viernes, 01 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Gravedad, esa fuerza misteriosa

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Investigadores de galaxias enanas satélite afirman que Newton podría  haberse equivocado | News | CORDIS | European CommissionEl universo y la fuerza de la gravedad by Juan Ángel Villaseñor Cornago

Qué es la gravedad? - VIXASTROFISICOS DE LA UNAM PROPONEN TEORIA DE LA GRAVEDAD EXTENDIDA –  UNIVERSITAM

 

La gravedad es la fuerza de atracción entre objetos. En el Universo toda la materia se mueve a causa de ésta y otras fuerzas. La gravedad depende de la masa de los objetos y de la distancia que los separa. … La zona esférica alrededor de un cuerpo donde actúa su gravedad es el campo gravitacional.

Dos nuevos estudios realizados por investigadores de Australia, Austria y Alemania han puesto en entredicho la forma en la que entendemos la física de la gravedad. Los descubrimientos, publicados en las revistas Astrophysical Journal y Monthly Notices of the Royal Astronomical Society, se basan en observaciones de galaxias enanas satélite o galaxias más pequeñas que se encuentran en el extrarradio de la gran Galaxia espiral que es la Vía Láctea.

La ley de la gravedad o gravitación universal - Qué es, fórmula,  descubrimiento de Isaac Newton - EspacioCiencia.com

La Ley de la gravitación universal de Newton, publicada en 1687, sirve para explicar cómo actúa la gravedad en la Tierra, por ejemplo por qué cae una manzana de un árbol. El profesor Pavel Kroupa del Instituto de Astronomía Argelander de la Universidad de Bonn (Alemania) explicó que «a pesar de que su ley describe los efectos cotidianos de la gravedad en la Tierra, las cosas que podemos ver y medir, cabe la posibilidad de que no hayamos sido capaces de comprender en absoluto las leyes físicas que rigen realmente la fuerza de la gravedad».

Los físicos buscan el axión un componente de la materia oscura mediante  haloscopios – UNIVERSITAM

 

“La teoría fue bautizada como “de gravedad emergente” y puede aclarar esa materia oscura que tantos dolores de cabeza está dando a los científicos. Erik Verlinde lleva seis años observando el cielo para explicarse el movimiento y la velocidad exacta de las estrellas y ahora concluye que no necesita invocar ninguna misteriosa partícula de materia oscura para entender qué pasa en las galaxias. Las cosas no funcionan exactamente como predijo Einstein, aunque el padre de la gravedad sí estableció las bases.”

Océanos de gas frío dan a luz a galaxias gigantes – LaFlechaPartículas del tamaño de una galaxia: la materia oscura borrosa

Las estrellas y las galaxias se comportan como si estuviesen presionadas o aguantadas por algo más fuerte que ellas. La gran fuerza gravitacional requerida desconcierta a los telescopios que intentan detectarla. Hasta ahora, los físicos han optado por la existencia de una “materia oscura” para explicar ese “algo” que desconocen y que sería necesaria para explicar el comportamiento gravitacional que los astrónomos observan en el Universo. Esa energía oscura -dicen- existe en gran cantidad (supone el 25% del Cosmos), pero hasta ahora nadie ha sido capaz de observarla, a pesar de los muchos esfuerzos por detectar su existencia y explicar qué pasa en las galaxias.

Ley de gravitación universal - Wikipedia, la enciclopedia libre

 

La ley de Newton ha sido puesta en entredicho por distintos cosmólogos modernos, los cuales han redactado teorías contradictorias sobre la gravitación que intentan explicar la gran cantidad de discrepancias que se dan entre las mediciones reales de los sucesos astronómicos y las predicciones basadas en los modelos teóricos. La idea de que la «materia oscura» pueda ser la responsable de estas discrepancias ha ganado muchos adeptos durante los últimos años. No obstante, no existen pruebas concluyentes de su existencia.

En esta investigación, el profesor Kroupa y varios colegas examinaron «galaxias enanas satélite», cientos de las cuales deberían existir en la cercanía de las principales galaxias, incluida la Vía Láctea, según indican los modelos teóricos. Se cree que algunas de estas galaxias menores contienen tan sólo unos pocos millares de estrellas (se estima que la Vía Láctea, por ejemplo, contiene más de 200.000 millones de estrellas).

