Sep
29
La Astrobiología: El Origen de la Vida en el contexto del Universo
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Para comprender el Universo tenemos que estudiar sus componentes, tenemos que saber de qué está hecho. La componente clásica del Universo, la que corresponde a materia y energía similares a lo que vemos a nuestro alrededor en galaxias, estrellas y planetas es una parte minoritaria: menos que el 5%. El resto está constituido por componentes exóticos, llamados por nuestro desconocimiento, simplemente “energía y materia oscura”
.
Las leyes de la Física, aplicables a toda la materia y la energía, tienen sin duda un papel fundamental en la comprensión del Universo y por ello la Astrofísica ha tenido un desarrollo espectacular en los últimos tiempos a pesar de la escasez de materia como la que conocemos.
Los constituyentes básicos de la materia másica conocida son los fermiones como los “quarks” (púrpura) y “leptones” (verde). Los bosones (rojo) son “materia no-másica”, simplemente son las partículas mediadoras de las fuerzas fundamentales: El fotón para el electromagnetismo, el Gluón para la fuerza nuclear fuerte, las partículas W+ y W– más la Z0 intervienen en la fuerza nuclear débil.
En la lista se hecha de menos el Gravitón que aún no ha sido hallado y, se supone, que intermedia la Gravedad, la más d+ebil de las cuatro fuerzas y, si existe tal Bosón, debe ser minúsculo y no se deja ver.
Por otro lado, como el Universo es muy grande, las densidades medias son muy bajas y la materia se encuentra normalmente en estructuras muy simples, en forma de átomos y partículas individuales. La composición química del Universo y sus procesos son por ello también importantes para comprender su evolución, dando pie al uso más o menos extendido de astro-química.
Sin embargo, las moléculas complejas son relativamente raras y los organismos vivos muchísimo más. La parte Biológica del Universo que conocemos se reduce a nuestro propio planeta por lo que parece excesivo poder hablar de Astrobiología. Por qué tenemos que preocuparnos por una parte tan ínfima del Universo. Ciertamente porque los seres humanos pertenecemos a esta extraña componente y, ya que no podemos reproducir en el laboratorio el paso de la química a la biología, es en el contexto del Universo (el gran Laboratorio) y su evolución en el que podemos analizar los límites y las condiciones necesarias para que emerja la vida en cualquier sitio, dando pleno sentido al uso del término como veremos a continuación.
Único lugar conocido donde la vida emergió, ahí podemos contemplar un trozo del planeta Tierra al atardecer, cuando se acerca la noche y el Sol se esconde detrás del Horizonte para llevar el día a otros lugares.
La Astrobiología es una ciencia que ha surgido en la frontera entre varias disciplinas clásicas: la Astronomía, la Biología, la Física, la Química o la Geología. Su objetivo final es comprender cómo surgió la vida en nuestro Universo, cómo se distribuye y cuál es su evolución primitiva, es decir, cómo pudo establecerse en su entorno.
En otras palabras, trata de comprender el papel de la componente biológica del Universo, conectando la astrofísica y la astro-química con la biología. Intenta para ello comprende el origen de la vida. : El paso de los procesos químicos prebióticos a los mecanismos bioquímicos y a la biología propiamente dicha.
Naturalmente, en Astrobiología nos planteamos preguntas fundamentales, como la propia definición de lo que entendemos como Vida, cómo y cuándo pudo surgir en la Tierra, su existencia actual o en el pasado en otros lugares o si es un hecho fortuito o una consecuencia de las leyes de la Física. Algunas de estas cuestiones se las viene formulando la humanidad desde el principio de los tiempos, pero ahora por primera vez en la historia, los avances de las ciencias biológicas y de la exploración mediante tecnología espacial, es posible atacarlas desde un punto de vista puramente científico. Para ello, la Astrobiología centra su atención en estudiar cuáles son los procesos físicos, químicos y biológicos involucrados en la aparición de la vida y su adaptabilidad, todo ello en el contexto de la evolución y estructuración, u auto-organización, del Universo.
Cianoficeas fósiles
Como cualquier otra ciencia, la Astrobiología está sujeta a la utilización del método científico y por tanto a la observación y experimentación junto con la discusión y confrontación abierta de las ideas, el intercambio de datos y el sometimiento de los resultados al arbitraje científico. La clave de la metodología de esta nueva ciencia está en la explotación de las sinergias que se encuentran en las fronteras entre las disciplinas básicas mencionadas anteriormente, una región poco definida, cuyos límites se fijan más por la terminología que por criterios epistemológicos. Un aspecto importante de la investigación en el campo de la Astrobiología es la herramienta fundamental que representa el concepto de complejidad.
La vida es un proceso de emergencia del orden a partir del caos que puede entenderse en medios no aislados y, por tanto libres de la restricción de la segunda ley de la termodinámica, como un proceso complejo. En este sentido, la emergencia de patrones y regularidades en el Universo, ligados a procesos no lineales, y el papel de la auto-organización representan aspectos esenciales para comprender el fenómeno de la vida. Transiciones de estado, intercambios de información, comportamientos fuera de equilibrio, cambios de fase, eventos puntuales, estructuras auto-replicantes, o el propio crecimiento de la complejidad, cobran así pleno sentido en Astrobiología.
Un elemento crucial para la vida,en la Tierra lo tenemos en tres estados: líquido, sólido y gaseoso.
