miércoles, 08 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los Dinosaurios eran un callejón sin salida para nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 El “universo” de las partículas : Blog de Emilio Silvera V.El final de los dinosaurios habría sido muy diferente: ya se estaban  extinguiendo antes del meteorito
Resultado de imagen de Lugar de la Tierra donde proliferan más insectosLos mamíferos empezaron su ascenso antes de la caída de los dinosaurios |  Ciencia | EL PAÍS
                        Los insectos y pequeños mamíferos pudieron escapar de la catástrofe.
Los insectos y los pequeños mamíferos le ganaron la batalla al meteorito que mató a los dinosaurios. A partir de su salvación, 65 millones de años más tarde, pudimos llegar nosotros aquí. 
La vida en el hemisferio Sur se recuperó dos veces más rápido que en el Norte tras el impacto.
Zona en la que cayó el meteorito de Chixculub, en la península de Yucatán, vista desde el espacio.
Zona en la que cayó el meteorito de Chixculub, en la península de Yucatán, vista desde el espacio. ESA

Hace 66 millones de años, una roca espacial de 10 kilómetros chocó contra la Tierra causando una explosión equivalente a 7.000 millones de bombas atómicas. El choque levantó una enorme fumarola de roca pulverizada que se elevó hasta cubrir todo el globo y sumirlo en una profunda oscuridad. Tsunamis de más de 100 metros arrasaron las costas del actual Golfo de México, donde cayó el meteorito, y se desencadenaron fuertes terremotos. Parte de los escombros levantados por el impacto comenzaron a llover como diminutos meteoritos y transformaron el planeta en un infierno de bosques ardiendo. Las plantas que no se quemaron se quedaron sin luz solar durante meses. Tres de cada cuatro seres vivos en el planeta fueron exterminados, incluidos todos los dinosaurios.

Una de las grandes incógnitas sobre el evento de extinción masiva del Cretácico es si existió un refugio donde la vida permaneció más o menos intacta. Algunos estudios han situado ese oasis en el hemisferio Sur del planeta, especialmente cerca del Polo.

 Resultado de imagen de La patagonia

La Patagonia

Resultado de imagen de Nueva Zelanda

Nueva Zelanda

Estudios recientes apuntan a que en Patagonia y Nueva Zelanda la extinción de plantas fue mucho menor

 

 

 

 

“La mayoría de lo que sabemos sobre la extinción y la recuperación de la vida en tierra después del asteroide viene del Oeste de EE UU, relativamente cerca del lugar del impacto, en Chixculub, México”, explicó Michael Donovan, investigador de la Universidad estatal de Pensilvania (EE UU). Se sabe “mucho menos” de lo que sucedió en otras zonas más alejadas, dice, pero hay estudios recientes del polen y las esporas que apuntan a que en Patagonia y Nueva Zelanda la extinción de plantas fue mucho menor.

Patagonia Salvaje - Documental completo - YouTubeCap1 PATAGONIA SALVAJE - Vídeo Dailymotion

Tripin Argentina on Twitter: "Guanacos en El Chaltén, una postal increible  de IG #thomasjeremias . . “Juntos a la par.” . #discoversouthamerica  #argentina #southamerica #visitsouthamerica #naturelovers #discoverearth  #travel #fantastic_earthpix ...Patagonia salvaje (T1), La vida al límite - Canal EncuentroRoberto 'Beto' Bubas, guardafauna de la Patagonia argentina, nada y se  comunica con las orcas desde hace 25 años – La Danza Vital

                 La Patagonia salvaje

En un estudio publicado hoy en Nature Ecology & Evolution, Donovan y otros científicos en EE UU, Argentina y China exploran la hipótesis del refugio del sur a través del análisis de hojas fósiles de antes y después del impacto encontradas en la Patagonia argentina. En concreto, el equipo de investigadores ha analizado las pequeñas mordeduras dejadas por insectos herbívoros en la vegetación para estimar cuándo se recuperó el nivel de diversidad biológica anterior al desastre.

Los resultados muestran que, al igual que lo que se observó en el hemisferio norte, los insectos del sur prácticamente desaparecieron después del choque del meteorito. Pero los fósiles analizados también muestran que los niveles de diversidad de insectos se recuperaron en unos cuatro millones de años, dos veces más rápido que en el norte.

Los niveles de diversidad se recuperaron en unos cuatro millones de años, dos veces más rápido que en el norte, el clima y la temperatura colaboraron para ello.

 

“También hemos estudiado los minadores, rastros de deterioro en las hojas hechos por larvas de insecto al alimentarse”, explica Donovan. “No encontramos pruebas de la supervivencia de minadores del Cretácico, lo que sugiere que este no fue un refugio para estos insectos”, explica, pero en los restos de después del impacto enseguida aparecen nuevas especies.

Resultado de imagen de Los pequeños mamíferos que se salvaron del impacto del meteorito del Yucatan


Los primeros mamíferos aparecieron al final del triásico, pero eran criaturas pequeñas, parecidas a musarañas. El primer mamífero con placenta de la historia fue la musaraña, así que se podría decir que esta pequeña criatura es nuestro primer antepasado, apareciendo después de la extinción de los dinosaurios hace unos 65 millones de años atrás, mostrando una larga cola peluda, tamaño pequeño, peso de entre seis y 245 gramos y una dieta que incluía insectos. ¡Lo más importante era que ya no ponía huevos! 

El trabajo refuerza la hipótesis de que la vida regresó antes a las zonas más alejadas del punto de impacto, “aunque también pudo haber otros factores desconocidos”, advierte Donovan. Las diferencias en el tiempo de recuperación probablemente influyeron en los patrones de biodiversidad hasta la actualidad, comenta.

El trabajo también puede ayudar a explicar por qué otras pequeñas criaturas que se alimentaban de insectos acabaron conquistando la Tierra tras sobrevivir al meteorito que exterminó a los dinosaurios. “Es posible que los cambios en la cadena alimentaria causados por la extinción de los insectos después del impacto, seguidos de la recuperación de los niveles anteriores afectasen a otros organismos, incluidos los mamíferos”.

