimiento de la radiactividad; las investigaciones de Pierre y Marie Curie; Rutherford y Soddy y sus experimentos con los rayos Alfa, Beta y Gamma; y los estudios sobre el cuerpo negro que condujeron a Planck a determinar su constante universal; Einstein y su trabajo sobre la cuantización de la energía para explicar el efecto fotoeléctrico, Bohr y su modelo cuántico del átomo; la teoría de la relatividad especial de Einstein que relaciona la masa con la energía en una ecuación simple…Todos fueron descubrimientos que permitieron explicar la energía estelar y la vida de las estrellas, elaborar una escala de tiempos mucho más amplia de lo que jamás se había imaginado y elaborar hipótesis sobre la evolución del Universo.

En 1911, Ejnar Hertzsprung (1873-1967) realizó un gráfico en el que comparaba el “color” con las “magnitudes absolutas” de las estrellas y dedujo la relación entre ambos parámetros. En 1913, Henry Russell (1877-1957) realizó otro gráfico usando la clase espectral en lugar del color y llegó a idénticas conclusiones.

El Diagrama de Hertzsprung-Russell (diagrama HR) indica que el color, es decir, la temperatura, y el espectro están relacionados, así como el tipo espectral está ligado a la luminosidad. Y debido a que esta también depende de las dimensiones de la estrella, a partir de los espectros puede extraerse información precisa sobre las dimensiones reales de las estrellas observadas. Ya solo faltaba una explicación de causa-efecto que relacionara las observaciones entre si en un cuadro general de las leyes.

El progreso de la física y de la química resolvió esta situación, pues, entre otros avances, los cálculos del modelo atómico de Bohr reprodujeron las frecuencias de las líneas del hidrógeno de Balmer. Por fin, la Astrofísica había dado con la clave interpretativa de los espectros, y las energías de unión atómica podían explicar el origen de la radiación estelar, así como la razón de la enorme energía producida por el Sol.

Las líneas de Balmer — Cuaderno de Cultura Científica

Las líneas de Balmer 

Las líneas espectrales dependen del número de átomos que las generan, de la temperatura del gas, su presión, la composición química y el estado de ionización. De esta forma pueden determinarse la presencia relativa de los elementos en las atmósferas estelares, método que hoy también permite hallar diferencias químicas muy pequeñas, relacionadas con las edades de las estrellas. Así, se descubrió que la composición química de las estrellas era casi uniforme: 90 por ciento de hidrógeno y 9 por ciento de helio (en masa, 71% y 27%, respectivamente). El resto se compone de todos los elementos conocidos en la Tierra.

Así mismo, el desarrollo de la Física ha permitido perfeccionar los modelos teóricos y explicare de forma coherente que es y como funciona una estrella. Dichos modelos sugirieron nuevas observaciones con las que se descubrieron tipos de estrellas desconocidas: las novas, las supernovas, los púlsares con periodos o tiempos que separan los pulsos, muy breves…También se descubrió que las estrellas evolucionan, que se forman grupos que luego se disgregan por las fuerzas de marea galácticas.

La Radioastronomía, una nueva rama de la Astronomía, aportó más datos sobre nuestra Galaxia, permitió reconstruir la estructura de la Vía Láctea y superar los límites de la Astronomía óptica.

Se estaban abriendo nuevos campos de estudio: los cuerpos galácticos, los cúmulos globulares, las nebulosas, los movimientos de la galaxia y sus características se estudiaron con ayuda de instrumentos cada vez más sofisticados. Y cuanto más se observaba más numerosos eran los objetos desconocidos descubiertos y más profusas las preguntas. Se descubrieron nuevos y distintos tipos de galaxias fuera de la nuestra; examinando el efecto Doppler, se supo que todas se alejaban de nosotros y, lo que es más, que cuanto más lejanas están más rápidamente se alejan.

Campo Profundo del Hubble - Wikipedia, la enciclopedia libre

       El Telescopio Hubble nos muestra esta imagen del Universo Profundo

Acabábamos de descubrir que el Universo no terminaba en los límites de la Vía Láctea, sino que se había ampliado hasta el “infinito”, con galaxias y objetos cada vez más extraños. Sólo en el horizonte del Hubble se contabilizan 500 millones de galaxias. Y los descubrimientos continúan: desde el centro galáctico se observa un chorro de materia que se eleva más de 3.000 a.l. perpendicular al plano galáctico; se observan objetos como Alfa Cygni, que emite una energía radial equivalente a diez millones de veces la emitida por una galaxia como Andrómeda; se estudian los cuásares, que a veces parecen mas cercanos de lo que sugieren las mediciones del efecto Doppler; se habla de efectos de perspectiva que podrían falsear las conclusiones… Y nos asalta una batería de hipótesis, observaciones, nuevas hipótesis, nuevas observaciones, dudas…

Todavía no se ha hallado una respuesta cierta y global. Un número cada vez mayor de investigadores está buscándola en miles de direcciones. De esta forma se elaboran nuevos modelos de estrellas, galaxias y objetos celestes que quizá sólo la fantasía matemática de los investigadores consiga concretar: nacen los agujeros negros, los universos de espuma, las cadenas…

Se ha detectado grafeno en el espacio?

Encontrar Grafeno en el espacio ya no es una sorpresa, toparnos de bruces con océanos de metano… ¡tampoco!, hallar colonias de bacterias vivienda a muchos kilómetros de altura no es una novedad, saber que en las estrellas se fabrican los materiales aptos para hacer posible la química de la vida… nos maravilla pero ya, no es causa de asombro. Cada día damos un paso más hacia el saber del “mundo”, de la Naturaleza, del Universo en fin.

En la actualidad, el número de investigadores centrados en problemas relacionados con la evolución estelar, la Astrofísica y las teorías cosmo-genéticas es tan elevado que ya no tiene sentido hablar de uno en particular, ni de un único hilo de investigación. Al igual que ocurre con otras ramas científicas las Astronomía se ha convertido en un trabajo de equipo a escala internacional que avanza sin cesar en una concatenación de innovaciones, inventos, nuevos instrumentos, interpretaciones cada vez más elaboradas y, a menudo más difíciles de entender incluso para los investigadores que avanzan con infinidad de caminos paralelos. Es una situación que ya vaticinaba Bacon en tiempos de Galileo.

Ciencias para el mundo contemporáneo

Las estrellas, como casi cualquier entidad física, siguen un proceso de nacimiento, evolución y muerte. A diferencia de nosotros, la vida de una estrella se eleva a millones o miles de millones de años dependiendo de sus masas iniciales, a mayor masa menor tiempo de vida.