Ant 2. Galaxia fantasma, vecina de la Vía láctea - PressReaderAstronomía en tu bolsillo - ¿Qué es el Grupo local y cuántas galaxias  forman parte de él? Se denomina Grupo Local, al cúmulo de galaxias en el  que se encuentra la Vía

 El Grupo Local dominados por Andrómeda y la Vía Láctea y unas decenas de compañeras enanas

No obstante, a día de hoy sólo se ha logrado detectar treinta de estas galaxias alrededor de la Vía Láctea. Esta situación se atribuye al hecho de que, al contener tan pocas estrellas, su luz es demasiado débil como para que podamos observarlas desde una distancia tan lejana. Lo cierto es que este estudio tan detallado ha deparado resultados sorprendentes.

«En primer lugar, hay algo extraño en su distribución», indicó el profesor Kroupa. «Estas galaxias satélite deberían estar distribuidas uniformemente alrededor de su galaxia madre, pero no es el caso.»

http://www.astroyciencia.com/wp-content/uploads/2008/02/grupo-local-galaxias.jpg

Distribución de las pequeñas galaxias alrededor de la Vía Láctea que, al ser un cuerpo de mayor masa, las atrae hacia sí como ocurre con la Pequeña Nube de Magallanes.

Los investigadores descubrieron que la totalidad de los satélites clásicos de la Vía Láctea (las once galaxias enanas más brillantes) están situados prácticamente en un mismo plano que dibuja una especie de disco. También observaron que la mayoría de estas once galaxias rotan en la misma dirección en su movimiento circular alrededor de la Vía Láctea, de forma muy similar a como lo hacen los planetas alrededor del Sol.

REDES SOCIALES: Grupo Local de Galaxias

 

La explicación de los físicos a estos fenómenos es que los satélites debieron surgir de una colisión entre galaxias más jóvenes. «Los fragmentos resultantes de un acontecimiento así pueden formar galaxias enanas en rotación», explicó el Dr. Manuel Metz, también del Instituto de Astronomía Argelander. Éste añadió que «los cálculos teóricos nos indican la imposibilidad de que los satélites creados contengan materia oscura».

Estos cálculos contradicen otras observaciones del equipo. «Las estrellas contenidas en los satélites que hemos observado se mueven a mucha más velocidad que la predicha por la Ley de la gravitación universal. Si se aplica la física clásica, esto sólo puede atribuirse a la presencia de materia oscura», aseveró el Dr. Metz.

Este enigma nos indica que quizás se hayan interpretado de forma incorrecta algunos de los principios fundamentales de la física. «La única solución posible sería desechar la Ley de la gravitación de Newton», indicó el profesor Kroupa. «Probablemente habitemos un universo no Newtoniano. De ser cierto, nuestras observaciones podrían tener explicación sin necesidad de recurrir a la materia oscura

MIR, algo más que un simple laboratorio espacial, una belleza para la ciencia humana.

Hasta ahora, la Ley de la gravitación de Newton sólo ha sido modificada en tres ocasiones: para incluir los efectos de las grandes velocidades (la teoría especial de la relatividad), la proximidad de grandes masas (la teoría general de la relatividad) y las escalas subatómicas (la mecánica cuántica). Ahora, las graves inconsistencias reveladas por los datos obtenidos sobre las galaxias satélite respaldan la idea de que hay que adoptar una «dinámica newtoniana modificada» (MOND) para el espacio.

Teoría MOND y la materia oscura — AstronooUna nueva teoría de la gravedad podría explicar la materia oscura - Lanza  Digital - Lanza Digital


 

“Una nueva teoría de la gravedad podría explicar la materia oscura. Concretamente, esta ‘segunda ley de Newton’ predice exactamente la misma desviación de los movimientos que se suele explicar cuando se insertando materia oscura en la teoría.

El profesor Erik Verlinde, reconocido experto en teoría de cuerdas en la Universidad de Amsterdam y el Instituto Delta de Física Teórica, acaba de publicar este nuevo trabajo en el que amplía sus opiniones sobre la naturaleza de la gravedad.”

Europa Press

La teoría MOND, propuesta en 1981, modifica la segunda ley de la dinámica de Newton para que con ella se pueda explicar la rotación a velocidad uniforme de las galaxias, que contradice las predicciones newtonianas que afirman que la velocidad de los objetos separados del centro será menor.