¡La Vida! ¿Qué será? ¿De dónde vino?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Así llegaron los ingredientes para la vida en la TierraUn nuevo empujón a la teoría de la Panspermia

 Etanolamina: Encuentran ladrillos para la vida en el espacio interestelarPDF) Las moléculas de la vida | Daniel Casillas - Academia.edu

En un momento incierto, una ráfaga luminosa inyecto energía en los materiales que construyeron la vida

✪ Fondos de pantallas ↪ del Universo ▷▷ Inmenso y en ExpansiónEl Universo está flotando en un océano de masa negativa? - Ambientum

En alguno de mis trabajos, alguna vez escribí:

“Si el Universo es un océano,
De materia y pensamientos,
Nuestro mundo es un lago,
de Alegrías y sufrimientos.

Qué tamaño tiene un ser humano respecto al universo? - VIXPor qué existe el Universo? - Ambientum Portal Lider Medioambiente

Existen seres que saben que son,
Están las cosas que son y no saben,
Pero todos bailan al mismo son,
del ritmo que el Universo impone.

Blog de Emilio Silvera V.2014 julio 04 : Blog de Emilio Silvera V.

La Materia es Energía,
En el Universo cambiante,
La Vida, como la luz del día,
Es su perla deslumbrante.

¡Si pudiéramos saber, lo que la Vida es!

Pensamientos : Blog de Emilio Silvera V.El problema del Multiverso : Blog de Emilio Silvera V.

                  El Universo creó a los seres vivos inteligentes (sin importar en qué lugar) para poder contemplarse a sí mismo. Cientos de miles de mundos habitados por criaturas de distintos pelajes.

2020 septiembre 04 : Blog de Emilio Silvera V.2020 septiembre 04 : Blog de Emilio Silvera V.

 Biologia : Blog de Emilio Silvera V.Imaginación : Blog de Emilio Silvera V.

En la Tierra todavía en proceso de enfriamiento, ya surgieron aquellas primeras células replicantes que, se divergieron en especies que evolucionaron con el Tiempo9 hasta nuestra llegada.

 

Lo cierto es que, no había aquí ningún cronista que pudiera haber tomado nota de aquellos acontecimientos que nos trajeron hasta ser conscientes de Ser. La Vida en nuestro planeta se debe a una gran cantidad de procesos que dieron lugar, con el paso de los miles de millones de años, desde que nació el Universo, a que la Evolución de la materia, al surgir de “algo” animado que, en forma de pequeños “seres”, primero sencillos y más tarde más complejos (procariotas y eucariotas), dieron lugar a que la aventura de la vida comenzara en nuestro planeta.

Está claro (ahora), que la sucesión de acontecimientos, tales como: cambios ambientales, catástrofes, actividad volcánica, movimientos de placas tectónicas, huracanes y terremotos, movimiento de los continentes y otros muchos, han tenido mucho que ver con las formas de vida que actualmente pueblan nuestro planeta.

El Big Bang podría haber generado dos futuros diferentes y no ser el origen  del tiempo, según la hipótesis de un físico | Marca

 

Claro que tampoco estamos seguros de que fuera esto lo que pasó. De momento la Teoría es la más aceptada por ser la que más se adecua a las observaciones pero…

 

Ahora sabemos que el Big Bang que dio comienzo al surgir de nuestro Universo, no era apto para la vida. Tuvieron que pasar algunos cientos de millones de años para que se formaran las primeras estrellas, una vez que pasó la época de la radiación y leptónica, los Quarks formaron los primeros átomos y, al juntarse, se formó la materia.

ANTARES - Módulo 3 - Unidad 3-04- Programa de Nuevas tecnologías - MEC -Estrellas en la secuencia principal – La Cola de Rata

            Las estrellas situadas en la Secuencia Principal crean los elementos

En las estrellas, mediante la fusión nuclear, se fusionaron los elementos sencillos existentes en aquellos primeros momentos (Hidrógeno y Helio) en otros más complejos como Berilio, Carbono, Oxígeno, Nitrógeno… y muchos más hasta el Hierro. Más tarde, en las Supernovas, se fraguaron elementos más pesados como el Uranio.

Lo cierto es que, la química de las estrellas presentes en nuestro Mundo (y en otros), hizo posible la presencia de la Vida en el Universo. Aunque sólo tenemos conocimiento de que la Vida habita el planeta Tierra, las probabilidades de que también, esté presente en muchos otros es muy alta. El Universo es el mismo en todas partes y, las mismas leyes y constantes rigen las regiones lejanas a la nuestra, y, siendo así (que lo es), ¿Por qué sólo habría vida en nuestro planeta?

Resultado de imagen de El arcaico temprano: Las BacteriasImagen relacionada

Los organismos dominantes de la vida en el Arcaico temprano fueron bacterias y arqueas, que coexistieron formando alfombras microbianas y estromatolitos (las llamadas esteras microbianas). Ahí tenemos que buscar la evolución temprana de la Vida en nuestro planeta. Más tarde, llegó la era del oxígeno y todo cambio, aquel “veneno” eliminó a muchos de los seres primarios que, anaeróbicos en su forma de existencia, no pudieron soportar el oxígeno, y, surgieron los “seres” aeróbicos (adaptados al aire) que dieron lugar a las especies que ahora conocemos, incluida la nuestra.

Claro que, para que eso llegara muchas cosas tuvieron que pasar antes, y, el camino, desde la oxigenación de la atmósfera terrestre no ha sido nada fácil, Comenzó hace unos 2.500 millones de años y, allí podemos encontrar la evidencia más temprana eucariota (las células más complejas con sus organelos y mitocondrias), aquello dio lugar a la célula múltiple y más compleja que la evolución llevó hasta nosotros.

Ciclo de vida de los helechos y afines (Pteridophyta) - esporofito raíz tallo hojas, esporangio espora gametofito.svg

Hace unos 450 millones de años que surgieron las primeras plantas en nuestro planeta, a las algas marinas se les atribuye una edad mayor que podría alcanzar los 1400 millones de años. Lo cierto es que, sólo tenemos que contemplar nuestro mundo para comprobar el éxito que han tenido las Plantas en él.

Las, Paprocie

Las plantas contribuyeron a la extinción del Devónico tardío. Los animales invertebrados aparecieron durante el período Ediacárico, mientras que los vertebrados se originaron hace ahora alrededor de 500 millones de años durante la explosión Cámbrica.

 Período Triásico » DINOSAURIOPEDIAFauna Pérmico | Amigos de los Dinosaurios y la Paleontología

Periodo Triásico | National Geographicgorgonopsianos – fsotonfosil

Durante el período Pérmico, los sinápticos, entre los que se encontraban los ancestros de los mamíferos,  dominaron la tierra pero el evento de extinción del Pérmico-Triásico hace 251 millones de años estuvo a punto de aniquilar toda la vida compleja sobre la Tierra.