Hasta la Astronomía se ha hiper-especializado y, por ejemplo, quienes estudian problemas particulares de la física de las estrellas pueden desconocerlo todo sobre planetas y galaxias. También el lenguaje es cada vez más técnico, y los términos, capaces de resumir itinerarios de investigación, son complejos de traducir al lenguaje común. Así, mientras la divulgación avanza a duras penas entre una jungla de similitudes y silogismos, las informaciones que proceden de otras disciplinas son aceptadas por los científicos y los resultados de cada cual se convierten en instrumentos para todos.

El Sol es tipo G, una estrella mediana amarilla

La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.

Las investigaciones sobre planetas, estrellas, materia interestelar, galaxias y Universo van paralelas, como si fueran disciplinas independientes, pero en continua osmosis. Y mientras la información sobre el Sol y los cuerpos del Sistema solar es más completa, detallada y fiable, y las hipótesis sobre nuestra Galaxia hallan confirmación, el Universo que empezamos a distinguir más allá de nuestros limites no se pareced a lo que hace un siglo se daba por sentado. Y mientras los modelos matemáticos dibujan uno o mil universos cada más abstractos y complejos, que tienen más que ver con la filosofía que con la observación, vale la pena recordar como empezó nuestro conocimiento hace miles de años.

Otros nos indicaron la dirección a seguir pero, la dureza del camino…, esa, la tuvimos que hacer nosotros. Es decir, en cada época y lugar, los que estuvieron, miraron hacia atrás para ver lo que hicieron sus ancestros y, con aquellas enseñanzas, tener la guía del camino a seguir, o, por el contrario, si los resultados no fueron buenos, rechazarlos. Lo cierto es que, al igual que nosotros, los que vengan detrás partirán con alguna ventaja aunque tengan que hacer su propio recorrido que, ni mucho menos tienen el camino despejado y, la niebla de la ignorancia sigue siendo espesa, aunque algo más suave que la que nosotros nos encontramos.

50 Mejores Frases Sobre La Niebla – Expande Tu MenteMontaña Niebla Montañas - Foto gratis en PixabayLa niebla mental o la desesperante incapacidad para concentrarnos - La Mente  es MaravillosaLa niebla mental tras el COVID-19 se debería al estrés postraumático

La Niebla de la ignorancia es la peor que podemos soportar. No es fácil vencer la Niebla de la Mente

Ahora, amigos, después de este breve repaso por una pequeña parte de la Historia de la Astronomía, al menos tendréis una idea más cercana  del recorrido que, la Humanidad, ha tenido que realizar para conocer mejor el Universo.

Los datos aquí reseñados tienen su origen en diversas fuentes que, de aquí y de allá, han sido tomadas para recomponer un mensaje que les lleve a todos algunos mensajes de como ocurrieron los acontecimientos en el pasado para que fuera posible nuestro presente.

emilio silvera

¡Inexorable paso del “Tiempo”! ¿Qué será el Tiempo?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

 

 

El final de todo llegará y aunque tenemos datos para saber cómo podría ser… ¡Está lo impredecible!

 

 

“Dentro de miles de millones de años a partir de , habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable.  Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

Evolución De Las Estrellas: Origen, Nacimiento, Evolución Y Muerte

 

 Eso nos decía Carl Sagan pensando en ese tiempo que llegará,  nuestro Sol, agotado su combustible nuclear de fusión, se convierta primero en gigante roja y en enana blanca después. El Sol crecerá tanto que su esfera se hinchará como un gigantesco globo rojo hasta engullir a los planetas Mercurios y Venus quedando muy cerca de la Tierra.

Soles moribundos devoran planetas «como la Tierra»

Lo que entonces pueda quedar… ¿Qué importa? Ya no estaremos aquí

Soles motibundos devoran planetas como la Tierra

 

Es bueno  el ser humano que sepa el por qué de las cosas, que se interese por lo que ocurre a su alrededor, por su planeta que le acoge, por el lugar que ocupamos en el universo, por cómo empezó todo, cómo terminará y qué será del futuro de nuestra civilización y de la Humanidad en este universo que, como todo, algún día lejano del futuro el tiempo inexorable, llevará al final de sus días.

 

Conociendo el Universo : Blog de Emilio Silvera V.CALCULADORA COSMICA

El Universo PdfFriedmann Equation

 

El fin del universo es irreversible, de ello hemos dejado amplio testimonio a lo largo de muchos trabajos, su final estará determinado por la Densidad Crítica, la cantidad de materia que contenga nuestro universo que será la que lo clasifique como universo plano, universo abierto, o universo cerrado. En cada uno de estos modelos de universos, el final será distinto…,  claro que para nosotros, la Humanidad, será indiferente el  modelo que pueda resultar; en ninguno de ellos podríamos sobrevivir cuando llegara ese momento límite del fin. La congelación y el frío del cero absoluto o la calcinación del fuego final a miles de millones de grados, acabarán con nosotros, si para entonces, estuviéramos aún por aqui (que no es probable).

Para evitar eso se está trabajando  hace décadas. Se buscan formas de superar dificultades que nos hacen presas fáciles de los elementos. La naturaleza indomable, sus leyes y sus fuerzas, hoy por hoy son barreras insuperables, para poder hacerlo, necesitamos saber.

 

 

La unidad más pequeña conocida es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo aunque formalmente el espectro electromagnético es infinito y continuo.

El saber nos dará soluciones  conseguir más energías, viajar más rápido y con menos riesgos, vivir mejor y más tiempo, superar barreras hoy infranqueables como las del límite de Planck, la barrera de la luz (para poder viajar a las estrellas) y el saber también posibilitará, algún día que nuestras generaciones futuras puedan colonizar otros mundos en sistemas solares de estrellas lejanas, viajar a otras galaxias y, ¿por qué no? ¡viajar a otro tiempo! Y, finalmente, viajar para escapar de nuestro destino…, ¿a otros universos?

La imaginación es libre y nunca hemos dejado de soñar con lo que podría ser. Si profundizamos mucho en el conocimiento de las cosas, si llegamos a comprender que no sabemos, si somos conscientes de que nuestro destino es el de una búsqueda “eterna”, y, no dejar nunca de plantear preguntas que nadie sabe contestar, entonces, al tener claro todo eso, podremos quedar tranquilos dejando que el “Tiempo” transcurra al saber que todo llegará, no importa las prisas que nosotros tengamos, todo tiene su momento y todo estará donde tiene que estar en el lugar y en el tiempo adecuado, el que la Naturaleza ha elegido para que así sea.