Un problema básico de esta ciencia, ya mencionado al principio, es la cantidad de datos disponibles, de sujetos de estudio. No conocemos más vida que la existente en la Tierra y ésta nos sirve de referencia para cualquier paso en la búsqueda de otras posibilidades. La astrobiología trata por ello de analizar la vida más primitiva que conocemos en nuestro planeta así como su comportamiento en los ambientes más extremos que encontremos para estudiar los límites de su supervivencia y adaptabilidad. Por otro lado, busca y analiza las condiciones necesarias para la aparición de entornos favorables a la vida, o habitables, en el Universo mediante la aplicación de métodos astrofísicos y de astronomía planetaria. Naturalmente, si identificáramos sitios en nuestro sistema solar con condiciones de habitabilidad sería crucial la búsqueda de marcadores biológicos que nos indiquen la posible existencia de vida presente o pasada más allá de la distribución de la vida en el Universo o, en caso negativo, acotaríamos aún más los límites de la vida en él.
Encontrar un “punto azul pálido” o “segunda Tierra” dentro de una zona habitable que contenga agua y condiciones ambientales que puedan sustentar vida, constituye el Santo Grial de la ciencia. Cuántas veces nos habremos preguntado: ¿Estamos solos?
Diferentes condiciones ambientales pueden haber dado lugar a la vida e incluso permitido la supervivencia de algunos organismos vivos generados de forma casual, como experimento de la naturaleza. La Astrobiología trata de elucidar el papel de la evolución del Universo, y especialmente de cuerpos planetarios, en la aparición de la vida. En esta búsqueda de ambientes favorables para la vida, y su caracterización, en el sistema solar, la exploración espacial se muestra como una componente esencial de la Astrobiología. La experimentación en el laboratorio y la simulación mediante ordenadores o en cámaras para reproducir ambientes distintos son una herramienta que ha de ser complementada por la exploración directa a través de la observación astronómica, ligada al estudio de planetas extrasolares, o mediante la investigación in situ de mundos similares en cierta forma al nuestro, como el planeta Marte o algunos satélites de los planetas gigantes Júpiter y Saturno.
Viendo al planeta Saturno desde los mares de metano de Titán, nos tenemos que preguntar si por ahí cerca se estarán preparando las condiciones para una vida extrasolar futura, o, si acaso, está ya ahí presente.
La componente instrumental y espacial convierte a la Astrobiología en un ejemplo excelente de la conexión entre ciencia y tecnología. Los objetivos científicos de la Astrobiología, hemos visto, que requieren un tratamiento trans-disciplinar, conectando áreas como la física y la astronomía con la química y la biología. Esta metodología permite explotar sinergias y transferir conocimiento de unos campos a otros para beneficio del avance científico. Pero además, la Astrobiología está íntimamente ligada a la exploración espacial que requiere el desarrollo de instrumentación avanzada. Se necesitan tecnologías específicas como la robótica o los biosensores habilitadas para su empleo en condiciones espaciales y entornos hostiles muy diferentes al del laboratorio. Naturalmente la Astrobiología emplea estos desarrollos también para transferir conocimiento y tecnologías a otros campos de investigación científica y en particular, cuando es posible, incluso al sector productivo.
Recreación artística de Gliese 81 b, el primer planeta que los astrónomos consideran potencialmente habitable. EFE
Pero repasemos, para terminar, cuáles son las áreas científicas propias de la Astrobiología. Como se ha dicho, es una ciencia interdisciplinar para el estudio del origen, evolución y distribución de la vida en el Universo. Para ello requiere una comprensión completa e integrada de fenómenos cósmicos, planetarios y biológicos. La astrobiología incluye la búsqueda y la caracterización de ambientes habitables en nuestro sistema solar y otros planetas alrededor de estrellas más alejadas, la búsqueda y análisis de evidencias de química prebiótica o trazas de vida larvada o extinguida en cuerpos del sistema solar como Marte o en lunas de planetas gigantes como Júpiter y Saturno. Asimismo se ocupa de investigaciones sobre los orígenes y evolución de la vida primitiva en la Tierra analizando el comportamiento de micro organismos en ambientes extremos.
Desde el punto de vista más astronómico, la Astrobiología estudia la evolución química del Universo, su contenido molecular en regiones de formación estelar, la formación y evolución de discos proto-planetarios y estrellas, incluyendo la formación de sistemas planetarios y la caracterización de planetas extrasolares. En este campo en particular se han producido avances recientes muy importantes con la obtención de imágenes directas de planetas extrasolares y la identificación de algunos de ellos como puntos aislados de su estrella central gracias a técnicas de interferometría.
El Laboratorio Espacial Herschel que penetra en lo más profundo del Cosmos tratando de desvelar lo esencial para desentrañar los procesos de formación estelar. La caracterización de atmósferas de planetas extrasolares con tránsitos han permitido detectar CO₂ en la atmósfera de otros mundos y se ha descubierto el planeta más parecido a la Tierra por su tamaño y suelo rocoso aunque con un período demasiado corto para ser habitable. El lanzamiento de la misión Kepler de la NASA nos permite abrigar esperanzas de encontrar finalmente un planeta “hermano” del nuestro en la zona de habitabilidad de otra estrella.
Los satélites Herschel y Planck
La Zona Habitable (HZ) está comprendida por el rango de distancias desde una estrella en las que el agua líquida puede existir. Tambien el rango de tipos de estrellas que puede tener planetas está limitado a aquellas estrellas en las cuales puede haber el tiempo tiempo suficiente como para que se formen planetas. El espacio de búsqueda incluye la mayoría de HZ de todas las estrellas menos masivas que las espectrales tipo A.