Resultado de imagen de extinción del Pérmico-Triásico hace 251 millones de años

Esta fue la cuarta extinción a gran escala que padeció la Tierra

Extinción masiva del Pérmico-Triásico - Wikipedia, la enciclopedia libreTerápsido - EcuRed

    Extinción masiva del Pérmico-Triásico

No fue fácil que la Tierra se recuperara de tal catástrofe. Sin embargo, los arco-saurios se convirtieron en los vertebrados terrestres más abundantes, desplazando a los terápsidos a mediados del Triásico. Un grupo de arco-saurios, los dinosaurios, dominaron los períodos Jurásico y Cretácico, con los antepasados de los mamíferos que sobrevivieron sólo como pequeños insectívoros.

Yellow-billed stork kazinga.jpg

Después de la extinción masiva del Cretásico-Terciario hace ahora unos 65 millones de años que eliminó a los Dinosaurios (no aviarios), los mamíferos aumentaron de tamaño y diversidad sin aquellos enemigos temibles que antes lo podían devorar.

Noticia: Los dinosaurios pudieron haber sobrevivido si no fuera por su mala  suerteLessons - Blendspace

Aunque la extinción de los Dinosaurios se adjudica al meteorito caído en el Yucatán (México), algunos postulan que fue el oxígeno el que acabó con ellos. Algunas otras teorías circulan por ahí pero, es la del meteorito la que tiene más credibilidad.

   Los océanos se llenaron de fito-placton y la materia orgánica natural proveniente de organismos que antes estuvieron vivos, sembró la tierra dando lugar a la proliferación tal como de plantas y animales y sus productos y residuos. Las estructuras básicas están formadas de celulosa, tanino, cutina y lignina, junto a otras proteínas, lípidos y azúcares. Todo ello de inmensa importancia en el movimiento de nutrientes en el medio ambiente que juega un importante papel en la retención de agua en la superficie del planeta.

Resultado de imagen de Los meteoritos más antiguos encontrados en la Tierra

Todas las investigaciones llevadas a cabo nos dicen que las rocas más antiguas de la Tierra datan de hace ahora unos 3800 millones de años, mientras que los meteoritos más antiguos son de hace 4.540 millones de años. En la época en el que la Tierra estaba siendo continuamente bombardeada por los meteoritos, los expertos lo denominan el eón Hádico (nombre que significa infierno), ya que, eso parecía la Tierra por aquel entonces.

Todos los indicios nos indican que relativamente poco tiempo después de su formación, la Tierra ya solidificó su corteza terrestre, se formaron los océanos y la atmósfera que posibilitaron la presencia por evolución de la “materia inerte” de alguna clase de vida primigenia.

Los fósiles más antiguos del mundo - FitopasiónEstromatolito - Wikipedia, la enciclopedia libre

Los fósiles más antiguos del mundo. Si un viajero del tiempo retrocediera al pasado 3.500 millones de años, podría encontrarse con una imagen muy parecida a ésta de Shark Bay, en Australia…

Encontrar algún tipo de vida de la época sería algo complicado, pues el afloramiento de rocas arcaicas de la Tierra es inusual. Sin embargo, han habido algunos recientemente. El pasado año 2006 ya se identificaron células fósiles en estromatolitos en la costa australiana con 3400 millones de años de edad.

Fósiles con trazas de bacterias en Pilbara (Australia)

Los primeros organismos fueron identificados en un corto periodo de tiempo y relativamente sin rasgos, sus fósiles parecen pequeñas varillas, que son muy difíciles de distinguir de las estructuras que surgen a través de procesos físicos abióticos. La más antigua evidencia indiscutible de vida en la Tierra, interpretadas como bacterias fosilizadas, datan de hace 3000 millones de años.

Mientras que esto no pruebe que las estructuras encontradas tengan un origen no biológico, no puede ser tomado como una clara evidencia de la presencia de vida. Marcas geoquímicas en las rocas depositadas hace 3400 millones de años han sido interpretados como evidencia de vida que, en realidad, están llenas de incertidumbre.

El árbol filogenético mostrando la divergencia de las especies modernas de su ancestro común en el centro. Los tres dominios están coloreados de la siguiente forma; las Bacterias en azul, las Arqueas en verde, y los eucariotas de color rojo.

Según todos los indicios, todos los seres vivos sobre la Tierra tenemos un antepasado c´común universal. La razón biológica para ello, está determinada por el hecho cierto de que, sería prácticamente imposible que dos o más linajes separados pudieran haber desarrollado de manera independiente los muchos complejos mecanismos bioquímicos comunes a todos los organismos vivos. Todos ellos (dicho sea de paso), están basados en el Carbono.

PANSPERMIA

Enfermedades del espacio? | SETI Institute

Esporas que vinieron del Espacio para germinar en la Tierra

Nuestra imaginación (casi tan grande como el Universo), cuando no sabe sobre la certeza de alguna cuestión, suele inventar cómo podría haber sido, y, el tema de la Vida en la Tierra, no podía ser una excepción, así que, ya desde el siglo V a.C., corría la idea de que la vida en la Tierra había sido “sembrada” desde el Espacio Exterior.

Arrhenius, el padre de la física-química moderna |

          El químico Svante Arrhenius

La idea tomó cuerpo allá por el siglo XX, cuando el físico-químico Svante Arrhenius, propuso  que la vida llegó a la Tierra mediante la Panspermia, es decir, del Espacio Exterior. Otros muchos después siguieron sus pasos como los Astrónomos Fred Hoyle, Chandra Wickramasinghe y el biológo molecular Francis Crick y el Químico Leslie Orgel.

vida

Lo cierto es que, con plena certeza científica, nadie lo sabe. Circulan tres versiones o principales hipótesis sobre las “semillas de otros lugares” a través de choques de fragmentos caidos en la Tierra en su lejano pasado:

“1) En otras partes de nuestro sistema solar a través de choques de fragmentos en el espacio por el impacto de un gran meteorito, en cuyo caso la única fuente creíble es Marte;2) Por visitantes extraterrestres, posiblemente como resultado de una contaminación interplanetaria accidental por microorganismos que trajeron con ellos, 3) Fuera del sistema solar, pero por medios naturales. Los experimentos sugieren que algunos microorganismos pueden sobrevivir al shock de ser catapultados dentro del espacio y también que algunos pueden sobrevivir a la exposición a la radiación durante varios días, pero no hay ninguna prueba de que puedan sobrevivir en el espacio por períodos mucho más largos. Los científicos creen principalmente en dos ideas; sobre la probabilidad de que la vida surgiera de forma independiente en Marte, o en otros planetas en nuestra galaxia.”

