jueves, 23 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La partícula Beta, el neutrino, la luz…

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los físicos se vieron durante mucho tiempo turbados por el hecho de que a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo.  En realidad, los electrones no eran igualmente deficitarios.  Emergían con un amplio espectro de energías, y el máximo (conseguido por muy pocos electrones), era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menor grado.  Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas.  En ese caso, ¿qué era errónea en la emisión de partículas beta? ¿Qué había sucedido con la energía perdida?

Partículas alfa, efectos de la radiación alfa sobre la saludFÍSICA NUCLEAR: DESINTEGRACIÓN RADIACTIVA: LEYES DE SODDY

“Las partículas alfa (α) son núcleos completamente ionizados, es decir, sin su envoltura de electrones correspondiente, de helio-4 (4He). Se generan habitualmente en reacciones nucleares o desintegración radiactiva de otros nucleidos que se transmutan en elementos más ligeros mediante la emisión de dichas partículas.”

En 1922, Lise Maitner se hizo por primera vez esta pregunta, y, hacia 1.930, Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas.  En 1931, Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida.

EL FÍSICO LOCO: Desintegración alfa, beta y gamma

Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida.  Esa misteriosa segunda partícula tenía propiedades bastante extrañas.  No poseía carga ni masa.  Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía.  A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.

Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y esta certeza se incrementó al descubrirse el neutrón y al saberse que se desintegraba en un protón y se liberaba un electrón, que, como en la decadencia beta, portaba insuficientes cantidades de energía.  Enrico Fermi dio a esta partícula putativa el nombre de “neutrino”, palabra italiana que significa “pequeño neutro”.

9.a (izquierda) Desintegración beta negativa (β --) de un núcleo y el... |  Download Scientific Diagram

La desintegración del neutrón dejó al descubierto al neutrino

El neutrón dio a los físicos otra prueba palpable de la existencia del neutrino.  Como ya he comentado en otra página de este trabajo, casi todas las partículas describen un movimiento rotatorio. Esta rotación se expresa, más o menos, en múltiples de una mitad según la dirección del giro.  Ahora bien, el protón, el neutrón y el electrón tienen rotación de una mitad. Por tanto, si el neutrón con rotación de una mitad origina un protón y un electrón, cada uno con rotación de una mitad, ¿Qué sucede con la ley sobre conservación del momento angular? Aquí hay algún error. El protón y el electrón totalizan una mitad con sus rotaciones (si ambas rotaciones siguen la misma dirección) o cero (si sus rotaciones son opuestas); pero sus rotaciones no pueden sumar jamás una mitad. Sin embargo, por otra parte, el neutrino viene a solventar la cuestión.

Momento magnético nuclear

Supongamos que la rotación del neutrón sea +½. Y admitamos también que la rotación del protón sea +½ y la del electrón -½, para dar un resultado neto de o. Demos ahora al neutrino una rotación de +½, y la balanza quedará equilibrada.

+½(n)=+½(p)-½(e)+½(neutrino)

Pero aun queda algo por equilibrar.  Una sola partícula (el neutrón) ha formado dos partículas (el protón y el electrón), y, si incluimos el neutrino, tres partículas.  Parece más razonable suponer que el neutrón se convierte en dos partículas y una antipartícula.  En otras palabras: lo que realmente necesitamos equilibrar no es un neutrino, sino un antineutrino.

Obstinados navegantes en océanos de incertidumbre: DESDE LA RADIACTIVIDAD  AL DESCUBRIMIENTO DEL NEUTRINO-1

El propio neutrino surgiría de la conversación de un protón en un neutrón.  Así, pues, los productos serían un neutrón (partícula), un positrón (antipartícula) y un neutrino (partícula). Esto también equilibra la balanza.

En otras palabras, la existencia de neutrinos y antineutrinos debería salvar no una, sino tres, importantes leyes de conservación: la conservación de la energía, la de conservación del espín y la de conservación de partícula/antipartícula.