El campo de la Astronomía planetaria, la Astrobiología estudia la evolución y caracterización de ambientes habitables en el sistema solar con el fin de elucidar los procesos planetarios fundamentales para producir cuerpos habitables.
Esto incluye el análisis de ambientes extremos y análogos al de Marte en nuestro planeta, como resulta serla cuenca del Río Tinto en Huelva, así como la exploración de otros cuerpos del sistema solar, Marte en particular.
Imagen del Río Tinto en Huelva. ¿No os parece cualquier lugar de Marte?
Ahí la NASA, en sus aguas contaminadas de minerales pesado y un pH imposible.. ¡Encontraron vida)
El descubrimiento en Marte de agua en forma de hielo así como las claras evidencias de la existencia de agua líquida en su superficie en el pasado, proporcionadas por la observación de modificaciones de la componente mineralógica atribuidas al agua líquida en el subsuelo. Hoy por hoy, se considera que la presencia de agua líquida es una condición necesaria, aunque no suficiente, para la aparición de la vida ya que proporciona el caldo de cultivo para que las moléculas prebióticas se transformen en microorganismos biológicos.
En estas investigaciones el estudio del satélite Titán de Saturno mediante la sonda europea Huygens ha marcado un hito importante al acercarnos a un entorno prebiótico donde el metano ejerce un papel dominante.
En este sentido la posibilidad de explorar el satélite Europa, alrededor de Júpiter, es un claro objetivo de la Astrobiología dado que la espesa corteza de hielo que lo cubre puede esconder una gran masa de agua líquida.
Finalmente, la Astrobiología también contempla una serie de actividades más próximas al laboratorio en el que se analiza la evolución molecular, desde la química prebiótica, pasando por la adaptación molecular, hasta los mecanismos bioquímicos de interacción y adaptación al entorno. En este campo son muy importantes los estudios centrados en los límites de la biología, como la virología, y herramientas para la comprensión de los mecanismos de transmisión de información, de supervivencia y adaptabilidad, como las cuasi-especies. Entre los últimos avances de la química prebiótica de interés para la Astrobiología se encuentra el análisis de la quiralidad, una preferencia de la química de los organismos vivos por una simetría específica que nos puede acercar al proceso de su formación durante el crecimiento de la complejidad y la jerarquización de los procesos. Naturalmente, los mecanismos de transferencia de información genética resultan críticos para comprender la adaptabilidad molecular y son otro objetivo prioritario de la Astrobiología.
emilio silvera
Sep
29
¡La misteriosa luna Titán!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Titán, la luna de Saturno, esconde muchos secretos que debemos desvelar y, entre otros, aparte de los últimos resultados obtenidos que dicen que también, posee un océano interior, los más recientes estudios nos hablan de algo más sensacional.
¿Quién está respirando el Oxígeno de Titán?
Esta luna es un enigma en sí mismo ya que es la única luna del Sistema Solar que tiene una atmósfera densa. Los lagos de hidrocarburos líquidos en su superficie y un ciclo del metano activo se asemejan al ciclo del agua de la Tierra.
Cassini, la sonda, ha estado en órbita alrededor de Saturno desde 2004 y se encuentra ahora en su segunda fase de extensión de la misión, la misión Cassini Solsticio de Misión, que se prolongará hasta 2017.
Lagos y mares de Metano y una atmósfera como la que tenía la Tierra hace millones de años. En esos lugares podría haber alguna clase de vida primitiva.El experto ha dicho:“Sugerimos que algo está consumiendo el hidrógeno porque es el gas más obvio para ser consumido por una forma de vida en Titán, de la misma forma en que se consume oxígeno en la Tierra”, asegura Chris McKay, astro-biólogo de la NASA en el centro espacial Ames. “Si estos indicios confirman la presencia de vida, será doblemente excitante, ya que sería una forma nuevas de vida, independiente de la basada en el agua que existe en la Terra”.
Sep
29
El Universo y sus maravillas
por Emilio Silvera ~ Clasificado en General ~ Comments (8)
“El final de la evolución es catastrófico con una gran explosión, explosión supernova, en la que las capas externas de la estrella son eyectadas con una energía similar a la que producirá el Sol durante toda su vida (aproximadamente 10.000 millones de años).”
Cuando llega ese momento final de una estrella por falta de contrapresión, la gravedad, cada vez más libre para hacer su trabajo, produce finalmente la implosión de la estrella y se produce tanto calor que, como he dicho antes, las capas exteriores explotan por la presión de la radiación, y la implosión queda interrumpida quedando una esfera extremadamente compacta de material nuclear o estrella de neutrones proveniente de una explosión supernova de tipo II.
El colapso bajo la propia gravedad la lleva a tener una densidad de unos 1017 Kg/m3; los electrones y protones están tan apretados que se funden y forman neutrones. En este punto conviene aclarar que el objeto en el cual se convierte una estrella finalmente, está directamente conectado a la masa de la estrella.
El astrónomo Kart Schwarzschild hizo un estudio que se conoce como “radio de Schwarzschild”: para las estrellas como nuestro Sol, el final estará en una estrella enana blanca; para estrellas con dos veces y media la masa solar, su destino corresponde a una estrella de neutrones; y si la masa de la estrella es mayor que cinco veces la masa del Sol, la estrella se convertirá en un agujero negro.
Cuanto más masivo es un agujero negro, mayor es el radio de Schwarzschild. Para un agujero negro que venga de un cuerpo de masa M, este radio es igual a 2GM/c2, donde G es la constante gravitacional y c la velocidad de la luz. Fue calculado por primera vez por este astrónomo a partir de las ecuaciones de Einstein de la relatividad general.