 

Resultado de imagen de La Vida surgió en los océanos con la ayuda de los húmeros negrosResultado de imagen de La Vida surgió en los océanos con la ayuda de los húmeros negros

Por mi parte, soy poco partidario de la Panspermia, creo que, en nuestro planeta, están todos los ingrediente3s necesarios para el surgir de la vida. Siendo muchísimas especies las que se han extinguido (sólo el 1% vive en la actualidad), y, sin embargo, no dejan de aparecer nuevas especies.

La nueva imagen de sondeo VISION descubre secretos ocultos de las nubes de  Orión | Tecnología | Edición América | Agencia EFE

        El sistema solar se pudo formar en cualquiera de estas nebulosas moleculares gigantes

La Química de las estrellas estaba en aquella Nebulosa que hace miles de millones de años formó una desconocida explosión Supernova, y, en aquellos materiales en la Nube existentes, estaban todos aquellos necesarios para que, con el paso del Tiempo, en un planeta joven situado a la distancia adecuada de su estrella, pudiera desarrollar los mecanismos necesarios para que la Vida, hiciera acto de presencia.

emilio silvera

¡La Entropía! con el paso del tiempo, todo lo destruye

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

 

Muchas veces he dejado aquí una reseña de lo que se entiende por entropía y así sabemos que la energía sólo puede ser convertida en  cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformada. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

En realidad, la Entropía, no nos debe resultar tan extraña como esa imagen de arriba. Es algo que está presente en toda nuestra vida cotidiana. Sus efectos los podemos ver en todo lo que nos rodea y  sentir en nosotros mismos. Nada permanece igual, todo cambia y se transforma: Es la Entropía destructora que hace estragos en connivencia con el tiempo.

Está claro que la madre ha sufrido más intensamente los efectos de la entropía que la graciosa niña que  está comenzando su andadura por la vida. ¡El Tiempo! Ese inexorable transcurrir de la fatídica flecha que nos lleva, desde el mismo instante  del nacimiento, hasta el inevitable final: Es la Entropía destructora, ese mecanismo del que se vale nuestro Universo para renovarlo todo, incluso la vida que, de otra manera, no podría evolucionar, y, de alguna manera, ese surgir de la vida nueva, y las nuevas estrellas y nuevos mundos que nacen en las galaxias, se podría considerar como entropía negativa, es decir, algo que está ocurriendo para que el Caos no sea total.

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y menos energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo  el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo hasta el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua puede realizar un . El agua sobre una superficie horizontal no puede realizar trabajo, aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un depósito de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849  representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión.

                  Rudolf J. E. Clausius

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío hasta que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados  sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera:

¡Que la entropía aumenta con el tiempo!

El estudio del flujo de energía desde puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y trabajo recibió el  de “termodinámica”, que en griego significa “movimiento de calor”.

La termodinámica (significa “calor” y  dinámico, que significa “fuerza”) es una rama de la física que estudia los fenómenos relacionados con el calor.

termodinamica001
Motor de combustión interna: transferencia de energía.

Específicamente, la termodinámica se ocupa de las propiedades macroscópicas (grandes, en oposición a lo microscópico o pequeño) de la materia, especialmente las que son afectadas por el calor y la temperatura, así  de la transformación de unas formas de energía en otras.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada regla es tan fundamental que se la denomina “primer principio de la termodinámica”.

La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no  básica, y que denomina “segundo principio de la termodinámica.”

Según  segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.

¿Está degradándose el universo?

           El tiempo corre y las piezas se desgastan

Pensemos en un reloj. Los relojes funcionan gracias a una concentración de energía en su resorte o en su batería. A medida que el resorte se destensa o la reacción química de la batería avanza, se establece un flujo de energía  el punto de alta concentración al de baja concentración, y como resultado de este flujo anda el reloj. Cuando el resorte se ha destensado por completo o la batería ha finalizado su reacción química, el nivel de energía es uniforme en todo el reloj, no hay ya flujo de energía y la maquinaria se para. Podríamos decir que el reloj se ha “degradado”. Por analogía, decimos que el universo se “degradará” cuando toda la energía se haya igualado.

Si es cierto el segundo principio de la termodinámica, todas las concentraciones de energía en todos los lugares del universo se están igualando, y en ese sentido el universo se está degradando. La entropía alcanzará un máximo cuando la energía del universo esté perfectamente igualada; a partir de entonces no ocurrirá nada porque, aunque la energía seguirá allí, no habrá ya ningún flujo que haga que las cosas ocurran.

La situación parece deprimente (si el segundo principio es cierto), pero no es para alarmarse , ya que el proceso tardará billones de años en llegar a su final y el universo, tal como hoy existe, no sólo sobrevivirá a nuestro tiempo, sino que con toda probabilidad también a la humanidad misma.

De todo esto podemos obtener una consecuencia clara y precisa; de acuerdo con el segundo principio de la termodinámica, la entropía del universo está en constante aumento, es decir, la energía que contiene tiende a igualarse en todas partes. Así que, como cualquier proceso que iguala las concentraciones de energía está aumentando el desorden en el sistema, nuestro universo  vez tiene un mayor desorden con los movimientos aleatorios libres de las partículas que lo componen, cuyo comportamiento no es más que una especie de medida del desorden que en el universo se produce de manera continuada.

Rostros De La Abuela Con Hija Adulta Y Nieto En Línea Fotos, Retratos,  Imágenes Y Fotografía De Archivo Libres De Derecho. Image 7964959.Abuela Con La Hija Y El Nieto Adultos Imagen de archivo - Imagen de  horizontal, muchacha: 5469313

Las tres generaciones de arriba nos habla del tiempo que pasa, de la entropía que es su compañera inseparable y, de los estragos que, en nosotros y en todas las cosas puede causar ese principio  de que nada desaparece pero todo cambia.