Es importante conservar esas leyes puesto que parece estar presentes en toda clase de reacciones nucleares que no impliquen electrones o positrones, y sería muy útil si también se hallasen presentes en reacciones que incluyesen esas partículas.

Fusión nuclear - Wikipedia, la enciclopedia libreEnergía Nuclear - Monografias.com

GENERALIDADES Como ya lo sabemos, las propiedades químicas de los átomos  están determinada por la manera como se encuentran agrupados sus electrones  externos, por lo que el núcleo no pareciera tener propiedades químicas  relevantes. Sin ...Qué es la Fusión Nuclear? » TP - Laboratorio Químico

Las más importantes conversiones protón-neutrón son las relaciones con las reacciones nucleares que se desarrollan en el Sol y en los astros.  Por consiguiente, las estrellas emiten radiaciones rápidas de neutrinos, y se calcula que tal vez pierdan a causa de esto el 6 u 8 % de su energía.  Pero eso, sería meternos en otra historia y, por mi parte, con la anterior explicación solo trataba de dar una muestra del ingenio del hombre que, como habréis visto, no es poco.

Desde que puedo recordar, he sido un amante de la Física. Me asombran cuestiones como la luz, su naturaleza de un conglomerado de colores, ondas y partículas, su velocidad que nos marca el límite del máximo que podemos correr en nuestro Universo, y en fin, muchos otros misterios que encierra esa cosa tan cotidiana que nos rodea y lo inunda todo haciendo posible que podamos ver por donde vamos, que las plantas vivan y emitan oxígeno o que nos calentemos.  Realmente, sin luz, nuestra vida no sería posible.

Fotos de Puesta de sol en la playa de MazagónImagen gratis: puesta de sol, amanecer, agua, crepúsculo, sol, estrella,  mar, playa, cielo, paisaje

Entonces, ¿Qué es realmente la luz? Forma de energía que ilumina las cosas, las hace visibles y se propaga mediante partículas llamadas fotones.

Luz y energía — Astronoo

“La luz en realidad era una onda de energía. Esta onda, al viajar en diferentes frecuencias y rebotar en diferentes direcciones, genera la percepción de sombras y colores. Sin embargo, la luz también transfiere energía a otras partículas en forma de «quanta» (por ejemplo, el metal se calienta con la incidencia de la luz), comportamiento típico de una partícula.

El ocaso de la teoría de cuerdas — Cuaderno de Cultura Científica

Con tantas incógnitas por resolver, aparece la teoría de cuerdas con una nueva propuesta que abarca no sólo la luz, sino todo fenómeno en el universo: Ésta plantea que todas las partículas elementales son en realidad «cuerdas» que oscilan en diferentes frecuencias y de diferente manera. Un tipo de oscilación provocará que la cuerda sea apreciada como, por ejemplo, un protón; mientras que otro inducirá la generación de un fotón. La velocidad y amplitud de las frecuencias darán lugar a conceptos como peso o espacio.

Introducción a la teoría de cuerdas - New Physics

De acuerdo a la teoría de cuerdas, todo el universo está generado por un solo elemento: cuerdas que oscilan en diferente manera. La aspiración principal de esta teoría es poder llegar a explicar el funcionamiento del universo en su totalidad.”

Así es la espectacular colisión de 14 galaxias a más de 12.000 millones de  años luz de distanciaFotones y electrones 'dialogan' en la nanoescala con CSIC

 

Muchos (casi todos) opinan que es algo inmaterial. Los objetos materiales, grandes o muy pequeños como las galaxias o los electrones, son materia.  La luz, sin embargo, se cree que es inmaterial, dos rayos de luz se cruzan sin afectarse el uno al otro.

Sin embargo, yo que, desde luego, no soy un experto, opino en cambio que la luz, es simplemente una forma de energía lumínica, otra forma en la que se puede presentar la materia.  Nosotros mismos, en última instancia, somos luz.