Los nuevos descubrimientos poseen implicaciones de gran calado para la física fundamental y para las teorías sobre el Universo. Según el astrofísico Bob Sanders de la Universidad de Groningen (Países Bajos), «los autores de este artículo aportan argumentos contundentes. Sus resultados coinciden plenamente con lo predicho por la dinámica newtoniana modificada, pero completamente contrarios a la hipótesis de la materia oscura. No es normal encontrarse con observaciones tan concluyentes.»

Para más información, consulte:

Instituto Argelander de Astronomía:
http://www.astro.uni-bonn.de

Astrophysical Journal:
http://www.iop.org/EJ/journal/apj

Monthly Notices of the Royal Astronomical Society:
http://www.wiley.com/bw/journal.asp?ref=0035-8711

Einstein acierta otra vez: la gravedad terrestre deforma el espacio y el  tiempoMateria oscura - Wikipedia, la enciclopedia libre

La Fuerza o Interacción Gravitacional, siempre ha causado controversias en el sentido de que, a pesar de Newton y de Einstein con su la Relatividad, contiene rincones oscuros en los que no hemos podido entrar y son causantes de dudas y controversias. Acordaos de aquella teoría de Dirac en la que decía que la Gravedad, con el paso del tiempo sería cambiante.

Lo cierto es que, de las cuatro fuerzas fundamentales de la Naturaleza, es la Gravedad la que siempre nos ha causado más problemas para entenderla plenamente. Claro que, la ciencia no se para, las investigaciones y las observaciones continúan sin cesar, y, surgen nuevas teorías que tratan de despejar aquellas incognitas que todavía nos ponen ante la duda y no permiten el conocimiento pleno.

Esperemos que en un futuro próximo, lleguemos a despejar todas aquellas dudas que sobre ésta fuerza elemental de la Naturaleza aún tenemos.

emilio silvera

La Astrobiología: El Origen de la Vida en el contexto del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para comprender el Universo tenemos que estudiar sus componentes, tenemos que saber de qué está hecho. La componente clásica del Universo, la que corresponde a materia y energía similares a lo que vemos a nuestro alrededor en galaxias, estrellas y planetas es una parte minoritaria: menos que el 5%. El resto está constituido por componentes exóticos, llamados por nuestro desconocimiento, simplemente energía y materia oscura.

Las leyes de la Física, aplicables a toda la materia y la energía, tienen sin duda un papel fundamental en la comprensión del Universo y por ello la Astrofísica ha tenido un desarrollo espectacular en los últimos tiempos a pesar de la escasez de materia como la que conocemos.

Archivo:Interacciones del modelo estándar de la física de particulas.png -  Wikipedia, la enciclopedia libre

Los constituyentes básicos de la materia másica conocida son los fermiones como los “quarks” (púrpura) y “leptones” (verde). Los bosones (rojo) son “materia no-másica”, simplemente son las partículas mediadoras de las fuerzas fundamentales: El fotón para el electromagnetismo, el Gluón para la fuerza nuclear fuerte, las partículas W+ y W más la Z0 intervienen en la fuerza nuclear débil.

El experimento XENON1T podría haber detectado energía oscuraQué es la energía oscura? - VIX

 

 

La densidad media de sus constituyentes primarios es de un 68,3 % de energía oscura, un 26,8 % de materia oscura fría y un 4,9% de materia ordinaria, según datos recogidos por la sonda Planck.

Por otro lado, como el Universo es muy grande, las densidades medias son muy bajas y la materia se encuentra normalmente en estructuras muy simples, en forma de átomos y partículas individuales. La composición química del Universo y sus procesos son por ello también importantes para comprender su evolución, dando pie al uso más o menos extendido de astro-química. Sin embargo, las moléculas complejas son relativamente raras y los organismos vivos muchísimo más.

Unidad i, pres 1. historia de la biología, origen de la vida y el un…Biología, estrellas, unidades naturales…, !Universo¡ : Blog de Emilio  Silvera V.