 

http://farm3.static.flickr.com/2442/4168315983_aca8e27301.jpg

 

 

            Mientras tanto, el tiempo pasará y nosotros nos iremos para que otros puedan venir. Como pasa con las estrellas, es necesario que unas mueran para que otras nuevas surjan con nuevos bríos y nuevo fulgor, dado que las que se van agotaron su tiempo y sus energías y, en un Universo dinámico en el que todo se mueve, las cosas -también las animadas que tienen vida propia-, tienen que cambiar y renovarse.

 

SERES DE LUZ QUE PROTEGEN NUESTRO PLANETA, ELOHINES, ANGELES, GUARDIANES Y  ELEMETALES | Tarot de angeles, Dibujos de loto, Espiritualidad

 

 

Me gustaría creer que nuestra especie,  que la Humanidad, tiene que cumplir su destino, primero en las estrellas lejanas, en otros mundos dentro y fuera de nuestra galaxia, y después…, ¿Quién sabe? Incluso alguna vez he pensado que podríamos llegar a un estadio del conocimiento que nos fundiera con la Naturaleza convertidos en luz que, según creo, es el estado puro de la materia, en la luz están las respuestas de muchas de las cosas que incansables buscamos. Las respuestas, como siempre están escritas en el “tiempo” que vendrá.

Nos referimos al tiempo en múltiples ocasiones y para distintas situaciones y motivos, como al referirnos a la duración de las cosas sujetas a cambios, época durante la cual ocurrieron unos hechos, edad de los objetos, estación del año, el período de vida de alguien desde que nace hasta que deja de existir, ocasión o coyuntura de hacer algo, cada uno de los actos sucesivos en que dividimos la ejecución de un , y otros mil temas que requieren la referencia temporal. Y, a pesar de que le podamos dar tantas aplicaciones… ¡No sabemos lo que es!

 

 

 

Dicen que va unido al espacio. Pero, también que es relativo. Pero, también que es una abstracción y que no existe en realidad. Pero, todos queremos disponer de él. Podemos ver los efectos de su transcurrir. Sin tiempo no podemos hacer nada ni tener esperanzas de futuro. ¿Qué será, en realidad el Tiempo? Sea cual fuere la condición de vida que alguien pueda tener, casi nunca quiere dejar su tiempo, todos queremos ser testigos de los hechos que nos tocaron vivir y, todos también, pensamos en ese tiempo pasado y en ese otro que está por venir.

¡Pasado, presente y futuro! ¡Una ilusión llamada “Tiempo”!

 

No es que tengamos poco tiempo, sino que perdemos muchoCan't repeat the past?' he cried incredulously. 'Why of course you can!'”  (Fitzgerald 110). | Reloj de arena, Arena, Relojes de arena

 

Eso nos  decía Séneca en “De la brevedad de la vida”

 

En física, el tiempo es la cuarta coordenada espacial en el continuo espacio-tiempo. En gramática es la categoría que indica el momento relativo en que se realiza o sucede la acción del verbo: pretérito, lo que ha sucedido; presente, lo que sucede en ese momento y futuro, lo que aún no ha sucedido. Nos referimos al tiempo meteorológico para explicar el  del clima (hace mal tiempo; qué tiempo más bueno hace hoy…). En mecánica, el tiempo puede estar referido a las fases de un motor. También están los tiempos referidos a cada una de las partes de igual duración en que se divide el compás musical. En astronomía nos referimos al tiempo de aberración en relación al recorrido de un planeta hasta llegar a un observador terrestre. El tiempo está también en la forma de cálculo horario que empleamos en nuestra vida cotidiana para controlar nuestros actos y evitar el caos (¿Qué haríamos sin horario de trenes, de comercio, bancos, oficinas,..?).

 

 

Qué es el Tiempo? | Jano 2.0Perder el tiempo o procrastinar tienen su arte - Ideah

 

Se nos escurre entre los dedos y no lo podemos retener

 

El tiempo es tan importante en nuestras vidas que está presente siempre, de mil formas diferentes,  que nacemos (cuando comienza “nuestro tiempo”), hasta que morimos (cuando “nuestro tiempo ha terminado”). El tiempo siempre está. Es algo que nunca hemos sabido explicar pero que,  simplemente, está ahí.

Sin embargo, a pesar de lo importante que es el TIEMPO, no he podido leer nunca una explicación satisfactoria sobre el mismo; una explicación que lo defina con sencillez y claridad sin restarle la importancia que tiene  todos y lo que en realidad es dentro del contexto – no ya de nuestras vidas, simples e insignificantes puntos en la inmensidad del universo – de la Naturaleza cósmica de la que formamos parte.

 

St-thomas-aquinas.jpg

     Tommaso D’Aquino

 

Cuando le preguntaron a Tomas de Aquino, un buen filósofo natural seguidor de Aristóteles y gran pensador: ¿Qué es el Tiempo? Él contestó:

 

“Si nadie me lo pregunta, lo sé;
pero si quiero explicárselo al que me lo pregunta, no lo sé.
Lo que sí digo sin vacilación es que sé que si nada pasase no habría tiempo pasado,
y si nada sucediese no habría tiempo futuro,
y si nada existiese no habría tiempo presente.
Pero aquellos dos tiempos,pasado y futuro,
¿cómo pueden ser, si el pasado ya no es él y el futuro todavía no es?
Y en cuanto al presente,
si fuese siempre presente y no pasase a ser, pasado
ya no sería tiempo, sino eternidad.
Si, pues, el presente  ser tiempo es necesario que pase a ser pasado,
¿Cómo decimos que existe este, cuya causa o razón de ser está en dejar de ser,
de tal modo que no podemos decir con verdad que existe el tiempo en cuanto tiende a no ser?”
El tiempo cíclico - SUARRATIEMPO CÍCLICO/RECTILÍNEO | FILOSOFÍA Y LETRAS COMUNIDAD PRO

 

 

Como nos ocurre con tantas otras cosas y conceptos, queremos saber de una vez por todas qué es, en realidad, el Tiempo. Creo que cuando sepamos comprender lo que el Tiempo es, la Humanidad habrá dado un paso tan importante en su caminar por el Universo que, a partir de ese momento, lo podremos “ver” todo de otra manera, con otra perspectiva más amplia y que nos permitirá tener una visión más amplia en la comprensión del Universo  y de qué manera, estamos nosotros involucrados en eso que llamamos tiempo.

