Ago
19
Misterios de la Naturaleza
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz? Porque cuando se acerca a las velocidades relativistas, es decir, la velocidad de la luz en el vacío, c, la energía inercial se convierte en masa y, al llegar a c (299.792,458 m/s), sería infinita.
Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?
Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.
Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.
En condiciones ordinarias, la ganancia de energía en forma de masa es tan increiblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).
No un pulsar tampoco puede ser más rápido que la luz
La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:
- En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
- En forma de masa, con lo cual se hace “más pesado”.
La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).
Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.
A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.
En gracia quizás podamos superarla pero, en velocidad… no creo, c es el tope que impone el Universo para la velocidad, y, si un objeto trata de superarla, se incrementará su masa. Es obligado a ir frenando y la energía cinética se convertirá en masa (E=mc2).
Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa que, llegado a cierto límite, podría ser infinita y, como infinito no hay nada, nos quedamos con que nunca, nada, podrá sobrepasar esa velocidad.
El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.
Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.
¿Qué velocidad podría ser la de la luz en otros mundos paralelos que pudieran existir fuera de nuestro universo?
Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz
La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían traspasar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿Cómo iremos?
La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.
De momento sólo con los Telescopios podemos llegar tan lejos. Ahí han captado la galaxia más lejana del Universo
Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.
Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?
Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos coger para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.
La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.
A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.
A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.
Fotones emitidos por un rayo coherente conformado por un láser
Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relegar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.
¡La Naturaleza! Observémosla.
emilio silvera
Ago
19
Las Leyes del Universo… ¿Serán las mismas en todas partes?
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Aquí es donde la situamos y donde se fraguan las ideas y pensamientos… ¡Los sentimientos también!
Llamamos Mente a eso inmaterial que surge del cerebro, algo que ni la filosofía ha sabido explicar, y, como hacemos siempre, se acude a la metafísica para tratar de dar una torpe explicación de lo que, en realidad, no hemos llegado a comprender.
Está claro que el tiempo pasa y cada generación trata de saber lo que hicieron las que las precedieron. Los vestigios del pasado son muchos y, no siempre sabemos traducir sus mensajes pero, los estudiamos y procuramos llegar a explicaciones lógicas de lo que aquello pudo ser, y, para ello, nos transportamos a aquellos contextos del pasado, a las mentalidades de los pobladores que dejaron monumentos que, con una mezcla de lo religioso-astronómico, quería simbolizar lo que ellos creían.
Desde el Parque Nacional del Teide se puede conseguir una buena vista de nuestra Vía Láctea
La “infinitud” de la Vía Láctea, inconmensurable para nosotros, es sólo una más, de decenas de miles de millones que pueblan nuestro Universo. Así, nuestra Galaxia para nosotros “infinita”, es, sencillamente, un objeto más de los muchos que pueblan las regiones del Cosmos. Cientos de miles de millones de estrellas que brillan por todas partes, asombrosos enjambres de planetas repartidos por cientos de miles de sistemas planetarios, cuásares y púlsares, estrellas enanas blancas, marrones y negras, gigantes rojas, Nebulosas de increíbles dimensiones en las que nacen nuevas estrellas y mundos, explosiones supernovas y aguejros negros gigantes que engullen todo el material que pueda capturar… ¡El Universo! nunca dejará de asombrarnos, ni por su inmensidad, ni por su diversidad.
Utilizando una cámara nueva y más poderosa, el Telescopio Espacial Hubble, ha descubierto lo que parece ser el objeto más distante jamás observado, una proto galaxia pequeña a 13.200 millones -luz de distancia, que se remonta a tan sólo 480 millones de años después del nacimiento del universo o Big Bang. Es decir, nos ha traído una galaxia en formación a escaso tiempo del comienzo del tiempo.