Estos objetos cosmológicos que pueblan el universo tienen propiedades asombrosas. Las estrellas de neutrones, a menudo rotan con impresionante velocidad (más de 500 revoluciones por segundo). Debido a irregularidades en la superficie emiten una señal de radio que pulsa con esa velocidad. Estos objetos fueron descubiertos por la observación de esa señal de radio y por eso se les llamó “púlsares”. En las tablas astronómicas se indican por las letras LGM, que es una reliquia de los tiempos en los que se consideró la posibilidad de que fueran señales de otras civilizaciones extraterrestres.
Son como faros cósmicos en la inmensidad espacial
Los primeros cálculos realizados por el astrónomo de origen indio Subrahmanyan Chandrasekhar demostraron que un objeto frío y compacto tiene una masa sólo unas pocas veces superior a la del Sol. No importa de qué tipo de materia esté formado, no podrá resistir la presión. La fuerza gravitatoria se hace tan intensa que únicamente la teoría de la relatividad general de Einstein puede decirnos lo que sucederá. Como la fuerza gravitatoria actúa colectivamente sobre todas las partículas de la estrella, sigue siendo débil cuando actúa sobre una sola partícula. Por lo tanto, no hay (aún) necesidad de la Gravedad Cuántica para calcular exactamente la siguiente cadena de sucesos.
Sep
28
¡La Física! y sus Maravillas
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
En grupo de amigos, todos pertenecientes a la Real Sociedad Española de Física, reunidos y en anima charla ante una taza de espumoso y aromático café, charlaban sobre distintos aspectos de la Física que, por lo general, eran sucesos maravillosos a los que podíamos tener acceso gracias a un largo recorrido de pensamientos, observaciones y experimentación.
Uno de ellos, decía: “Me maravilla el ingenio de algunos físicos que han podido alcanzar conocimientos de hechos que suceden en la Naturaleza en el mundo microscópico, por ejemplo, fijaros en el fenómeno que conocemos como Condensación de Bose-Einstein. Allí, un gran número de Bosones a temperatura suficientemente baja, en el que una fracción significativa de las partículas pueden ocupar un único estado cuántico de energía más baja (el estado fundamental). Sabemos que la Condensación de Bose-Einstein sólo puede ocurrir para Bosones cuyo número total es conservado en las colisiones.”
Condensado de Bose Einstein
Sí, amigo J.P. (le contestó M.B.), es como dices, sin embargo, debido al Principio de exclusión de Pauli es imposible que dos o más Fermiones ocupen el mismo estado cuántico, por lo que no hay fenómeno análogo de condensación para estas partículas.
El condensado de Bose Einstein (CBE) es un estado de agregación de la materia, al igual que los estados habituales: gaseoso, líquido y sólido, pero que tiene lugar a temperaturas extremadamente bajas, muy cercanas al cero absoluto.
Fijaros (tercio N.J.) que, la Conexión de Bose-Einstein es de importancia fundamental para aplicar el fenómeno de la super-fluidez. A temperaturas muy bajas (del orden de 2 x 10 exponente -7 K) se puede formar un Condensado de Bose Einstein, en el que varios miles de átomos formen una única entidad (un super-átomo).
Hagamos un intermedio para introducir una nota de la NASA
Los condensados de Bose-Einstein (“BECs” no son como los sólidos, los líquidos y los gases sobre los que aprendimos en la escuela. No son vaporosos, ni duros, ni fluidos. En verdad, no hay palabras exactas para describirlos porque vienen de otro mundo — el mundo de la mecánica cuántica.–
La mecánica cuántica describe las extrañas reglas de la luz y la materia a escalas atómicas. En este mundo, la materia puede estar en dos lugares al mismo tiempo; los objetos se comportan a la vez como partículas y como ondas (una extraña dualidad descrita por la ecuación de onda de Schrödinger) y nada es seguro: el mundo cuántico funciona a base de probabilidades.
Abajo: Los BECs se forman cuando los átomos en un gas sufren la transición de comportarse como las “bolas de billar voladoras” de la física clásica, a comportarse como una onda gigante de materia. Imagen cortesía del MIT.
Aunque las reglas cuánticas parecen ir en contra de la intuición, son la base de la realidad macroscópica que experimentamos día a día. Los condensados de Bose-Einstein son objetos curiosos que unen la brecha entre ambos mundos. Obedecen la leyes de lo pequeño aun cuando se acercan a lo grande.
Un BEC es un grupo de unos cuantos millones de átomos que se unen para formar una sola onda de materia de aproximadamente un milímetro de diámetro. En 1995, con apoyo parcial de la NASA, Ketterle creó BECs en su laboratorio, enfriando un gas hecho de átomos de sodio hasta una temperatura de unas cuantas milmillonésimas de grado arriba del cero absoluto — ¡mil millones de veces más frío que el espacio interestelar! A tan bajas temperaturas los átomos se comportan más como ondas que como partículas. Unidos por rayos láser y trampas magnéticas, los átomos se superponen y forman una sola onda gigante (dentro de los estándares atómicos), de materia.
Las imágenes de los BECs pueden interpretarse como fotografías de las funciones de onda, es decir, soluciones a la ecuación de Schrödinger.