Pin on Interesting FactsCiencias naturales - Wikipedia, la enciclopedia libre

La parte Biológica del Universo que conocemos se reduce a nuestro propio planeta por lo que parece excesivo poder hablar de Astrobiología. Por qué tenemos que preocuparnos por una parte tan ínfima del Universo. Ciertamente porque los seres humanos pertenecemos a esta extraña componente y, ya que no podemos reproducir en el laboratorio el paso de la química a la biología, es en el contexto del Universo (el gran Laboratorio) y su evolución en el que podemos analizar los límites y las condiciones necesarias para que emerja la vida en cualquier sitio, dando pleno sentido al uso del término como veremos a continuación.

Único lugar conocido donde la vida emergió, ahí podemos contemplar un trozo del planeta Tierra al atardecer mostrando parte de Europa

Astrobiología

La Astrobiología es una ciencia que ha surgido en la frontera entre varias disciplinas clásicas: la Astronomía, la Biología, la Física, la Química o la Geología. Su objetivo final es comprender cómo surgió la vida en nuestro Universo, cómo se distribuye y cuál es su evolución primitiva, es decir, cómo pudo establecerse en su entorno.

En otras palabras, trata de comprender el papel de la componente biológica del Universo, conectando la astrofísica y la astro-química con la biología. Intenta para ello comprende el origen de la vida. : El paso de los procesos químicos prebióticos a los mecanismos bioquímicos y a la biología propiamente dicha.

Astrobiología | Wiki | Biología ∞ AminoAstrobiología - EcuRed

Naturalmente, en Astrobiología nos planteamos preguntas fundamentales, como la propia definición de lo que entendemos como Vida, cómo y cuándo pudo surgir en la Tierra, su existencia actual o en el pasado en otros lugares o si es un hecho fortuito o una consecuencia de las leyes de la Física. Algunas de estas cuestiones se las viene formulando la humanidad desde el principio de los tiempos, pero ahora por primera vez en la historia, los avances de las ciencias biológicas y de la exploración mediante tecnología espacial, es posible atacarlas desde un punto de vista puramente científico. Para ello, la Astrobiología centra su atención en estudiar cuáles son los procesos físicos, químicos y biológicos involucrados en la aparición de la vida y su adaptabilidad, todo ello en el contexto de la evolución y estructuración, u auto-organización, del Universo.

 

 

Estromatolitos del precámbrico en la Formación Siyeh, Parque Nacional de los Glaciares, Estados Unidos.  En 2002, William Schopf de la UCLA publicó un artículo en la revista Nature defendiendo que este tipo de formaciones geológicas fueron creadas por cianoficeas fósiles con una antigüedad de 3.500 millones de años. De ser cierto, serían las formas de vida más antiguas conocidas. La cuestión del origen de la vida en la Tierra ha generado en las ciencias de la naturaleza un campo de estudio especializado que aquí estamostratando y que llamamos astrobiología.

Como cualquier otra ciencia, la Astrobiología está sujeta a la utilización del método científico y por tanto a la observación y experimentación junto con la discusión y confrontación abierta de las ideas, el intercambio de datos y el sometimiento de los resultados al arbitraje científico. La clave de la metodología de esta nueva ciencia está en la explotación de las sinergias que se encuentran en las fronteras entre las disciplinas básicas mencionadas anteriormente, una región poco definida, cuyos límites se fijan más por la terminología que por criterios epistemológicos.

Astrobiología

Un aspecto importante de la investigación en el campo de la Astrobiología es la herramienta fundamental que representa el concepto de complejidad. La vida es un proceso de emergencia del orden a partir del caos que puede entenderse en medios no aislados y, por tanto libres de la restricción de la segunda ley de la termodinámica, como un proceso complejo. En este sentido, la emergencia de patrones y regularidades en el Universo, ligados a procesos no lineales, y el papel de la auto-organización representan aspectos esenciales para comprender el fenómeno de la vida. Transiciones de estado, intercambios de información, comportamientos fuera de equilibrio, cambios de fase, eventos puntuales, estructuras autorreplicantes, o el propio crecimiento de la complejidad, cobran así pleno sentido en Astrobiología.

Un elemento crucial para la vida, en la Tierra lo tenemos en tres estados: líquido, sólido y gaseoso.