Immanuel Kant llegó a la conclusión de que las galaxias eran universos-islas pero, él escribió primero que las nebulosas elípticas, ofrecían una visión que se podía asimilar a un “sistema de muchas estrellas” que se hallan a “enormes distancias”. Aquí, por primera vez se hizo un retrato del universo formado por galaxias a la deriva en la vastedad del espacio cosmológico. El libro de Kant, titulado Historia general de la naturaleza y teoría del cielo, fue publicado -si esta es la palabra apropiada- en 1755, pero su editor quebró, los libros le fueron confiscados para sus deudas y la obra de Kant, cayó en el olvido.
Los entusiasmos galácticos de Kant, a pesar de todo, contribuyeron a sensibilizar la mente humana a la riqueza potencial y la vastedad del universo. Pero el arrobamiento por sí solo por muy perspicaz que sea, es, un fundamento inadecuado para fundamentar una cosmología científica. Determinar si el universo está constituido realmente por galaxias requería hacer un mapa del universo en tres dimensiones, mediante observaciones muy exactas, si no menos arrobadoras, que la contemplación meditativa de Lambert y Kant.
Entró en escena William Herschel, el primer astrónomo que llevó a cabo observaciones agudas y sistemáticas del universo más allá del Sistema solar, donde está la mayor parte de lo que existe. De hecho, en la primera parte del siglo XIX, miles de galaxias fueron identificadas y catalogadas por William y Caroline Herschel, y John Herschel. 1900, se han descubierto en exploraciones fotográficas gran cantidad de galaxias. Éstas, a enormes distancias de la Tierra, aparecen tan diminutas en una fotografía que resulta muy difícil distinguirlas de las estrellas. La mayor galaxia conocida tiene aproximadamente trece veces más estrellas que la Vía Láctea.
El observatorio espacial Herschel ha facilitado a un grupo de astrónomos observar cinco galaxias muy lejanas gracias al efecto lente gravitatoria. Así, de alguna manera, y en memoria de Herschel, el Telescopio que lleva su nombre continua su obra que fue fundamental
En 1912 el astrónomo estadounidense Vesto M. Slipher, trabajando en el Observatorio Lowell de Arizona (EEUU), descubrió que las líneas espectrales de todas las galaxias se habían desplazado la región espectral roja. Su compatriota Edwin Hubble interpretó esto como una evidencia de que todas las galaxias se alejaban unas de otras y llegó a la conclusión de que el Universo se expandía. No se sabe si continuará expandiéndose o si contiene materia suficiente para frenar la expansión de las galaxias, de forma que éstas, finalmente, se junten de , parece que ésto último no sucederá nunca. La materia del Universo parece estar aproximadamente en la tasa del la Densidad Crítica. Si es así, el Universo se expandirá para siempre y tendrá una muerte térmica: El frío desolador del Cero Absoluto (–27315 ºC) donde ni los átomos se mueven.
Es curioso como Herschel, encontró en su camino la plenitud siguiendo las huellas de Kepler y Galileo a través del puente que lo llevó de la Música a la Astronomía. La habilidad de Herschel como observador era también muy refinada; sabía utilizar los telescopios. Él decía: “Ver es un arte que es necesario aprender”.
“La luz de las estrellas fijas es de la misma naturaleza [que] la luz del Sol” nos decía Newton, mientras que E. Hubble, comentaba que: “Las observaciones siempre involucran una teoría”. Ambos llevaban razón. Surgieron dos escuelas de pensamiento sobre la naturaleza de las “nebulosas elípticas” que predominaron en el siglo XIX. Una de ellas, la teoría del universo-isla de Kant y Lambert- la expresión es de Kant-, sostenía qwue nuestro Sol es una de las muchas estrellas de una Galaxia, la Vía mLáctea, y que hay otras muchas galaxias, que vemos a través de grandes extensiones de espacio nebulosas espirales y elípticas. (como eran llamadas en aquel tiempo a las galaxias que, no se podían ver con la nitidez que nos proporcionan nuestras modernos telescopios.)