Está claro que, los estudiosos de la época antigua y medieval estaban por completo a oscuras acerca de la naturaleza de la luz. Especulaban sobre que consistía en partículas emitidas por objetos relucientes o tal vez por el mismo ojo. Establecieron el hecho de que la luz viajaba en línea recta, que se reflejaba en un espejo con un ángulo igual a aquel con el que el rayo choca con el espejo, y que un rayo de luz se inclina (se refracta) cuando pasa del aire al cristal, al agua o a cualquier otra sustancia transparente.

La percepción del color – Educación en Lenguajes Artísticos

Cuando la luz entra en un cristal, o en alguna sustancia transparente, de una forma oblicua (es decir, en un ángulo respecto de la vertical), siempre se refracta en una dirección que forma un ángulo menor respecto de la vertical.  La exacta relación entre el ángulo original y el ángulo reflejado fue elaborada por primera vez en 1.621 por el físico neerlandés Willerbrord Snell.  No publicó sus hallazgos y el filósofo francés René Descartes descubrió la ley, independientemente, en 1637.

Vista de Teorías de la luz y el color en la época de las Luces. De Newton a  Goethe | ArborTú también eres arte.: Teoría del color.

Los primeros experimentos importantes acerca de la naturaleza de la luz fueron llevados a cabo por Isaac Newton en 1666, al permitir que un rayo de luz entrase en una habitación oscura a través de una grieta e las persianas, cayendo oblicuamente sobre una cara de un prisma de cristal triangular. El rayo se refracta cuando entra en el cristal y se refracta aún más en la misma dirección cuando sale por una segunda cara del prisma. (Las dos refracciones en la misma dirección se originan por que los dos lados del prisma de se encuentran en ángulo en vez de en forma paralela, como sería el caso en una lámina ordinaria de cristal.)

Newton atrapó el rayo emergente sobre una pantalla blanca para ver el efecto de la refracción reforzada.  Descubrió que, en vez de formar una mancha de luz blanca, el rayo se extendía en una gama de colores: rojo, anaranjado, amarillo, verde, azul, y violeta, en este orden.

Espectro visible de la luz que puede percibir el ojo humano Fuente:... |  Download Scientific Diagram

Newton dedujo de ello que la luz blanca corriente era una mezcla de varias luces que excitaban por separado nuestros ojos para producir las diversas sensaciones de colores.  La amplia banda de sus componentes se denominó spectrum (palabra latina que significa “espectro” fantasma).

Newton llegó a la conclusión de que la luz se componía de diminutas partículas (“corpúsculos”), que viajaban a enormes velocidades.

Le surgieron y se planteó algunas inquietudes cuestiones. ¿Por qué se refractaban las partículas de luz verde más que los de luz amarilla? ¿Cómo se explicaba que dos rayos de luz se cruzaran sin perturbase mutuamente, es decir, sin que se produjeran colisiones entre partículas?

Huygens Chistiaan Inventor del Reloj a Pendulo:Biografia y Obra -  BIOGRAFÍAS e HISTORIA UNIVERSAL,ARGENTINA y de la CIENCIA

En 1678, el físico neerlandés Christian Huyghens (un científico polifacético que había construido el primer reloj de péndulo y realizado importantes trabajos astronómicos) propuso una teoría opuesta: la de que la luz se componía de minúsculas ondas. Y si sus componentes fueran ondas, no sería difícil explicar los diversos difracciones de los diferentes tipos de luz a través de un medio refractante, siempre y cuando se aceptara que la luz se movía más despacio en ese medio refractante que en el aire.  La cantidad de refracción variaría con la longitud de las ondas: cuanto más corta fuese tal longitud, tanto mayor sería la refracción.   Ello significaba que la luz violeta (la más sensible a este fenómeno) debía de tener una longitud de onda mas corta que la luz azul, ésta, más corta que la verde, y así sucesivamente.

Cómo vemos los colores? | Optica Luro - Novedades ÓpticasVisión del Color - Conos y Bastones del Ojo - Foucault S.A.