La entropía está presente en la vida cotidiana: objetos que se descolocan, cosas que se desordenan, vestidos que se ensucian, un vaso que se cae y se rompe, los muebles que se llenan de polvo, el suelo que recoge las marcas de los pies que lo pisan, todo eso es entropía y,  arreglarla, tenemos que disponer bien las cosas, recoger los objetos caídos, lavar la ropa y limpiar el suelo o quitar el polvo, con lo cual, la entropía continúa estando presente en el esfuerzo que todo ello conlleva y deteriora la , la aspiradora y nos causa a nosotros por el esfuerzo realizado (deterioro-entropía).

La entropía está ineludiblemente unida al tiempo, ambos caminan juntos. En procesos elementales en los que intervienen pocos objetos es imposible saber si el tiempo marcha  delante o hacia atrás. Las leyes de la naturaleza se cumplen igual en ambos casos. Y lo mismo ocurre con las partículas subatómicas.

La figura muestra, al 50% del tamaño real, la trayectoria de un electrón entrando por la izquierda en una cámara de burbujas.

Un electrón curvándose en determinada dirección con el tiempo marchando hacia delante podría ser igualmente un positrón curvándose en la misma dirección,  con el tiempo marchando hacia atrás. Si sólo consideramos esa partícula, es imposible determinar cuál de las dos posibilidades es la correcta.

En aquellos procesos elementales en que no se  decir en que dirección marcha el tiempo, no hay cambio de entropía (o es tan pequeña la variación que podríamos ignorarla). Pero en los procesos corrientes, en las que intervienen muchas partículas, la entropía siempre aumenta. Que es lo mismo que decir que el desorden siempre aumenta.

Un saltador de trampolín cae en la piscina y el agua salpica  arriba; cae un jarrón al suelo y se hace añicos; las hojas caen de los árboles y se desparraman por el suelo. El paso de los años nos transforman de jovenes en viejos, ¿Quién puede remediar eso?

 

      En lugares como este nacen nuevas estrellas, nuevos mundos y, en ellos… ¡Nuevas formas de Vida!

El Universo no es infinito y se renueva cíclicamente a partir del Caos destructor para que surja lo . ¡Qué me gustaría saber de donde surgió, en realidad, el Universo? ¿Será una fluctuación del vació que expulsó este universo nuestro de otro mayor? ¿Será, acaso, el mismo universo que se renueva una y otra ves? No parece que ese sea el caso. Lo cierto es que, sólo tenemos el Big Bang y, sin la seguridad de que ese sea el comienzo cierto.

Se  demostrar que todas estas cosas, y en general, todo cuanto ocurre normalmente a nuestro alrededor, lleva consigo un aumento de entropía. Estamos acostumbrados a ver que la entropía aumenta y aceptamos ese  como señal de que todo se desarrolla normalmente y de que nos movemos hacia delante en el tiempo. Si de pronto viésemos que la entropía disminuye, la única manera de explicarlo sería suponer que nos estamos moviendo hacia atrás en el tiempo: las salpicaduras de agua se juntan y el saltador saliendo del agua asciende al trampolín, los trozos del jarrón se juntan y ascienden  colocarse encima del mueble y las hojas desperdigadas por el suelo suben hacia el árbol y se vuelven a pegar en las ramas.  Todas estas cosas muestran una disminución de la entropía, y sabemos que esto está tan fuera del orden de las cosas que la película no  más remedio que estar marchando al revés.

En efecto, las cosas toman un giro extraño cuando el tiempo se invierte, que el verlo nos  reír. Por eso la entropía se denomina a veces “la flecha del Tiempo”, porque su constante aumento marca lo que nosotros consideramos el “avance del tiempo”.

Quizás, algún día, la imaginación de los seres humanos, tan poderosa, pueda idear la manera de deterner el Tiempo y con él, eliminar la Entropía destructora. Por disparatada que pueda parecer la idea, yo no la descartaría…del toto.

Todo esto me lleva a pensar que, si finalmente el universo en el que estamos es un universo con la densidad crítica necesaria  el universo curvo y cerrado que finaliza en un Big Crunch, en el que las galaxias se frenarán hasta parar por completo y comenzaran de  a desandar el camino hacia atrás, ¿no es eso volver atrás en la flecha del tiempo y reparar la entropía?

La galaxia NGC 3344, situada a 25 millones de años-luz de nosotros en la Constelación de Leo, presume de estrellas nuevas azuladas y llenas de energía que, nos habla del surgir de lo nuevo, de la entropía negativa que se produce continuamente en el universo, donde no todo se destruye con el paso del tiempo, sino que, a partir del Caos… ¡Surge lo nuevo!

En un comentario que les hacía, en respuesta a otros contertulios José Luis, Fandila y Kike -en el trabajo “Las galaxias y la Vida”-, hace algún tiempo,  les decía:

 

 

Cada nueva estrella que surge hace aumentar la entropía negativa

 

“Bueno, amigo Kike… ¡O quizás sí! Como bien dices, el simple hecho de replicarse significa Entropía negativa, es decir, es la manera que tenemos los de nuestra especie (otras también), de generar esa clase de entropía y, cuando en las galaxias nacen nuevas estrellas, también se está produciendo ese fenómeno que va contra la entropía y el Caos final, toda vez que, algo  surge para que todo siga igual.”

 

Lo cierto es que sí existe la entropía negativa y, continuamente la podemos contemplar a nuestro alrededor, hay procesos que son cíclicos y reversibles como, por ejemplo y  no ir más lejos… ¡el de la vida! ¿Queson otras vidas? Sí, cierto, otras vidas con los genes de la que se fue y, de esa manera, continúa la aventura que comenzó hace algunos cientos de miles de años en nuestra especie. Si eso no es entropía negativa…

Por otra parte, en cosas más simples y simplemente mecánicas, hay cosas que se repiten una y otra vez y, en nuestro entorno, la Naturaleza lo hace con las estaciones, las mareas y un sin fin de fenómenos naturales que,  que podamos recordar, están aquí con nosotros.

Por otra , no es cierto que la temperatura del universo esté siempre en aumento, el hecho de que las galaxias se estén alejando las unas de las otras como consecuencia de la expansión, hace que cada vez sea más frío y, de hecho, se cree que la muerte térmica del universo llegará cuando alcance el cero absoluto, es decir, -273,16º Celsius, a esa temperatura ni en los átomos habrá movimiento alguno.

Es cierto que cuanto mayor sea la entropía de un sistema mayor también será el desorden y la energía disponible disminuirá. El propio universo, considerado como un sistema cerrado se verá abocado a ese escenario final, ya que, de manera irremisible, su entropía aumenta más y más y lo está llevando ahacia su muerte térmica.