Trabajando independientemente en 1995, Eric Cornell (Instituto Nacional de Estándares y Tecnología ó National Institute of Standards & Technology) y Carl Weiman (Universidad de Colorado) crearon también algunos BECs; los de ellos estaban compuestos por átomos de rubidio super-enfriado. Cornell y Weiman compartieron el Premio Nobel de Física 2001 con Ketterle “por lograr la condensación de Bose-Einstein en gases diluidos de átomos alcalinos, y por los primeros estudios fundamentales de las propiedades de los condensados.”
Los condensados de Bose-Einstein fueron pronosticados por el físico hindú Satyendra Nath Bose y por Albert Einstein en el año de 1920 cuando la mecánica cuántica aún era algo nuevo. Einstein se preguntaba si los BECs serían tan extraños como para ser reales incluso cuando él mismo ya había pensado en ellos. En aquellos días era imposible averiguarlo; la tecnología para enfriar la materia vaporosa a temperaturas suficientemente bajas aún no existía.
Einstein y Bose
Los condensados de Bose-Einstein no son como los sólidos, los líquidos y los gases sobre los que aprendimos en la escuela. No son vaporosos, ni duros, ni fluidos. En verdad, no hay palabras exactas para describirlos porque vienen de otro mundo — el mundo de la mecánica cuántica.
La mecánica cuántica describe las extrañas reglas de la luz y la materia a escalas atómicas. En este mundo, la materia puede estar en dos lugares al mismo tiempo; los objetos se comportan a la vez como partículas y como ondas (una extraña dualidad descrita por la ecuación de onda de Schrödinger) y nada es seguro: el mundo cuántico funciona a base de probabilidades.
Ecuación y Función de onda de Schrödinger
Es verdad, ese efecto ha sido observado en átomos de Rubidio y Litio. En la actualidad, muchos trabajos punteros, sobre todo en computación, están manejando el Condensado de Bose-Einstein para obtener nuevos y más rápidos ordenadores que, en el futuro próximo podrán realizar operaciones complejas en fracciones de segundo.
Estamos llegando a la descripción estadística de un sistema de partículas que obedece las reglas de la Mecánica cuántica en lugar de las de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas (antes lo decía J.P.) pueden ocupar un estado cuántico dado. Y, dichas partículas se llaman Bosones que tienen momento angular nh/2π, donde n es cero o entero y h es la constante de Planck. Pasa Bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tendremos que aplicar la estadística de Fermi-Dirac y esas partículas no son otras que los Fermiones. Los Fermiones tienen momento angular ( n + ½) h/2π y cualquier función de ondas de fermiones idénticos es siempre anti-simétrica.
Sí, es así, la relación entre el espín y la estadística de las partículas está demostrado por el teorema espín-estadística. Es decir, El teorema de la estadística del espín o teorema de la correspondencia entre espín y estadística de la mecánica cuántica establece la relación directa entre el espín de una especie de partícula con la estadística a la que obedece.
En el espacio de dos dimensiones es posible que haya partículas ( o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas, como sabéis, se conocen con el nombre de aniones; para aniones idénticos la función de onda no es simétrica (un cambio de fase +1) o anti-simétrica (un cambio de fase -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.
Relacionado con todo esto, no debemos olvidar el procedimiento utilizado en teoría cuántica de campos y en el problema de muchos cuerpos en mecánica cuántica en modelos en los que aparecen fermiones en el que se sustituyen los fermiones por una teoría de campos efectiva con bosones (Bosonización).
“La transformación Jordan-Wigner es una herramienta poderosa, que mapea entre modelos con grados de libertad spin-1/2 y fermiones sin espín. La idea clave es que existe un mapeo simple entre el espacio de Hilbert de un sistema con un grado de libertad de spin-1/2 por sitio y el de los fermiones sin espinas que saltan entre sitios con orbitales individuales. Se puede asociar el estado de rotación con un orbital vacío en el sitio y un estado de rotación con un orbital ocupado.
La bosonización / fermionización también es una herramienta poderosa, que mapea entre la teoría del campo bosónico 1 + 1d y la teoría del campo fermiónico 1 + 1d . Hay una correspondencia no trivial entre operadores de dos lados en 1 + 1d.”
En sistemas de una dimensión la transformación de campos fermiónicos a campos bosónicos es exacta. Para sistemas de mayor dimensión, la bosonización es un procedimiento que en general sólo se puede llevar a cabo aproximadamente; es, por ejemplo, sólo válida como una aproximación de baja energía.
Por otra parte, la derivación de una teoría de campos efectiva para mesones, partiendo de la cromo-dinámica cuántica, es un ejemplo de la bosonización aproximada aplicable a las bajas energías. La transformación de la descripción de un gas de electrones en términos de plasmones es otro ejemplo de bosonización aproximada.
Es curioso (dice E.S.) como para partículas tan dispares como los Bosones y los Fermiones, la Física actual está dando pasos tan importantes hasta el punto de que, no debería extrañarnos que, en un futuro próximo, ambas partículas antagónicas sean utilizadas de manera indistinta en experimentos en los que, las unas se conviertan en las otras y viceversa.
Aunque las reglas cuánticas parecen ir en contra de la intuición, son la base de la realidad macroscópica que experimentamos día a día. Los condensados de Bose-Einstein son objetos curiosos que unen la brecha entre ambos mundos. Obedecen la leyes de lo pequeño aun cuando se acercan a lo grande.
¡La Física! ¿Qué no podrá conseguirse con Tiempo por delante? Creo que TODO.
emilio silvera
Sep
27
Coss del Universo
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
La teoría del Big Bang nos explica la expansión del Universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.