Einstein entra en escena. Nació en Ulm, donde Kepler antaño había deambulado en busca de un impresor, con el manuscrito de las Tablas Rudolfinas Bajo el brazo. Einstein como sabemos, fue un niño aislado y encerrado en sí mismo. No habló los tres años. Daremos un salto hasta 1905, año en el que comenzaron a cristalizar sus pensamientos pudiendo escribir cuatro artículos memorables que lo situaron en ese lugar de privilegio de los verdaderos maestros.
N0, Einstein no llegó a la Física y la Cosmología en bicicleta, él cogió una autopista mayor, esa que está conformada por los pensamientos y que nos pueden llevar más lejos, de lo que cualquier vehículo nos podrá llevar nunca. El primero de aquellos -ahora famosos- artículos, fue publicado tres días después de cumplir los veintiseis años, contribuiría a poner los fundamentos de la física cuántica. Otro modificó el curso de la teoría atómica y la mecánica estadística. Los otros dos enunciaron lo que se conoció como la teoría de la relatividad especial.
Cuando Planck, por aquel entonces director editorial de la Revista científica Annalen der Physik, levantó la mirada después de leer el artículo sobre la relatividad especial, sabiendo inmediatamente que el mundo había cambiado. La era Newton había terminado y había surgido una nueva ciencia reemplazarla.
La odisea que llevó a Einstein hasta la relatividad especial -y de ella a la relatividad general, que expresaría la cosmología de los espacios curvos- empezó cuando tenía cinco años y su padre le mostró una brujula de bolsillo para que estuviera entretenido pero, aquello, le fascinó y, no podía saber qué magia hacia que la aguja señalara siempre hacisa el mismo lugar sin tener en el movimiento. Al preguntar, le dijeron que la Tierra está envuelta dentro de un campo magnético que era el responsable de tal “milagro” y, aquello, al joven Einstein, le maravilló y despertó su curiosidad que nunca le dejó entonces. Él decía que detrás de las cosas debe haber algo profundamente oculto, que nos podría explicar el por qué se comportan de ciertas maneras.
Como antes decía, en el siglo XX hemos podido ser testigos de múltiples y maravillosos descubrimientos científicos que han cambiado la concepción que del mundo podíamos tener: La teoría de Planck del cuanto que nos llevó directamente a la Mecánica Cuántica, el Relatividad de Einstein que nos lleva a un espacio-tiempo de cuatro dimensiones, nos dijo que la luz marcaba el límite de transmitir la información y, también, que la masa y la energía eran una misma cosa, así como que, ¡el Tiempo!, era relativo y no absoluto. Más tarde, en su ampliación de la teoría en 1916, nos dijo que la presencia de grandes masas distorsionaba el espacio-tiempo.
Estos dos claros exponentes de aquella revolución científica nos abrieron los ojos y la mente a un Universo distinto que , después de dichas teorías, tenía más sentido. Otro de aquellos descubrimientos explosivos, fue la teoría cosmológica del big bang, que surgió como combinación de ambas, y, justo es que se diga, quienes fueron sus protagonistas que, no por sabido, estará demás dejar aquí un pequeño homenaje.
Cuando Einstein publicó en 1916 la teoría de la relatividad general era consciente de que ésta modificaría la universal de Newton: la solución a sus ecuaciones no sólo sustituyo el planteamiento dinámico de fuerza de atracción por otro geométrico de deformación del espacio-tiempo, sino que permitía explicar el universo en su conjunto.
Fue él el primer sorprendido al encontrar que dicha solución global traía como consecuencia un mundo cambiante, un universo que inicialmente estimó en contracción. Como esto no le cabía en la cabeza introdujo un término en las ecuaciones que contrarrestara el efecto gravitatorio: una fuerza repulsiva, a la que llamó constante cosmológica (Λ) constante dotaba al espacio vacío de una presión que mantenía separados a los astros, logrando así un mundo acorde a sus pensamientos: estático, finito, homogéneo e isótropo.