¡Saber lo que es el Tiempo! ¡Qué dolor de cabeza!

emilio silvera

¿Habrá vida fuera del Sistema solar?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Astronomía

Un nuevo planeta revive la esperanza de encontrar vida fuera del Sistema Solar. Un equipo multinacional de investigadores -incluidos dos españoles- identifica a Próxima b, que orbita a la estrella roja más cercana a nuestro mundo (eso decía la noticia publicada).

Próxima Centauri b - Wikipedia, la enciclopedia libreEnviarán un mensaje, en busca de vida, al planeta habitable más cercano:  Próxima B | History Channel
10 новых планет, пригодных для колонизации: открытия NASAUn “Exoplaneta” con chances de ser apto para la vida - PressReader
                              Una recreación de la superficie de Próxima b. ESO

El descubrimiento de un nuevo exoplaneta siempre es noticia pero, en esta ocasión, las alarmas han saltado de más. Rueda de prensa, información distribuida bajo el embargo más estricto -aunque los rumores comenzaron hace más de una semana- y un concepto que lo cambia todo: la posibilidad de vida extraterrestre.

 

Se desvanece la esperanza de encontrar vida en Proxima b (y más noticias  exoplanetarias) - YouTube

 

 

Antes de hacer la maleta con destino a la nueva estrella -que, por cierto, está a 4,2 años luz-, un poco de calma. Del exoplaneta Próxima b, descubierto por un equipo internacional de científicos -entre ellos, dos españoles- no se sabe casi nada, pero el hallazgo es “muy importante”, como describe a EL ESPAÑOL David Barrado, investigador del Centro de Astrobiología (CAB) del Instituto Nacional de Técnica Aerospacial (INTA) del CSIC.

 

 

 

Las razones: se parece a la Tierra y orbita alrededor de una estrella muy particular, la más cercana al Sistema Solar, llamada Próxima Centauri. Ésta forma parte de una galaxia triple, que cuenta con tres estrellas análogas al Sol: ella misma y las llamadas Alpha Centauri A y B. “Son como una pareja y el amante”, bromea Barrado. Ése, el amante, el más pequeño y menos luminoso de los tres y el más alejado de los dos principales, pero más cercano a nosotros, es hoy portada de la revista científica más importante, Nature. Porque como nuestro Sol, aunque muy distinto, tiene su propia Tierra, a la que ha costado mucho encontrar.

 

Próxima b podría ser un buen candidato para albergar vidaProxima b podría ser un planeta cubierto completamente por agua

 

Próxima b podría ser un candidato a contener vida.       ¿Podría ser un planeta océano?

 

“Conseguir tener éxito en la búsqueda del planeta terrestre más cercano más allá del Sistema Solar ha sido una experiencia única en la vida. Esperamos que estos hallazgos inspiren a futuras generaciones para seguir mirando más allá de las estrellas. La búsqueda de vida en Próxima b es lo siguiente”, declara Guillem Anglada, uno de los dos españoles que han participado en el experimento.

 

Historia de un hallazgo

 

Telescopes at ESO's first site in Chile: the La Silla Observatory

 

Para encontrar al nuevo exoplaneta, los autores de la investigación utilizaron el espectrómetro HARPS del Observatorio Europeo Austral (ESO) de La Silla, en Chile. Durante el primer semestre de 2016, los científicos se fijaron cuidadosamente en Próxima Centauri, en concreto analizando las variaciones de líneas espectrales, comentó Barrado.

“Su posición suele ser estable y vieron que variaba de manera periódica durante periodos de 11 días”, explica el investigador. Ése es precisamente el tiempo que tarda el nuevo exoplaneta en orbitar a Próxima Centauri, una de las principales diferencias con su hermana en el Sistema Solar, ya que nuestro planeta se toma 365 días para recorrer el Sol.

 

Resultado de imagen de Descubierto nuevo exoplaneta publica en NaturaIntuitivamente, ¿cuán lejos está Próxima b? | Ingeniería y exploración  desde la NASA | SciLogs | Investigación y CienciaProxima Centauri podría albergar un sistema planetario

 

        Arriba la portada de Nature, la segunda imagen el conjunto de las estrellas vecinas del Sol, y, en tercer lugar una imagen de  es una estrella enana roja de 11. ª magnitud aparente situada a aproximadamente 4,22 años luz (1,295 pársecs)​ de la Tierra, en la constelación de Centaurus y posiblemente perteneciente al sistema de Alfa Centauri.

 

Otras diferencias residen en la cercanía del planeta a su estrella, razón que explica precisamente esta diferencia en el tiempo que tarda en orbitarlo.

La estrella es del tipo enana roja -las más frecuentes en la galaxia- y, por tanto, diferente al Sol. Tampoco se parece a nuestro astro rey en la masa -es menos masiva- y en la energía que emite, mucho menor que la del Sol. “Si se comparan los tamaños, se parecería más a Júpiter que al Sol, pero Proxima Centauri provoca energía y por eso ilumina al planeta que se acaba de descubrir”, añade el investigador del CAB.

 

La zona de habitabilidad

 

 

 

 

Pero si la similitud que se intuye -aún se desconocen muchas cosas del nuevo exoplaneta- con respecto a la Tierra es importante, lo es aún más la posibilidad de que albergue vida, un hecho que, a día de hoy se desconoce. Lo que se sabe, sin embargo, es que está situada en la llamada zona de habitabilidad del planeta, como la Tierra lo está en el del Sol. “Es un concepto teórico que se caracteriza porque a ese rango de distancias un hipotético planeta va a recibir una cantidd de luz o radiación o energía que permitiría que el agua estuviera líquida”, señala Barrado.

Uno de los autores del estudio, el investigador del Max Planck Institute for Astronomy Martin Kürster, comenta a este diario: “Sabemos que el planeta tiene la temperatura adecuada para que el agua pueda existir en forma líquida, siempre y cuando el planeta disponga de una atmósfera suficientemente parecida a la terrestre”.

 

 

“Como ahora sabemos que la más cercana de las estrellas del tipo enana roja ya tiene un planeta parecido a la Tierra, es muy probable que existan muchos planetas con el potencial de producir vida”, añade el investigador alemán.

Pero ¿es lo mismo tener agua líquida que albergar vida biológica? La respuesta a esta pregunta es negativa, pero lo primero parece ser imprescindible para lo segundo. “Todavía no lo sabemos con certeza”, reconoce Kürster respecto a la presencia de agua líquida en el nuevo planeta.