Si la teoría del Bing Bang es correcta (como parece que lo es -al menos de momento-), debe de existir alguna fuerza desconocida, o quizá la misma gravedad que no hemos llegado a entender totalmente y tenga alguna parte que se nos escapa, o (como dicen), una gran proporción de “materia oscura” en forma no bariónica, quizás axiones, fotinos o neutrinos masivos, supervivientes de las etapas tempranas del Big Bang y, ¿por qué no?, también podríamos suponer que la materia oscura que tanto nos preocupa pudiera estar encerrada dentro de las singularidades de tantos y tantos agujeros negros que se han debido formar a lo largo de los 13.750 millones de años que es la edad del universo.
Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos super-masivos, con una singularidad que no podemos ver y el Horizonte de sucesos que cuando algo lo traspasa…¡Queda atrapado para siemre! no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.
Pues bien, si en el universo existen innumerables agujeros negros, por qué no creer que sean uno de los candidatos más firmes para que sea la buscada “materia oscura”,(dicen algunos).
Viaje hacia la Quinta Dimensión
Para mí particularmente, sin descartar absolutamente nada de lo anterior (cualquier teoría podría ser la cierta), la denominada materia oscura (si finalmente existe), ¿estará situada en la quinta dimensión, y nos llegan sus efectos a través de fluctuaciones del “vacío” donde residen inmensas energías que rasgan el espacio-tiempo y que, de alguna manera, deja pasar a los gravitones que transportan la fuerza gravitacional que emite dicha materia y sus efectos se dejan sentir en nuestro universo, haciendo que las galaxias se alejen las unas de las otras a mayor velocidad de la que tendrían si el universo estuviera poblado sólo de la materia bariónica que nos rodea?
¿Fluctuaciones de vacío y materia oscura?
Claro que mi pensamiento es eso, una conjetura más de las muchas que circulan. A veces me sorprendo al escuchar como algunos astrofísicos de reconocido nombre, sin pudor alguno, dogmatizan hablando de estas cuestiones sobre las que no tienen la menor certeza. Podemos hablar de la energía y materia oscura pero, siempre, dejando claro que son teorías de lo que podría ser y que, más o menos probables, aún no han sido confirmadas.
De todas las maneras, incluso la denominación dada: “materia oscura”, delata nuestra ignorancia. ¿Cómo podemos poner nombre a algo que ni sabemos si existe en realidad. Se buscó esta solución para poder cuadrar las cuentas. Las observaciones astronómicas dejaron claro que, las galaxias, se alejaban a velocidades cada vez mayores y que, de seguir así, llegaría un día en el futuro en el que, las únicas galaxias cercanas serían las del Grupo Local. Que cada vez el espacio “vacío” entre galaxias será mayor. ¿Qué fuerza desconocida empujaba a las galaxias a expandirse hacia el exterior? La materia bariónica no era la causante. Así que, se inventó la “materia oscura” y, de esa manera, el problema quedó zanjado. Claro que, no solucionado.
Mecánica cuántica, relatividad, átomos, el genoma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada… Sabemos representar muchas otras cosas pero, la materia oscura, al sernos desconocida, no sabemos como puede ser y no podemos tener una imagen de lo que la materia oscura es (si es que es), así que hablamos y hablamos de ella sin cesar pero también sin, saber.
Mientras tanto, dejamos que el “tiempo” transcurra y como en todo lo demás, finalmente, alguien nos dará la respuesta, o, nos sacará del error, al demostrar que la dichosa materia oscura, nunca existió y que es, otra fuerza, la que produce los efectos observados en la expansión acelerada del Universo.
Claro que nos falta mucho…
Para que tengamos todas las respuestas que necesitamos para viajar a las estrellas, tener energía infinita obtenida de agujeros negros, lograr el traslado instantáneo de materia viva a lugares distantes, dominar toda una galaxia…, tendrán que transcurrir algunos eones de tiempo para que, algunos de estos sueños se haga realidad y, si ocurren algunas de esas cosas en el futuro…¿La haremos nosotros? ¿O, quizá para entonces sean otros los que habrán cogido la antorcha de nuestros sueños?
¿Alguien me podría decir quién es robot y quién humano?
Cada vez se avanza más en menos tiempo. Y, llegará el momento, cuando dentro de algunos milenios, estemos preparados para viajar a las estrellas que, estarán aquí presentes con nosotros los inevitables Robots. Según una serie de cálculos y profundos pensamientos, no podremos seguir adelante llegados a un punto de no retorno, y, nos veremos obligados a fabricar robots muy sofisticados que harán trabajos espaciales y de colonización de Planetas para preparar la posterior llegada de los Humanos. Es inevitable pero, ¿será una buena idea?
No creo que alguna vez puedan alcanzar la naturalidad del humano
Acordaos de que hace menos de un siglo no existían televisores, teléfonos móviles, faxes, ni aceleradores de partículas. En los últimos cien años hemos avanzado de una manera que sería el asombro de nuestros antepasados. De la misma manera pero mucho más acelerada, serán las décadas venideras y, para dentro de los próximos cien años (a finales del presente siglo), si lo pudiéramos ver, quedaríamos tan asombrados como lo estarían nuestros bisabuelos si pudieran abrir los ojos y ver el mundo actual.
¿Qué maravillas tendremos dentro de 200 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Sabremos más sobre el origen de la vida? ¿Qué estadio de saber habrá alcanzado la Física, y, si para entonces hemos verificado la Teoría de cuerdas, qué nuevas teorías estarán en boga? ¿Habremos convertido Marte en una segunda Tierra al proporcionarle una atmósfera y una atmósfera terrestre?