“La ecuación que gobierna la aceleración de la expansión del Universo, incluyendo la constante cosmológica. El aspecto de la gravedad incluye densidad (p) y presión (ρ) de la materia y la energía, el signo negativo significa que este aspecto ralentiza la expansión. La constante cosmológica, representada con Λ, tiene signo positivo, por lo tanto contribuye a la aceleración. El parámetro “a” es un factor de escala que mide el tamaño del Universo, y los puntos dobles indican la segunda derivación (aceleración) con respecto al tiempo.”
Más tarde, Einstein comentaría que la introducción de constante, había sido el mayor error de su vida, porque (con una mejor estimación de la densidad) podía haber predicho la expansión del universo antes de que fuera observada experimentalmente. Claro que, su excusa era admisible, cuando el introdujo la constante cosmológica, nadie sabía que el universo estaba en expansión. Sin embargo, estudios posteriores han venido a confirmarla.
La Cruz de Einstein
Con todo y a pesar de su enorme importancia, la teoría de la relatividad no llegó a tener verdadera importancia hasta que, en 1919, Arthur Eddintong confirmó la predicción del físico alemán con respecto a la curvatura de la luz, aprovechó el eclipse solar de Sol de ese año. De la noche a la mañana, Einstein se convirtió en el físico más popular del mundo al predecir con su ingenio y con su enorme intuición fenómenos que eran reales antes de que éstos fueran comprobados. Así, con carácter desenfadado, expresándose en términos sencillos y muy distintos ( estirados) que los de sus colegas, había dado respuesta a preguntas que habían sido formuladas pero, que nadie hasta entonces, había sabido contestar.
El astrónomo holandés Willem de Sitter obtuvo en 1917 una solución a las ecuaciones del sabio alemán, sugiriendo la posibilidad de que el universo fuera infinito, aparentemente estático y de densidad prácticamente nula en el que tan solo había energía. Por otro lado, el matemático ruso Alexander Friedmann consiguió en 1922 varias soluciones a las ecuaciones proponiendo universos que se contraían o que se expandían, según los valores que tomara la constante cosmológica. Cuando su se publicó en Alemania, Einstein respondió con una nota en la misma revista presumiendo un error matemático. El error resultó finalmente inexistente, pero Einstein tardó en rectificar, por lo que la respuesta de Friedmann quedó en un segundo plano.
Lo cierto es que Einstein, ha dado en el “blanco” con muchas de sus Ideas y, si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que – el vaticinó-, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas, nuevos mundos y, muy probablemente… nuevas formas de vida.
Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos.
Arriba Satélite Gravity Probe B. Dedicado a medir la curvatura del campo gravitatorio terrestre debido a la teoría de la relatividad de Einstein. Abajo los científicos chinos comandados por Juan Yin crearon fotones entrelazados mediante la estimulación de un cristal con luz ultravioleta, que produjo un par de fotones con la misma longitud de onda, pero opuestos. Por separado, ambas teorías funcionan muy bien y se pueden medir y comprobar límites excepcionales. Sin embargo, si las juntamos…
Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas. Y, entonces, en eso estamos pero, el casamiento, no se consuma.
Hay aspectos de la física que me dejan totalmente sin habla y quedan fuera de nuestra realidad que, inmersa en lo cotidiano de un mundo macroscópico, nos aleja de ese otro mundo misterioso e invisible donde residen los cuantos que con su comportamiento, me obligan a pensar y me transportan este mundo material nuestro a ese otro fascinante, donde residen las maravillas del universo, sus cimientos infinitesimales en los que residen las “ladrillos” de las estrellas y galaxias…también de los mundos y de los seres vivos. La materia es tan compleja que aún no hemos podido llegar a comprenderla…del todo.
emilio silvera
Ago
19
El día Inte5rnacional de las matemáticas
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
MATEMÁTICAS
Día Internacional de las Matemáticas 2021: 5 curiosidades que desconocías sobre las matemáticas
En el Día Internacional de las Matemáticas 2021 te revelamos algunos datos curiosos sobre las matemáticas a lo largo de la historia. Descubre algunos datos curiosos sobre las Matemáticas
Hoy 14 de marzo, se celebra el Día Internacional de las Matemáticas, una jornada que celebra la importancia de las matemáticas en nuestra sociedad y de las que tal vez desconoces algunos de sus datos más curiosos.