Según su colega Barrado, y “con mucho optimismo” habrán de pasar “al menos diez años” para responder a esta pregunta.

 

 

No obstante, hay ciertas cosas que se pueden intuir con respecto a la presencia de vida en Próxima b.  Podría suceder, por ejemplo, que al estar tan cerca de la estrella que orbita, apareciera el “efecto marea”, el mismo fenómeno que se da entre la Tierra y la Luna, que hace que nuestro satélite siempre nos muestre la misma cara. “Es posible que en el nuevo planeta pase lo mismo, lo que implicaría que, de haber agua líquida, sólo estaría en una zona cerca del Ecuador, y en el resto estaría congelada”, especula el astrónomo.

Otra posibilidad en contra de la presencia de vida biológica estaría en la propia naturaleza del Sol de Proxima b. “Las estrellas rojas de tipo espectral N son muy activas, presentan llamaradas como las del Sol con muchas más frecuencia; esto no sólo dificulta la detección de planetas, sino que, al ser tan enérgicas, podría esterilizarlos”, explica. Es decir, que podría darse la situación de que Próxima b tuviera las características necesarias para albergar vida biológica pero su propio sol evitara que esto sucediera.

El futuro: más investigación

 

 

File:Artist's impression of a planet around Alpha Centauri B (symbolic,  annotated).jpg - Wikimedia CommonsArtwork of planet around Alpha Centauri B - Stock Image - C018/0496 -  Science Photo Library

 

 

En cualquier caso, es pronto para afirmar nada de esto. Kürster y el resto de autores no han abandonado, ni mucho menos, a Próxima b. “Ahora estamos buscando tránsitos planetarios, pequeñas atenuaciones de la luz de la estrella que ocurren cuando el planeta en su órbita pasa frente a la estrella bloqueando una parte de su luz”, anuncia. De momento, no saben si estos tránsitos se dan en el nuevo planeta. “Si ocurren, nos darán la oportunidad de estudiar la consistencia de la atmósfera del planeta a través de métodos espectroscópicos”, añade el científico.

 

Detectan una señal de radio proveniente de la estrella Próxima Centauri -  LA NACIONEstudiando la posible atmósfera de Proxima b con un interferómetro espacial  - Eureka

 

Barrado, por su parte, añade que averiguar si hay actividad biológica en el planeta es mucho más difícil y complicado que saber si alberga agua líquida, además de costar “muchísimo dinero”. Eso sí, cree que no es imposible y que se podría lograr usando nuevas tecnologías, técnicas y plataformas “que ya están sobre el tablero de juego pero aún no aprobadas”.

Un trabajo, como indicaba Anglada, suficiente para esta generación y las próximas, siempre que no se tire la toalla.

Sí, ¡todo es Universo! Nosotros también

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El poder de la imaginación - La Mente es MaravillosaEl poder de la imaginación: cómo incentivarla y crear nuevas ideas – Prensa  LibrePor qué es importante desarrollar la imaginación a cualquier edad – Prensa  LibreI need to remind myself every single day how thankful and blessed I am. |  Operation christmas child, Operation christmas, Poverty
Cuando nos vemos abocados a situaciones límites, siempre encontramos alguna solución aunque  sea rústica y para salir del paso.

                    

 

 

 

 

La Hipótesis de estrella de Quarks (EQs) podrían responder a muchos interrogantes surgidos a partir de observaciones astrofísicas que no coinciden con los …

 

“La panspermia (del griego παν- pan, todo y σπερμα sperma, semilla), es una hipótesis que propone que la vida puede tener su origen en cualquier parte del universo, y no proceder directa ni exclusivamente de la Tierra, que probablemente la vida en la Tierra proviene del exterior y que los primeros seres vivos habrían llegado posiblemente en meteoritos o cometas desde el espacio a la Tierra. Estas ideas tienen su origen en algunas de las teorías del filósofo griego Anaxágoras.”

 

  

 

 

 

 

El último día del Carnaval de Florencia de 1.497 (y lo mismo ocurrió al año siguiente) apareció una construcción muy curiosa en medio de la Piazza Della …

 

Centrémonos ahora en esa afirmación de que todo es Universo.
foto

 

                                          ¡La Naturaleza! ¿Cuándo dejará de sorprendernos?

La Naturaleza y nosotros, una simbiosis de perfecta armonia que nuestra condición, podría llegar a romper si el proceso de humanización ae eterniza y no tomamos conciencia de lo importante que es, todo lo que nos rodea en su estado natural.  No tenemos conciencia de que otros seres que, con nostros, pueblan el planeta necesitan de nosotros para poder evolucionar sin que, nuestras actividades nosivas, contaminen el mundo. Todas las formas de vida tienen la misma fuente, el mismo origen.

 

 

 

            

 

Los seres vivos que han poblado nuestro mundo, desde el origen de la vida que no ha dejado de evolucionar nunca. Todas las formas de vida, sin excepción, están basadas en el Carbono. Sabemos que actualmente existen sólo el 1% de todas las especies que poblaron nuestro planeta y, seguimos descubriendo especies nuevas mientras que otras desaparecen al no saberse adaptar al entorno. Estar atentos a los mensajes que la Naturaleza nos envía, ser consciente de su grandeza, cuidar nuestro mundo.

 

 

http://www.canalred.info/Galeria-de-imagenes/Montanas/Cerro%20de%20la%20silla.jpg

 

 

La montaña que, curiosa, se asoma por encima de las nubes mientras el Sol la contempla y la baña con su resplandor. El privilegio de poder contemplar la Naturaleza y ver como el Sol tiñe de rojo el paisaje al final del día. La Tierra nos habla, ¡De tantas maneras! Nunca supimos administrar de manera adecuada todo lo que el planeta nos ofrecía para nuestro sustento, y, ambiciosos, esquilmamos bosques y devastamos los ríos y las montañas, también los mares de peces y el aire que respiramos de ponzoñosa atmósfera contaminada.