La verdad es que, científicamente hablando, no habría problema alguno
Dejando a un lado, a los primeros descubridores, como Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:
La primera revolución de la física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos ayudo en nuestra comprensión de las leyes que gobiernan el Universo. Esa primera revolución nos fue dada en dos pasos: 1905 la Teoría de la Relatividad Especial.
y en 1.915, diez años después, la teoría de la relatividad general. Al final de su trabajo relativista, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y también la que hace posible la existencia de las galaxias. La Relatividad General de Einstein, nos dice cómo la materia determina la geometría del Universo.
Un universo que se curva sobre sí mismo en presencia de la materia
Einstein nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el universo y que crean esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann) sobre la distorsión del espacio-tiempo. Es decir, Einstein nos dijo que la materia, es la que determina la geometría del Universo.
Pero… ¿Cómo puede cambiar el perímetro de una circunferencia sin que lo haga su radio? Esto no ocurre de acuerdo con nuestras percepciones usuales del espacio, por lo que Einstein intuyó que la clave estaba en renunciar a tales nociones. La clave para permitir la ocurrencia de estos fenómenos es que el espacio esté curvado.
Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.
Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m / π = 3’14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿Cómo puede ser esto? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.
Como podemos imaginar un objeto pesado o masivo colocado en el centro de una superficie elástica, se ha hundido a consecuencia del peso y ha provocado una distorsión que cambia completamente la medida original del diámetro de esa circunferencia que, al ser hundida por el peso, se agranda en función de éste.
Al espacio le ocurre igual.
De la misma manera se puede considerar que el espacio tridimensional dentro y alrededor de un agujero negro está distorsionado dentro de un espacio plano de dimensión más alta (a menudo llamado hiperespacio), igual que la lámina bidimensional está distorsionada como describo en la imagen anterior.
Lo más intrigante de los agujeros negros es que, si caemos en uno, no tendremos manera alguna de salir o enviar señales a los que están fuera esperándonos. Pensemos que la masa de la Tierra que es de 5’974X1024 Kg (densidad de 5’52 gramos por cm3), requiere una velocidad de escape de 11’18 Km/s, ¿cuál no será la masa y densidad de un agujero negro si pensamos que ni la luz que viaja a 299.792’458 Km/s puede escapar de su fuerza de gravedad?
La Gravedad, presente en el Universo ¡de tantas maneras!
Algunos incluso hablan de la posibilidad de viajar en el Tiempo
Es tanta la densidad que no sólo distorsiona el espacio, sino que también distorsiona el tiempo según las ecuaciones de Einstein: el flujo del tiempo se frena cerca del agujero, y en un punto de no retorno (llamado el “horizonte” del agujero, o límite), el tiempo está tan fuertemente distorsionado que empieza a fluir en una dirección que normalmente sería espacial; el flujo de tiempo futuro está dirigido hacia el centro del agujero. Nada puede moverse hacia atrás en el tiempo1, insisten las ecuaciones de Einstein; de modo que una vez dentro del agujero, nos veremos arrastrados irremisiblemente hacia abajo con el flujo del tiempo, hacia una “singularidad” escondida en el corazón del agujero; en ese lugar de energía y densidad infinitas, el tiempo y el espacio dejan de existir.
Como he apuntado antes en alguna parte de este mismo trabajo, la descripción relativista del agujero negro procede de la obra de Kart Schwarzschil. En 1.916, apenas unos meses después de que Einstein formulara sus famosas ecuaciones, Kart fue capaz de resolver exactamente las ecuaciones de Einstein y calcular el campo gravitatorio de una estrella masiva estacionaria.
Así, Históricamente la primera solución importante fue obtenida por Schwarzschild en 1916, esta solución conocida posteriormente como métrica de Schwarzschild, representa el campo creado por un astro estático y con simetría esférica. Dicha solución constituye una muy buena aproximación al campo gravitatorio dentro del sistema solar, lo cual permitió someter a confirmación experimental la teoría general de la relatividad explicándose hechos previamente no explicados como el avance del perihelio de Mercurio y prediciendo nuevos hechos más tarde observados como la deflexión de los rayos de luz de un campo gravitatorio. Además las peculiaridades de esta solución condujeron al descubrimiento teórico de la posibilidad de los agujeros negros, y se abrió todo una nueva área de la cosmología relacionada con ellos. Lamentablemente el estudio del colapso gravitatorio y los agujeros negros condujo a la predicción de las singularidades espacio-temporales, deficiencia que revela que la teoría de la relatividad general es incompleta. Quizá la teoría de cuerdas, en la que subyace ésta, nos complete el cuadro.
La solución de Schwarzschild tiene varias características interesantes:
La solución de Schwarzschild permitió aplicar los postulados de la relatividad general a disciplinas como la mecánica celeste y la astrofísica, lo cual supuso una verdadera revolución en el estudio de la cosmología: Apenas seis años después de la publicación de los trabajos de Einstein, el físico ruso Aleksander Fridman introdujo el concepto de singularidad espacio-temporal, definido como un punto del espacio-tiempo en el que confluyen todas las geodésicas de las partículas que habían atravesado el horizonte de sucesos de un agujero negro. En condiciones normales, la curvatura producida por la masa de los cuerpos y las partículas es compensada por la temperatura o la presión del fluido y por fuerzas de tipo electromagnético, cuyo estudio es objeto de la física de fluidos y del estado sólido. Sin embargo, cuando la materia alcanza cierta densidad, la presión de las moléculas no es capaz de compensar la intensa atracción gravitatoria. La curvatura del espacio-tiempo y la contracción del fluido aumentan cada vez a mayor velocidad: el final lógico de este proceso es el surgimiento de una singularidad, un punto del espacio-tiempo donde la curvatura y la densidad son infinitas.