Día Internacional de las Matemáticas 2021
El Día Internacional de las Matemáticas es una celebración mundial. Cada año el 14 de marzo todos los países son invitados a participar a través de actividades tanto para estudiantes como para el público en general en escuelas, museos, bibliotecas y otros espacios.
El día escogido coincide con 3-14 el número Π
Fue el 26 de noviembre de 2019, durante la 40a reunión de la Conferencia General, cuando la UNESCO proclamó el 14 de marzo como el Día Internacional de las Matemáticas. La primera celebración oficial fue la del 14 de marzo de 2020, pero debido a la pandemia los actos que se habían planeado se realizaron de forma online.
Por otro lado, es posible que este día provoque algo de confusión a muchos dado que el 14 de marzo ya se celebra desde hace tiempo en muchos países, el Día de Pi porque esa fecha está escrita como 3/14 en algunos países y la constante matemática Pi es aproximadamente 3,14. Sin embargo la UNESCO decidió proclamar el día dedicado a las matemáticas y unirlo así al día dedicado al número Pi.
El Día Internacional de las Matemáticas es un proyecto liderado por la Unión Matemática Internacional con el apoyo de numerosas organizaciones internacionales y regionales. Para este año, el lema que se ha elegido es el de «Mathematics for a Better World» («Matemáticas para un mundo mejor»), y con ello, resaltar la importancia que tienen las matemáticas para mejorar nuestra calidad de vida, en relación especialmente a la actual pandemia si bien son una herramienta indispensable para el monitoreo y la comprensión del fenómeno COVID-19.
5 curiosidades que desconocías de las matemáticas
Si deseas celebrar este día de forma especial, nada como conocer algunos datos sobre las matemáticas que son cuanto menos curiosos y que tal vez, desconocías:
- Incluso antes de que se inventaran los números , el hombre ya contaba con los dedos. Es por eso que usamos la palabra «digitos» para definir también a los números. Una palabra que proviene del latín digitus que significa precisamente dedo.
- Pitágoras , el gran matemático griego que vivió en el siglo VI a. C., creía que los números impares eran masculinos y los pares femeninos. El 3, fruto del «matrimonio» de pares (2) e impares (1), fue considerado el número perfecto.
- Según los científicos, los seres humanos tienen un sentido innato de los números . Pero también hay pueblos que no saben contar . El pueblo de los Pirahã del Amazonas, por ejemplo, solo puede contar hasta 2. Y en el idioma de los Hadza de Tanzania no hay palabras para indicar números más allá del 3.
- Tenemos 10 dedos y es por eso que nuestro sistema numérico es decimal. Los babilonios, en cambio, tenían un sistema basado en los sesenta: según los estudiosos, ellos también contaban con sus manos, pero tomando cada falange como referencia.
- Hija del poeta romántico Lord Byron, Ada Lovelace fue en cambio un genio de las matemáticas : a mediados del siglo XIX, creó el primer algoritmo diseñado para ser procesado por una máquina ( el motor analítico de Babbage ). Por eso es considerada la primera programadora de la historia.
Como dijo alguien, las disciplinas científicas son un gran árbol en el que cada rama supone una especialidad: Biología, Física, Química…Pero, ¿Y las matemáticas?Las Matemáticas son las raíces que mantienen con vida ese gran árbol, sin ellas, no podría existir, así de importantes son en todos los ámbitos de nuestras vidas.