Lo que permitía al ojo distinguir los colores eran esas diferencias entre longitudes de onda.  Y, como es natural, si la luz estaba integrada por ondas, dos rayos podrían cruzarse sin dificultad alguna.  (Las ondas sonoras y las del agua se cruzan continuamente sin perder sus respectivas identidades.)

Pero la teoría de Huyqhens sobre las ondas tampoco fue muy satisfactoria. No explicaba por qué se movían en línea recta los rayos luminosos; ni por qué proyectaban sobras recortadas; ni aclaraba por qué las ondas luminosas no podían rodear los obstáculos, del mismo modo que pueden hacerlo las ondas sonoras y de agua.  Por añadidura, se objetaba que si la luz consistía en ondas, ¿Cómo podía viajar por el vacío, ya que cruzaba el espacio desde el Sol y las Estrellas? ¿Cuál era esa mecánica ondulatoria?

emilio silvera

El descubrimiento de las “magnetars”

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

50 years since the discovery of pulsars - precise probes of space, time and  matter under extreme conditions David Blaschke (Univ. Wroclaw & JINR Dubna)  - ppt downloadEl choque de estrellas de neutrones y la alquimia del Universo

 

“Fritz Zwicky era brillante y polifacético, pero su corrosiva y neurótica personalidad, así como su arrogancia sin límites, lo convirtieron en poco más que un bufón para muchos de sus colegas. En una ocasión, en el colmo de la arrogancia, Zwicky llegó a afirmar que él y Galileo eran las dos únicas personas que sabían utilizar correctamente un telescopio.

 Walter Baade  tenía una personalidad tranquila, llegó a negarse a que lo dejaran solo con Zwicky entre las cuatro paredes de un despacho. En un más que probable acceso de paranoia, Zwicky llegó a acusar a Baade de ser nazi, lo cual era completamente falso. Y, al menos en una ocasión, Zwicky amenazó con matar a Baade,”

En marzo de 1934, Baade y Zwicky enviaron dos comunicaciones a la Academia de Ciencias de los Estados Unidos que marcarían un antes y un después en la astrofísica.

Fritz Zwicky - EcuRedWalter Baade
          Fritz Zwicky                        Walter Baade

En la década de los treinta Fritz Zwicky y Walter Baade descubrieron un tipo de estrella notable: Las Supernovas. Durante unas semanas o meses una Supernova brilla tanto como toda una galaxia, formada por cientos de miles de millones de soles. Zwicky y Baade dedujeron que las supernovas no son propiamente una estrella, sino la violenta explosión que da fin a la vida de una estrella.

Capturan los primeros segundos de la explosión de una supernovaJAVIER DE LUCAS Una primera definicin de plsar

En esta explosión, durante la cual se generan múltiples reacciones nucleares que producen los elementos mas pesados (como el oro, la plata, el cobre y el plomo), la mayor parte del gas que formó a la estrella sale arrojado a velocidades de unos diez mil kilómetros por segundo. La parte central de la estrella se colapsa sobre su propia gravedad, hasta quedar reducida a una esfera de tan solo veinte kilómetros de diámetro, pero con una masa superior a la del Sol, conocida como una estrella de neutrones. En ellas la materia se encuentra tan densamente concentrada que un cubo de un centímetro de lado contiene un millón de millones de toneladas.

Púlsar — AstronooPúlsares! Estrellas de neutrones pulsantes a velocidades increíbles : Blog  de Emilio Silvera V.

▷ ¿Por qué hay 14 púlsares en los discos de las Voyager? — AstrobitácoraEl enigma de los púlsares ausentes | Investigación y Ciencia |  Investigación y Ciencia

Si bien las supernovas fueron aceptadas desde los años de Zwicky y Baade, la existencia de las estrellas de neutrones fue motivo de polémica, hasta que en 1967 fueron descubiertos los pulsares, fuentes de radio con una señal que presenta pulsos regulares muy rápidos, en muchos casos a razón de varios pulsos por segundo. Toda la evidencia observacional indicó que los pulsares son estrellas de neutrones y durante treinta años el estudio de los pulsares ha aportado valiosa información acerca de estas estrellas, importantes laboratorios astrofísicos, ya que no solo la materia se encuentra en condiciones extremas de densidad, sino que también se presentan en ellas los campos magnéticos mas intensos conocidos en el Universo.