Existe una energía interna de la que habla la ciencia que estudia las leyes que gobiernan la conversión de una forma de energía en otra, la dirección en la que fluye el calor y la disponibilidad de energía para que siga produciéndose . Se basa en el principio de que en un sistema aislado en cualquier lugar del universo hay una cantidad medible de energía, llamada la energía interna (U) del sistema. Esta es la suma de la energía potencial y cinética total de los átomos y moléculas del sistema que pueden ser transferida directamente como calor; excluye, por tanto, la energía nuclear y química. El valor de U sólo puede cambiar si el sistema deja de estar aislado, toda vez que, si deja de estar aislado y se junta con otro, habrá transferencia de masa, energía, calor.

Resuelto el misterio de cómo se forman las nebulosas planetarias | Las  ProvinciasÁlex Riveiro on Twitter: "Es una de las nebulosas más grandes que  conocemos, con 600 años-luz de diámetro. En nuestro grupo local de  galaxias, es, además ->"” /></a></div>
<p style= En cada uno de estos escenarios de arriba, sin excepción, se crean nuevos escenarios y se producen nuevas energías. Ahí, en todos, existe actividad de destrucción y construcción  (de los desechos surge lo nuevo.

En ese caso, tenemos que pensar en cómo se fusionan las galaxias y, a menor escala, también nosotros, de alguna manera, lo hacemos para generar nueva sabia, nueva energía y nueva vida que, de alguna manera, viene a contrarrestar los efectos de la entropía destructora que no puede impedir que esa nueva vida surja, y, de la misma manera, en las galaxias, nacen nuevas estrellas y nuevos mundos.

Todo esto nos puede llevar a pensar que, si nuestro universo es considerado un sistema cerrado, al final del camino, la entropía se saldrá con la suya pero… ¡Siempre hay un pero! ¿Y si nuestro universo no está sólo y se está acercando, de manera inexorable, a otro universo vecino para fusionarse con él? En ese caso, se producirán fenómenos termodinámicos que darán lugar a un escenario nuevo. No es ninguna tontería pensar en esa posibilidad, de estudios recientes ha salido el resultado asombroso de que nuestro universo parece tener vecinos.

Es cierto que los procesos naturales obedecen a la primera ley de la termodinámica (el principio de conservación de la energía). Sin embargo, aunque todos los procesos naturales obedecen a esta ley, no todos los procesos que la obedecen pueden ocurrir en la naturaleza. La mayoría de los procesos son irreversibles, es decir, solo pueden ocurrir en una dirección y la dirección que un proceso natural puede tomar es el objeto del segundo principio de la termodinámica al que antes Kike se refería y que puede ser formulado en una gran variedad de formas:

 

 

“El calor no puede ser transferido  un cuerpo a un segundo cuerpo a temperatura mayor sin producirse ningún efecto, y, la entropía de un sistema sistema cerrado aumenta con el tiempo.”

 

Esos conceptos introducen la Temperatura y la Entropía, los parámetros que determinan la dirección en la que un proceso irreversible  ocurrir. Como decíamos antes, si se llega al cero absoluto, el valor de la entropía sería cero, es decir, el cambio de la entropía sería nulo, como se cree que pasaría si el universo llega a ese final que algunos vaticinan de su muerte térmica.

Claro que, yo no soy tan agorero y parto de una base muy cierta: No lo sabemos todo y, lo poco que sabemos está sujeto a cambios (como nuestras teorías) a medida que vamos evolucionando y adquiriendo nuevos conocimientos. , podemos tener la impresión de que estamos a merced de esa Entropía que nos lleva al Caos y hacia la destrucción pero… (de nuevo un pero), ¿son inamovibles nuestros conocimientos actuales?

Creo en la generación de entropía negativa (por llamarla de alguna manera), y, el ejemplo de las estrellas nuevas que nacen continuamente y también, de nuestra propia descendencia… ¡Es una prueba irrefutable! De todas las maneras y,  siempre digo:

“Sabemos tan poco”

emilio silvera

La Inteligencia Artificial, e el Futuro ¿Podrá superarnos?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El final del futuro: el mundo robótico después del coronavirus -  elEconomista.es
                 ¿Podrá la Inteligencia Artificial superarnos a los humanos, sus creadores?
                  Según parece ese es, el camino emprendido por las luminarias del sector

Conseguir que un robot iguale o supere las capacidades del ser humano no parece una meta plausible para los próximos años. Habrá que seguir esperando para conocer a las máquinas super-inteligentes, si es que llega el momento… ¡Que llegará!
  • La primera sería la etapa de IA especializada, donde un modelo de IA es capaz de resolver un problema muy complejo y de forma muy eficiente, algo en lo que se lleva trabajando muchos años.
  • En segundo lugar, la etapa de IA cognitiva permite a los modelos y máquinas tener capacidades cognitivas que se acercan a las del ser humano, como ya se ha visto con algunos robots que han llegado a batir incluso a concursantes humanos en programas de televisión.
  • La tercera fase sería la denominada como IA amplia, en la que se mezclan diferentes modelos para encontrar soluciones complejas a problemas más amplios. Aquí, un ejemplo fantástico sería el coche autónomo.
  • En cuarto lugar estaría la etapa de IA asociada a la biotecnología y ciber-tecnología, con modelos con capacidades cognitivas para incrementar o mejorar capacidades humanas, como podría ocurrir en el campo de la neurocirugía, donde un robot con conexión remota puede ayudar y aportar precisión, entre otras virtudes, a las operaciones.
  • Y por último, la fase de IA general, donde se conseguiría igualar o incluso superar las capacidades humanas. Esto, según los expertos, podría llegar a pasar como pronto dentro de 50 años, un plazo que, como recordó Carralero, es el que se suele utilizar cuando no se tiene una idea muy clara de cómo avanzar hacia una determinada meta.
Qué harán los humanos cuando los robots hagan todo el trabajo? - MuyComputerCómo nos relacionaremos con los robots en el futuro?

Avanzar sin olvidar la ética

 

En cualquier caso, la evolución que está teniendo la IA es innegable, con un impacto además muy importante en prácticamente todas las industrias. Sin ir más lejos, en esta pandemia a través de modelos de IA se está ayudando a predecir contagios o analizar la evolución de los mismos y de la propia pandemia.