 

 

 

 

 

Resultado de imagen de La belleza en formas y colores en paisaje de montaña

 

 

¿Que es la Belleza? ¡Está configurada de tantas formas, movimientos, colores y sabores! También de sensaciones y rumores que te pueden transportar… simplemente imaginando, a otros mundos sin salir de nuestro que nos muestra ¡tántos escenarios! Los rincones que podemos contemplar en nuestro planeta son el exponente de lo que en otros mundos podríamos encontrar. Aquí encontramos lugares imposibles y paisajes yermos, y, de la misma manera, podemos viajar a lugares que, con su nextrema belleza natural nos deja sin respiración. Claro que, en todo esto, hay algo que no funciona y que, según creo, fue el peor invento que pudimos hacer: ¡El dinero!
                                                              Arriba: El MAL del MUNDO

Sin embargo, escenas como ésta, nos hacen olvidar la maldad. Estamos contemplando la mejor y más pura escena que el ser humano pueda representar. ¿Habrá algo más tierno y sagrado para nosotros que nuestra propia descendencia? Ellos continuaran aquí por nosotros, y, aunque tendrán sus propias experiencias, el lazo que nos une perdurará por la eternidad.
Me encantaría explicaros todas las imágenes que siguen a continuación pero no tenemos el tiempo necesario ni es aquí dónde procede hacer ese que requeriría un extenso libro. De todas las maneras, os dejo escrito algunos pensamientos relacionados con ellas y con nosotros. Pero, de todas las maneras veámoslas.

La Galaxia Remolino se localiza en la constelación del perro cazador. Descubierta en 1773, es una de las galaxias espirales más conocidas del firmamentoArchivo:MarsSunset.jpg
                                                       ¿ Desde qué planeta estamos viendo el Sol?

Hay quien cree que la Tierra podría ser tragada por agujero negro. Sin embargo, la posibilidad es muy escasa, diría que casi nula por completo. Treinta mil años-luz nos separan del Centro Galáctico donde reside un Agujero negro que se traga todo lo que por allí pase, pero que su fuerza de atracción nos afecte… Va a ser que no.

Los rayos Gamma son los fotones más energéticos conocidos, ¿Será ese nuestro final? ¡Convertirnos en pura energía! Bueno, sabemos que aparecen en las explosiones de supernovas y en otros sucesos similares. ¿Seremos nosotros algún día fuentes de luz conscientes?

                                 ¿Sabremos alguna vez comprender dónde estamos y para qué?

¡Es tan grande el Universo! ¿Podremos comprenderlo alguna vez? Sabemos que el Universo es todo lo que existe incluyendo la materia y el Espacio-tiempo. Sin embargo, lo que no podemos saber (con plena certeza) es como empezó todo ni cómo terminará. Tampoco podemos dar una explicación de si el universo está sólo o, por el contrario, deambula acompañado por otros universos por un inmenso Meta-cosmos que engloba múltiples universos.

Hemos puesto una serie de imágenes ahí arriba que quiere significar la diversidad que en el Universo existe, y, ni se pueden incluir todos los ejemplos que nos gustaría ni tampoco los tenemos a mano, ya que, la mayoría de los que podríamos poner, no están a nuestro alcance ni al alcance de nuestras tecnologías.

El Universo continúa, en muchos aspectos, siendo un gran misterio que pretendemos desvelar, pero como nos decía hace unos días Max Planck, el problema está en que nosotros, en último término, formamos parte de ese misterio que pretendemos .

Por ahí arriba podemos contemplar imágenes de bonitos paisajes de la Tierra cambiante, del Sol y de Nebulosas y galaxias. También de algunos seres humanos a los que el Universo, les ha otorgado el don de pensar (aunque no siempre lo demostremos). Algunas imágenes son de explosiones luminosos que nos enseñan y muestran las mayores energías que en el Universo se pueden generar, a través de explosiones de supernovas que son fuentes de potentes rayos gamma.

                  ¿Plasma de Quarks-Gluones? No cejamos en nuestro empeño de saber que es… ¡la materia!

La Materia y sus componentes han sido y son el objeto de muchos investigadores y pensadores que quieren profundizar y saber el por qué, a partir de lo que llamamos materia inerte, pudo surgir, mediante cambios producidos en muy especiales…¡La Vida!

Nos encontramos con el problema de la posible existencia de eso que llaman “materia oscura”, y, a primera vista, puede parecer que la materia oscura es sólo una pequeña pieza del enorme rompecabezas que resulta ser nuestro universo, un parámetro más, ni más ni menos importante que tantas otras. Claro que, este sería un punto de vista razonable si la materia oscura sólo formase una pequeña del Universo. En ese caso, la podríamos considerar como poco más que una nota a pie de página de la materia luminosa, más importante, ya que, de ella, estamos hecho nosotros. Además, es mucho más fácil detectar la materia Bariónica hecha de Quarks y Leptones que esa otra que, ni sabemos de qué estará hecha.

Sin embargo, ese punto de vista estaría equivocado, toda vez que, según todos los indicios, esa “materia oscura” supone casi el total del Universo junto con la “energía Oscura”, es decir, más del 90% de la materia-energía del universo, es oscura. Puede que las brillantes espirales de las Galaxias sirvan simplemente marcadores pasivos, testimonios mudos de fuerzas que operan en un nivel invisible para nosotros.

            El Universo y la Vida… El Tiempo que inexorable pasa…

Es posible que, cuando sepamos más sobre nuestro Universo reconozcamos que nuestros conocimientos del universo visible, tan difícilmente obtenidos, son poco más que el primer paso en el camino hacia la comprensión de cómo son en realidad las cosas. Muchas de las nuevas teorías tratan de buscar nuevos caminos que divergen de los que seguimos y, buscando por otros lugares no explorados, es posible, sólo posible que, podamos encontrar algunas respuestas que nos son negadas en las teorías actuales.

Es inquietante que, a estas alturas, con seguridad, ningún Astrónomo sepa darnos una respuesta fiel de cómo se pudieron formar las Galaxias, y, todos, sin excepción, nos responden con hipótesis y conjeturas que, de ninguna manera, podemos asimilar a la realidad de como fueron las cosas en aquellos comienzos del Universo.

¿Qué fuerzas ocultas estaban ahí presentes para posible que las galaxias se pudieran conformar, y formarse los cúmulos de galaxias antes de que, la materia recien creada, se dispersara por todo el universo sin más? Seguramente, esa fuerza no podría ser otra que la generada por la Materia Oscura que, a decir verdad, podría ser la materia primaria que permea todo el Universo y, a partir de la cual, se puede estar formando (al evolucionar) la materia que sí podemos ver.

A mí todo esto me sobrepasa, y, “conociendo” de qué está formada la materia de la que están hechas las estrellas y las montañas, los ríos y los océanos, o los delfines y también nosotros, no deja de sorprenderme (más bien maravillarme) que, de esa materia pudieran surgir seres vivos y que, algunos, como nosotros mismos, podamos pensar y ser conscientes de toda esta grandeza.