Los púlsares cumplen 50 años « SEDA / LIADA - RedLIADA - Cursos LIADA -  Cielo del Mes - Fenómenos Astronómicos - RELEA

Entre los poco mas de setecientos pulsares descubiertos a la fecha, hay algunos que llegan a tener campos magnéticos estimados de diez billones de Gauss (es decir diez millones de millones de Gauss). Para poner este número en contexto, el campo magnético de la Tierra, al cuál responden las brújulas, es de poco mas de medio Gauss; un imán de los que se ponen en los refrigeradores produce un campo de cien Gauss, y los campos magnéticos mas intensos producidos en laboratorios son de casi medio millón de Gauss. Muchos pulsares tienen campos millones de veces mas intensos.

Compton Gamma-Ray Observatory Fotografía de stock - AlamyBrote de rayos gamma - Wikipedia, la enciclopedia libre

En mayo de este año, científicos utilizando el detector BATSE del observatorio Compton de rayos gamma, un satélite en órbita a quinientos kilómetros de la Tierra, reportaron haber encontrado pulsaciones a raíz de un pulso cada 7.5 segundos en la fuente de rayos X denominada SGR 1806-20, la cual ya se sabía que era una estrella de neutrones. Como ocurre en los pulsares, la presencia de un campo magnético intenso produce que la estrella se frene y aumente su período de pulsación. En el caso de SGR 1806-20 la tasa de frenado medida fue tan alta que el campo magnético deducido es de mil billones de Gauss, es decir cien veces mayor que en cualquier pulsar. Esta fue la primera evidencia de la existencia de las estrellas “magnetars”, estrellas de neutrones con campos magnéticos extremos.

Destellos de rayos gamma terrestres: ¿Son más comunes que lo que se  pensaba? | Ciencia de la NASAEl cielo de rayos gamma extragalácticos - Revista Mètode

Pocos meses después, el 27 de agosto de este año, una ráfaga de rayos gamma de inusitada intensidad fue detectada. La ráfaga incidió en el lado nocturno de la Tierra, con una intensidad tal que ionizó átomos de la alta atmósfera a niveles solo observados en el día. Se trató del pulso de radiación originado fuera del sistema solar de mayor intensidad registrado a la fecha. De hecho la fuente resultó ser otra “magnetar”, denominada SGR 1900+14 situada a veinte mil años luz de distancia.

SGR 1900+14 - Viquipèdia, l'enciclopèdia lliureSGR 1745-2900, magnetar VS agujero negro supermasivo.

                  SGR 1900+14

La detección de pulsos a razón de uno cada 5.16 segundos condujo a la deducción de que el campo magnético de esta estrella es también de unos mil billones de Gauss. Estos campos magnéticos son tan poderosos que una “magnetar” a la mitad de la distancia de la Luna sería capaz de borrar tarjetas de crédito y sacar llaves de nuestros bolsillos. Aunque en realidad, los rayos X y gamma emitidos por la supuesta estrella nos hubieran aniquilado.

Púlsar - Wikipedia, la enciclopedia libre

                   Púlsar del Cangrejo

El descubrimiento de las “magnetars” tiene interés mas allá de establecer un nuevo “record universal” en campos magnéticos. Los censos de pulsares mostraban una población demasiado baja de estrellas de neutrones, unas treinta veces menor de lo que debería esperarse a partir del número de supernovas que estallan en nuestra galaxia. De hecho, de las seis supernovas observadas en tiempos históricos solo a una se le conoce un pulsar (el del Cangrejo). La nueva evidencia observacional sugiere que muchas supernovas en vez de formar simples pulsares producen “magnetars”, apuntando hacia la solución del largo problema de la demografía de las estrellas de neutrones.

Esperanza Carrasco Licea & Alberto Carramiñana Alonso