 

La inteligencia artificial predijo la pandemia y ahora ayuda a frenarlaIA predice cuando terminará el coronavirus

 

En este camino de implementación de IA en las diferentes industrias, como relató el portavoz de IBM, existen una serie de claves a tener en cuenta, como el hecho de operacionalizar la IA, ya que tiene que formar parte de los procesos del negocio y no quedarse en algo aislado por departamentos. Además, hay que contar con arquitecturas de datos corporativas, una automatización inteligente de los procesos y, por último, prestar mucha atención al partnership entre las máquinas y los humanos, dado que debemos focalizarnos en utilizar mejor el capital humano de las empresas, orientándolo hacia labores que tengan un mayor valor añadido.

¿Qué es un bosón? ¿y que es un bosón gauge?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un bosón es una partícula elemental (o estado ligado de partículas elementales, por ejemplo, un núcleo atómico o átomo) con espín entero, es decir, una partícula que obedece a la estadística de Bose-Einstein (estadística cuántica), de la cual deriva su nombre.

Se ha descubierto una quinta fuerza fundamental del universo? | EnterarseBose-Einstein Distribution Example

Aproximadamente 25.900 resultados (0,40 segundos)

Los bosones son importantes para el Modelo estándar de las partículas. Son bosones vectoriales de espín uno que hacen de intermediarios de las interacciones gobernadas por teorías gauge. El fotón está presente en todas las manifestaciones electromagnéticas de radiación, los bosones Z y W en la fuerza nuclear débil, el Gluón en la fuerza nuclear fuerte para retener a los Quarks. El Bosón que intermedia la fuerza de Gravedad no ha sido hallado todavía, es el esquivo Gravitón que no está presente en el Modelo Estándar.

En física se ha sabido crear lo que se llama el Modelo estándar y, en él, los Bosones quedan asociados a las tres fuerzas que lo conforman, el fotón es el Bosón intermediario del electromagnetismo, los W+, w y Zº son bosones gauge que transmiten la fuerza en la teoría electro-débil, mientras que los gluones son los bosones de la fuerza fuerte, los que se encargan de tener bien confinados a los Quarks conformando protones y neutrones para que el núcleo del átomo sea estable. La Gravedad, no se ha dejado meter en el modelo y, por eso su bosón no es de gauge. El gravitón que sería la partícula mediadora de la gravitación sería el hipotético cuanto de energía que se intercambia en la interacción gravitacional.

Ejemplos de los Bosones gauge son los fotones en electro-dinámica cuántica (en física, el fotón se representa normalmente con el símbolo \gamma \!, que es la letra griega gamma), los gluones en cromo-dinámica cuántica y los bosones W y Z en el modelo de Winberg-Salam en la teoría electro-débil que unifica el electromagnetismo con la fuerza débil. Si la simetría  gauge de la teoría no está rota, el bosón gauge es no masivo. Ejemplos de bosones gauge no masivos son el fotón y el gluón.

Si la simetría gauge de la teoría  es una simetría rota el bosón gauge tiene masa no nula, ejemplo de ello son los bosones W y Z . Tratando la Gravedad, descrita según la teoría de la relatividad general, como una teoría gauge, el bosón gauge sería el gravitón, partícula no masiva y de espín dos.

File:Electron-positron-scattering.svg

Diagrama de Feynman mostrando el intercambio de un fotón virtual (simbolizado por una línea ondulada y \gamma \,) entre un positrón y un electrón. De esta manera podemos llegar a comprender la construcción que se ha hecho de las interacciones que están siempre intermediadas por un bosón mensajero de la fuerza.

En el modelo estándar, como queda explicado,  hay tres tipos de bosones de gauge: fotones, bosones W y Z y gluones. Cada uno corresponde a tres de las cuatro interacciones: fotones son los bosones de gauge de la interacciones electromagnética, los bosones W y Z traen la interacción débil, los gluones transportan la interacción fuerte.  El gravitón, que sería responsable por la interacción gravitacional, es una proposición teórica que a la fecha no ha sido detectada. Debido al confinamiento del color, los gluones aislados no aparecen a bajas energías.

Aquí, en el gráfico, quedan representadas todas las partículas del Modelo estándar, las familias de Quarks y Leptones que conforman la materia y los bosones que intermedian en las interacciones o fuerzas fundamentales que están presentes en el Universo. La Gravedad no ha podido ser incluida y se ha negado a estar unida a las otras fuerzas. Así el bosón que la trasmite, tampoco está en el modelo que es incompleto al dejar fuera la fuerza que mantiene unidos los planetas en los sistemas solares, a las galaxias en los cúmulos y nuestros pies unidos a la superficie del planeta que habitamos. Se busca una teoría que permita esta unión y, los físicos, la laman gravedad cuántica pero… ¡no aparece por ninguna parte!

 http://1.bp.blogspot.com/_HG3RuD3Hmls/TRET9YfPcqI/AAAAAAAAFhI/CtvwqESOw04/s1600/MC01.jpg

Llegados a este punto tendremos que retroceder, para poder comprender las cosas, hasta aquel trabajo de sólo ocho páginas que publicó  Max Planck  en 1.900 y  lo cambió todo. El mismo Planck se dio  de que, todo lo que él había tenido por cierto durante cuarenta años, se derrumbaba con ese trabajo suyo que, venía a decirnos que el mundo de la materia y la energía estaba hecho a partir de lo que el llamaba “cuantos”.

Supuso el nacimiento de la Mecánica Cuántica (MC), el fin del determinismo clásico y el comienzo de una nueva física, la Física Moderna, de la que la Cuántica sería uno de sus tres pilares junto con la Relatividad y la Teoría del Caos. Más tarde, ha aparecido otra teoría más moderna aún por comprobar, ¿las cuerdas…?

El universo según la teoría de las cuerdas sería entonces una completa extensa polícroma SINFONIA ETERNA de vibraciones, un multiverso infinito de esferas,  una de ellas un universo independiente causalmente, en una de esas esferas nuestra vía láctea, en ella nuestro sistema solar, en él nuestro planeta, el planeta tierra en el cual por una secuencia milagrosa de hechos se dio origen a la vida autoconsciente que nos permite preguntarnos del cómo y del por qué de todas las cosas que podemos observar y, también, de las que intuimos que están ahí sin que se dejen ver.

Claro que, cuando nos adentramos en ese minúsculo “mundo” de lo muy pequeño, las cosas difieren y se apartan de lo que nos dicta el sentido común que, por otra parte, es posible que sea el  común de los sentidos. Nos dejamos guiar por lo que observamos, por ese mundo macroscópico que nos rodea y, no somos consciente de ese otro “mundo” que está ahí formando parte del universo y que, de una manera muy importante incide en el mundo de lo grande, sin lo que allí existe, no podría existir lo que existe aquí.