Alguna vez, hemos podido sentirnos en un estado de euforia al sentirnos los “amos” del universo, nuestros conocimientos nos hacen grandes y, posiblemente, nada se resistirá ante tanta sabiduría. Sin embargo, ese estado de “gracia” suele durarnos muy poco. De inmediato caemos en la de que, la realidad, es muy distinta y recordamos lo que nos dijeron aquellos grandes pensadores como Sócrates. Platón y más cercano a nosotros Popper: “Nuestro conocimiento es limitado, nuestra ignorancia infinita”. Y, lo malo de dicha conclusión, es que era, y, sigue siendo cierta.

Así que, amigos míos, procuremos aprender, enterarnos de las cosas, ser conscientes de lo que no sabemos y, sobre todo, procurar entender lo que en la Naturaleza ocurre, ella siempre nos marca el camino a seguir pero, nosotros, no siempre prestamos la debida atención.

emilio silvera

Dos verdades incompatibles

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Este trabajo se presentó en la XIX Edición del Carnaval de Física

Carnaval de la Física #49: el inicio | El zombi de Schrödinger

El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia desde hace décadas. El problema es el siguiente:

La realtividad general nos dice que en presencia de masa, se curva el espacio y se distorsiona el Tiempo

Existen dos pilares fundamentales en los cuales se apoya toda la física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del universo a una escala máxima: estrellas, galaxias, cúmulos (o clusters) de galaxias, y aún más allá, hasta la inmensa expansión del propio universo.

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

El otro pilar es la mecánica cuántica, que en un primer momento vislumbro Max Planck y posteriormente fue desarrollada por W. Heisemberg, Schrödinger, el mismo Einstein, Dirac, Niels Bohr y otros, que nos ofrece un marco teórico para comprender el universo en su escala mínima: moléculas, átomos, y así hasta las partículas subatómicas, como los electrones y quarks.

Durante años de investigación, los físicos han confirmado experimentalmente, con una exactitud casi inimaginable, la practica totalidad de las predicciones que hacen las dos teorías. Sin embargo, estos mismos instrumentos teóricos nos llevan a una conclusión inquietante: tal como se formulan actualmente, la relatividad general y la mecánica cuántica no pueden ser ambas ciertas a la vez.

Nos encontramos con que las dos teorías en las que se basan los enormes avances realizados por la física durante el último siglo (avances que han explicado la expansión de los cielos y la estructura fundamental de la materia) son mutuamente incompatibles. Cuando se juntan ambas teorías, aunque la formulación propuesta parezca lógica, aquello explota; la respuesta es un sinsentido que nos arroja un sin fin de infinitos a la cara.

Así que si tú, lector, no has oído nunca previamente hablar de este feroz antagonismo, te puedes preguntar a que  será debido. No es tan difícil encontrar la respuesta. Salvo en algunos casos muy especiales, los físicos estudian cosas que son o bien pequeñas y ligeras (como los átomos y sus partes constituyentes), o cosas que son enormes y pesadas (como estrellas de neutrones y agujeros negros), pero no ambas al mismo tiempo. Esto significa que sólo necesitan utilizar la mecánica cuántica, o la relatividad general, y pueden minimizar el problema que se crea cuando las acercan demasiado; las dos teorías no pueden estar juntas. Durante más de medio siglo, este planteamiento no ha sido tan feliz como la ignorancia, pero ha estado muy cerca de serlo.

“… de Estados Unidos (NASA,  registraron las ráfagas de viento más rápidas nunca antes detectadas alrededor de un agujero negro.”

No obstante, el universo puede ser un caso extremo. En las profundidades centrales de un agujero negro se aplasta una descomunal masa hasta reducirse a un tamaño minúsculo. En el momento del Bing Bang, la totalidad del universo salió de la explosión de una bolita microscópica cuyo tamaño hace que un grano de arena parezca gigantesco. Estos contextos son diminutos y, sin embargo, tienen una masa increíblemente grande, por lo que necesitan basarse tanto en la mecánica cuántica como en la relatividad general.

Por ciertas razones, las fórmulas de la relatividad general y las de la mecánica cuántica, cuando se combinan, empiezan a agitarse, a traquetear y a tener escapes de vapor como el motor de un viejo automóvil. O dicho de manera menos figurativa, hay en la física preguntas muy bien planteadas que ocasionan esas respuestas sin sentido, a que me referí antes, a partir de la desafortunada amalgama de las ecuaciones de las dos teorías.

Aunque se desee mantener el profundo interior de un agujero negro y el surgimiento inicial del universo envueltos en el misterio, no se puede evitar sentir que la hostilidad entre la mecánica cuántica y la relatividad general está clamando por un nivel más profundo de comprensión.

¿Puede ser creíble que para conocer el universo en su conjunto tengamos que dividirlo en dos y conocer cada parte por separado? Las cosas grandes una ley, las cosas pequeñas otra.

 Resultado de imagen de efecto fotoelectrico einstein

Einstein que con sus trabajos (algunos maravillosos), como el Efecto Fotoeléctrico que le valió el Nóbel, fue uno de los padres de la Mecánica cuántica y, sin embargo, pasó gran parte de su vida combatiéndola, a él no le entraba en la cabeza que aquella teoría de lo muy pequeño, fuese incompatible con la suya de la Relatividad General. Aquellos dos “mundos” de lo muy grande y lo muy pequeño aparecían incompatibles y, cuando los físicos trataban de unirlos, aunque el planteamiento fuese racional y muy bien conformado, el resultado era como una gran explosión de infinitos sin sentido… ¿Por qué sería?

No creo que eso pueda ser así. Mi opinión es que aún no hemos encontrado la llave que abre la puerta de una teoría cuántica de la gravedad, es decir, una teoría que unifique de una vez por todas las dos teorías más importantes de la física: mecánica cuántica + relatividad general.

El objeto más luminoso del Universo local

Allí, en esa lejana región donde dicen que están las cuerdas vibrantes de la Teoría M, según nos dicen, subyace esa teoría cuántica de la Gravedad, toda vez que, ambas teorías, la de Einstein y la de Planck, la de lo muy grande y lo muy pequeño, conviven sin problemas y, no sólo no se rechazan sino que, se complementan en un todo armonioso.