- En primer lugar, una línea de no retorno rodea al agujero negro: cualquier objeto que se acerque a una distancia menor que este radio será absorbido inevitablemente en el agujero.
- En segundo lugar, cualquiera que cayera dentro del radio de Schwarzschild será consciente de un “universo especular” al “otro lado” del espacio-tiempo.
Incluso surgieron agujeros de gusano que nos podían trasladar a puntos distantes tanto en el tiempo como en el espacio.
Einstein no se preocupaba por la existencia de este extraño universo especular porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya dije antes, ni la luz podría escapar a dicha fuerza, e igualmente, las ondas de radio electromagnéticas también estarían prisioneras en el interior de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. Además, para penetrar en el universo alternativo, la sonda debería ir más rápida que la velocidad de la luz, lo que no es posible; c es la velocidad límite del universo.
Así pues, aunque este universo especular es matemáticamente necesario para dar sentido a la solución de Schwarzschild, nunca podría ser observado físicamente (al menos por el momento). En consecuencia, el famoso puente de Einstein-Rosen que conecta estos dos universos fue considerado un artificio matemático.
Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.
Las cosas comenzaron a cambiar con la solución que el trabajo matemático presentado por el neozelandés Roy Kerr, presentado en 1.963, encontró otra solución exacta de las ecuaciones de Einstein. Kerr supuso que cualquier estrella colapsante estaría en rotación. Así pues, la solución estacionaria de Schwarzschild para un agujero negro no era la solución físicamente más relevante de las ecuaciones de Einstein.
La solución de Kerr causó sensación en el campo de la relatividad cuando fue propuesta. El astrofísico Subrahmanyan Chandrasekhar llegó a decir:
“La experiencia que ha dejado más huella en mi vida científica, de más de cuarenta años, fue cuando comprendí que una solución exacta de las ecuaciones de Einstein de la relatividad general, descubierta por el matemático Roy Kerr, proporciona la representación absolutamente exacta de innumerables agujeros negros masivos que pueblan el universo. Este estremecimiento ante lo bello, este hecho increíble de que un descubrimiento motivado por una búsqueda de la belleza en matemáticas encontrará su réplica exacta en la naturaleza, es lo que me lleva a decir que la belleza es aquello a lo que lleva la mente humana en su nivel más profundo“.
Un agujero negro de Kerr o agujero negro en rotación es una región de agujero negro presente en el espacio-tiempo de Kerr, cuando el objeto másico tiene un radio inferior a cierta magnitud, por encima de este radio el universo de Kerr no presenta región de agujero negro. Un agujero negro de Kerr es una región no isótropa que queda delimitada por un horizonte de sucesos y una ergo-esfera presentando notables diferencias con respecto al agujero negro de Schwarzschild. Esta nueva frontera describe una región donde la luz aun puede escapar pero cuyo giro induce altas energías en los fotones que la cruzan. Debido a la conservación del momento angular, este espacio forma un elipsoide, en cuyo interior se encuentra un solo horizonte de sucesos con su respectiva singularidad, que debido a la rotación tiene forma de anillo.
La solución de Kerr de un agujero negro giratorio permite que una nave espacial pase a través del centro del agujero por el eje de rotación y sobrevivir al viaje a pesar de los enormes pero finitos campos gravitorios en el centro, y seguir derecha hacia el otro universo especular sin ser destruida por la curvatura infinita.
Para nosotros, teniendo el concepto que tenemos de lo que un agujero negro es, es tan difícil imaginar que una nave pueda entrar en él y poder salir más tarde, como imaginar que, en mundos extraños como el de arriba, puedan existir criaturas inteligentes como en la Tierra.
El universo, como todos sabemos, abarca a todo lo que existe, incluyendo el espacio y el tiempo y, por supuesto, toda la materia está en la forma que esté constituida. El estudio del universo se conoce como cosmología. Si cuando escribimos Universo nos referimos al conjunto de todo, al cosmos en su conjunto, lo escribimos con mayúscula, el universo referido a un modelo matemático de alguna teoría física, ese se escribe con minúscula.
El vacío de Boötes o el Gran Vacío es una gigantesca región del Espacio, que contiene muy pocas galaxias. Se encuentra cerca de la constelación de Boötes de ahí su nombre. Tiene un diámetro de cerca de 250 millones de años luz. Es uno de los vacíos más grandes conocidos en el Universo, por eso lo llaman súper-vacío.
El universo real está constituido en su mayoría por espacios aparentemente vacíos, existiendo materia concentrada en galaxias formadas por estrellas y gas (también planetas, quásares, púlsares, cometas, estrellas enanas blancas y marrones, estrella de neutrones, agujeros negros y otros muchos objetos espaciales). El universo se esta expandiendo, las galaxias se alejan continuamente los unas de las otras. Existe una evidencia creciente de que existe una materia oscura invisible, no bariónica, que puede constituir muchas veces la masa total de las galaxias visibles. El concepto más creíble del origen del universo es la teoría del Big Bang de acuerdo con la cual el universo se creó a partir de una singularidad infinita de energía y densidad a inmensas temperaturas de millones de grados K, hace ahora unos 15.000 millones de años.
emilio silvera