Interacciones en la naturaleza

                                   Interacciones en la naturaleza

 Albert Einstein habría dicho que “es más importante la imaginación que el conocimiento”, el filósofo Nelson Goodman ha dicho que “las formas y las leyes de nuestros mundos no se encuentran ahí, ante nosotros, listas  ser descubiertas, sino que vienen impuestas por las versiones-del-mundo que nosotros inventamos – ya sea en las ciencias, en las artes, en la percepción y en la práctica cotidiana-.”

Sin embargo yo, humilde pensador, me decanto por el hecho cierto de que, nuestra especie,  siempre llegó al conocimiento a través de la imaginación y la experiencia primero, a la que más tarde,  acompañó largas secciones de estudio y muchas horas de meditación y, al final de todo eso, llego la experimentación que hizo posible llegar a lugares ignotos que antes nunca, habían podido ser visitados. De todo ello, pudieron surgir todos esos “nuevos mundos” que, como la Mecánica Cuántica y la Relatividad, nos describían el propio mundo que  nos era desconocido.

Cuando comencé éste trabajo sólo quería dar una simple explicación de los bosones y su intervención en el mundo de lo muy pequeño pero…

      Demócrito de Abdera

No estaría mal echar una mirada hacia atrás en el tiempo y recordar, en este momento, a Demócrito que, con sus postulados, de alguna manera venía a echar un poco de luz sobre el asunto, dado que él decía que  para determinar  si algo era un á-tomo habría que ver si era indivisible. En el modelo de los quarks, el protón, en realidad, un conglomerado pegajoso de tres quarks que se mueven rápidamente. Pero como esos quarks están siempre ineludiblemente encadenados los unos a los otros, experimentalmente el protón aparece indivisible.

Acordémonos aquí de que Boscovich decía que, una partícula elemental, o un “á-tomo”, tiene que ser puntual. Y, desde luego, esa , no la pasaba el protón. El equipo del MIT y el SLAC, con la asesoría de Feynman y Bjorken, cayó en la cuenta de que en este caso el criterio operativo era el de los “puntos” y no el de la indivisibilidad. La traducción de sus  a un modelo de constituyentes puntuales requería una sutileza mucho mayor que el experimento de Rutherford.

Precisamente por eso era tan conveniente y fue tan conveniente para Richard Edward Taylor y su equipo, tener a dos de los mejores teóricos del mundo en el equipo aportando su ingenio, agudeza e intuición en todas las fases del proceso experimental. El resultado fue que los  indicaron, efectivamente, la presencia de objetos puntuales en movimiento dentro del protón.

Buscando las reglas de la QCD para los hadrones exóticos - La Ciencia de la  Mula Francis

Los hadrones están formados por Quarks

En 1990 Taylor, Friedman y Kendall recogieron su premio Nobel por haber establecido la realidad de los quarks. Sin embargo, a mí lo que siempre me ha llamado más la atención es el hecho cierto de que, este descubrimiento como otros muchos (el caso del positrón de Dirac, por ejemplo), han  posible gracias al ingenio de los teóricos que han sabido vislumbrar cómo era en realidad la Naturaleza.

A todo esto, una buena  sería: ¿Cómo pudieron ver este tipo de partículas de tamaño infinitesimal, si los quarks no están libres y están confinados -en este caso- dentro del protón?  Hoy, la  tiene poco misterio sabiendo lo que sabemos y hasta donde hemos llegado con el LHC que, con sus inmensas energías “desmenuza” un protón hasta dejar desnudos sus más íntimos secretos.

                    Este es, el resultado ahora de la colisión de protones en el LHC

Lo cierto es que, en su momento, la teoría de los Quarks hizo muchos conversos, especialmente a medida que los teóricos que escrutaban los  fueron imbuyendo a los quarks una realidad creciente, conociendo mejor sus propiedades y convirtiendo la incapacidad de ver quarks libres en una virtud. La  de moda en aquellos momentos era “confinamiento”. Los Quarks están confinados permanentemente porque la energía requerida para separarlos aumenta a medida que la distancia entre ellos crece. Esa es, la fuerza nuclear fuerte que está presente dentro del átomo y que se encarga de transmitir los ocho Gluones que mantienen confinados a los Quarks.

Así, cuando el intento de separar a los Quarks es demasiado intenso, la energía se vuelve lo bastante grande para crear un par de quark-anti-quark, y ya tenemos cuatro quarks, o dos mesones. Es como intentar  un cabo de cuerda. Se corta y… ¡ya tenemos dos!

Biografia de Murray Gell-MannGabriele Veneziano - Wikipedia, la enciclopedia libre

          Murray  Gell – Mann                                       Veneziano

Day 3: Theoretical Physics Session, John Schwarz - YouTubeEdward Witten - Wikipedia, la enciclopedia libre

                                John Schwarz                                   Edwar Witten

¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y  momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar.

¿Cuántas veces no habré pensado, en la posibilidad de tomar el elixir de la sabiduría para poder comprenderlo todo? Sin embargo, esa pócima mágica no existe y, si queremos , el único camino que tenemos a nuestro alcance es la observación, el estudio, el experimento… ¡La Ciencia!, que en definitiva, es la única que nos dirá como es, y como se producen los fenómenos que podemos contemplar en la Naturaleza y, si de camino, podemos llegar a saber el por qué de su comportamiento… ¡mucho mejor!

       El camino será largo y, a veces, penoso pero… ¡llegaremos!

Nuestra insaciable curiosidad nos llevará lejos en el saber del “mundo”. llegaremos al corazón mismo de la materia para conmprobar si allí, como algunos imaginan, habitan las cuerdas vibrantes escondidas tan profundamente que no se dejan ver. Sabremos de muchos mundos habitados y podremos hacer ese primer contacto tántas veces soñado con otros seres que, lejos de nuestro región del Sistema solar, también, de manera independiente y con otros nombres, descubrieron la cuántica y la relatividad. Sabremos al fín qué es la Gravedad y por qué no se dejaba juntar con la cuántica. Podremos realizar maravillas que ahora, aunque nuestra imaginación es grande, ni podemos intuir por no tener la información necesaria que requiere la imaginación.

En fin, como decía Hilbert: ¡”Tenemos que saber, sabremos”!

emilio silvera