Si es así, la teoría de supercuerdas ha venido a darme la razón. Los intensos trabajos de investigación llevada a cabo durante los últimos 20 años demuestran que puede ser posible la unificación de las dos teorías cuántica y relativista a través de nuevas y profundas matemáticas topológicas que han tomado la dirección de nuevos planteamientos más avanzados y modernos, que pueden explicar la materia en su nivel básico para resolver la tensión existente entre las dos teorías.

En esta nueva teoría de supercuerdas se trabaja en 10, 11 ó en 26 dimensiones, se amplía el espacio ahora muy reducido y se consigue con ello, no sólo el hecho de que la mecánica cuántica y la relatividad general no se rechacen, sino que por el contrario, se necesitan la una a la otra para que esta nueva teoría tenga sentido. Según la teoría de supercuerdas, el matrimonio de las leyes de lo muy grande y las leyes de lo muy pequeño no sólo es feliz, sino inevitable.

cuerdascuantica.jpg

Esto es sólo una parte de las buenas noticias, porque además, la teoría de las supercuerdas (abreviando teoría de cuerdas) hace que esta unión avance dando un paso de gigante. Durante 30 años, Einstein se dedicó por entero a buscar esta teoría de unificación de las dos teorías, no lo consiguió y murió en el empeño; la explicación de su fracaso reside en que en aquel tiempo, las matemáticas de la teoría de supercuerdas eran aún desconocidas.  Sin embargo, hay una curiosa coincidencia en todo esto, me explico:

Cuando los físicos trabajan con las matemáticas de la nueva teoría de supercuerdasEinstein, sin que nadie le llame, allí aparece y se hace presente por medio de las ecuaciones de campo de la relatividad general que, como por arte de magia, surgen de la nada y se hacen presentes en la nueva teoría que todo lo unifica y también todo lo explica; posee el poder demostrar que todos los sorprendentes sucesos que se producen en nuestro universo (desde la frenética danza de una partícula subatómica que se llama quark hasta el majestuoso baile de las galaxias o de las estrellas binarias bailando un valls, la bola de fuego del Big Bang y los agujeros negros) todo está comprendido dentro de un gran principio físico en una ecuación magistral.

Resultado de imagen de Teoría de supercuerdas

Esta nueva teoría requiere conceptos nuevos y matemáticas muy avanzados y nos exige cambiar nuestra manera actual de entender el espacio, el tiempo y la materia. Llevará cierto tiempo adaptarse a ella hasta instalarnos en un nivel en el que resulte cómodo su manejo y su entendimiento. No obstante, vista en su propio contexto, la teoría de cuerdas emerge como un producto impresionante pero natural, a partir de los descubrimientos revolucionarios que se han realizado en la física del último siglo. De hecho, gracias a esta nueva y magnifica teoría, veremos que el conflicto a que antes me refería existente entre la mecánica cuántica y la relatividad general no es realmente el primero, sino el tercero de una serie de conflictos decisivos con los que se tuvieron que enfrentar los científicos durante el siglo pasado, y que fueron resueltos como consecuencia de una revisión radical de nuestra manera de entender el universo.

El primero de estos conceptos conflictivos, que ya se había detectado nada menos que a finales del siglo XIX, está referido a las desconcertantes propiedades del movimiento de la luz.

Isaac Newton y sus leyes del movimiento nos decía que si alguien pudiera correr a una velocidad suficientemente rápida podría emparejarse con un rayo de luz que se esté emitiendo, y las leyes del electromagnetismo de Maxwell decían que esto era totalmente imposible. Einstein, en 1.905, vino a solucionar el problema con su teoría de la relatividad especial y a partir de ahí le dio un vuelco completo a nuestro modo de entender el espacio y el tiempo que, según esta teoría, no se pueden considerar separadamente y como conceptos fijos e inamovibles para todos, sino que por el contrario, el espacio-tiempo era una estructura maleable cuya forma y modo de presentarse dependían del estado de movimiento del observador que lo esté midiendo.

Resultado de imagen de La velocidad de la luz

La velocidad de la luz es una constante universal y, cuando es emitida por un cuerpo celeste de forma isotrópica, corre en todas las direcciones a la misma velocidad de 299.792.458 metros por segundo. No importa si la fuente emisora está en movimiento o en reposo, la velocidad es invariante.

El escenario creado por el desarrollo de la relatividad especial construyó inmediatamente el escenario para el segundo conflicto. Una de las conclusiones de Einstein es que ningún objeto (de hecho, ninguna influencia o perturbación de ninguna clase) puede viajar a una velocidad superior a la de la luz. Einstein amplió su teoría en 1915 – relatividad general – y perfeccionó la teoría de la gravitación de Newton, ofreciendo un nuevo concepto de la gravedad que estaba producida por la presencia de grandes masas, tales como planetas o estrellas, que curvaban el espacio y distorsionaban el tiempo.

Tales distorsiones en la estructura del espacio y el tiempo transmiten la fuerza de la gravedad de un lugar a otro. La luna no se escapa y se mantiene ahí, a 400.000 Km de distancia de la Tierra, porque está influenciada por la fuerza de gravedad que ambos objetos crean y los mantiene unidos por esa cuerda invisible que tira de la una hacia la otra y viceversa. Igualmente ocurre con el Sol y la Tierra que, separados por 150 millones de kilómetros, están influidos por esa fuerza gravitatoria que hace girar a la Tierra (y a los demás planetas del Sistema Solar) alrededor del Sol.

Así las cosas, no podemos ya pensar que el espacio y el tiempo sean un telón de fondo inerte en el que se desarrollan los sucesos del universo, al contrario; según la relatividad especial y la relatividad general, son actores que desempeñan un papel íntimamente ligado al desarrollo de los sucesos.

El descubrimiento de la relatividad general, aunque resuelve un conflicto, nos lleva a otro. Durante tres décadas desde 1.900, en que Max Planck publicó su trabajo sobre la absorción o emisión de energía de manera discontinua y mediante paquetes discretos a los que él llamo cuantos, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Así que el tercer conflicto estaba servido, la incompatibilidad manifiesta entre relatividad general y mecánica cuántica.

La forma geométrica ligeramente curvada del espacio que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica, lo cual era sin duda alguna el problema central de la física moderna.

Las dos grandes teorías de la física, la relatividad general y la mecánica cuántica, infalibles y perfectas por separado, no funcionaban cuando tratábamos de unirlas resulta algo incomprensible, y, de todo ello podemos deducir que, el problema radica en que debemos saber como desarrollar nuevas teorías que modernicen a las ya existentes que, siendo buenas herramientas, también nos resultan incompletas para lo que, en realidad, necesitamos.

emilio silvera