Un problema básico de esta ciencia, ya mencionado al principio, es la cantidad de datos disponibles, de sujetos de estudio. No conocemos más vida que la existente en la Tierra y ésta nos sirve de referencia para cualquier paso en la búsqueda de otras posibilidades. La astrobiología trata por ello de analizar la vida más primitiva que conocemos en nuestro planeta así como su comportamiento en los ambientes más extremos que encontremos para estudiar los límites de su supervivencia y adaptabilidad. Por otro lado, busca y analiza las condiciones necesarias para la aparición de entornos favorables a la vida, o habitables, en el Universo  mediante la aplicación de métodos astrofísicos y de astronomía planetaria. Naturalmente, si identificáramos sitios en nuestro sistema solar con condiciones de habitabilidad sería crucial la búsqueda de marcadores biológicos que nos indiquen la posible existencia de vida presente o pasada más allá de la distribución de la vida en el Universo o, en caso negativo, acotaríamos aún más los límites de la vida en él.

Kepler

Encontrar un “punto azul pálido” o “segunda Tierra” dentro de una zona habitable que contenga agua y condiciones ambientales que puedan sustentar vida, constituye el Santo Grial de la ciencia. Cuántas veces nos habremos preguntado:  ¿Estamos solos?

Diferentes condiciones ambientales pueden haber dado lugar a la vida e incluso permitido la supervivencia de algunos organismos vivos generados de forma casual, como experimento de la naturaleza. La Astrobiología trata de elucidar el papel de la evolución del Universo, y especialmente de cuerpos planetarios, en la aparición de la vida. En esta búsqueda de ambientes favorables para la vida, y su caracterización, en el sistema solar, la exploración espacial se muestra como una componente esencial de la Astrobiología. La experimentación en el laboratorio y la simulación mediante ordenadores o en cámaras para reproducir ambientes distintos son una herramienta que ha de ser complementada por la exploración directa a través de la observación astronómica, ligada al estudio de planetas extrasolares, o mediante la investigación in situ de mundos similares en cierta forma al nuestro, como el planeta Marte o algunos satélites de los planetas gigantes Júpiter y Saturno.

http://2.bp.blogspot.com/_94UpMX9zT2o/TBX2abCljiI/AAAAAAAAAS4/KQUYRRTYGA0/s1600/saturno.jpg

Viendo al planeta Saturno desde los mares de metano de Titán, nos tenemos que preguntar si por ahí cerca se estarán preparando las condiciones para una vida extrasolar futura, o, si acaso, está ya ahí presente.

La componente instrumental y espacial convierte a la Astrobiología en un ejemplo excelente de la conexión entre ciencia y tecnología. Los objetivos científicos de la Astrobiología, hemos visto, que requieren un tratamiento trans-disciplinar, conectando áreas como la física y la astronomía con la química y la biología. Esta metodología permite explotar sinergias y transferir conocimiento de unos campos a otros para beneficio del avance científico. Pero además, la Astrobiología está íntimamente ligada a la exploración espacial que requiere el desarrollo de instrumentación avanzada. Se necesitan tecnologías específicas como la robótica o los biosensores habilitadas para su empleo en condiciones espaciales y entornos hostiles muy diferentes al del laboratorio. Naturalmente la Astrobiología emplea estos desarrollos también para transferir conocimiento y tecnologías a otros campos de investigación científica y en particular, cuando es posible, incluso al sector productivo.

Recreación artística de Gliese 81 b, el primer planeta que los astrónomos consideran potencialmente habitable

Recreación artística de Gliese 81 b, el primer planeta que los astrónomos consideran potencialmente habitable. EFE

Pero repasemos, para terminar, cuáles son las áreas científicas propias de la Astrobiología. Como se ha dicho, es una ciencia interdisciplinar para el estudio del origen, evolución y distribución de la vida en el Universo. Para ello requiere una comprensión completa e integrada de fenómenos cósmicos, planetarios y biológicos. La astrobiología incluye la búsqueda y la caracterización de ambientes habitables en nuestro sistema solar y otros planetas alrededor de estrellas más alejadas, la búsqueda y análisis de evidencias de química prebiótica o trazas de vida larvada o extinguida en cuerpos del sistema solar como Marte o en lunas de planetas gigantes como Júpiter y Saturno. Asimismo se ocupa de investigaciones sobre los orígenes y evolución de la vida primitiva en la Tierra analizando el comportamiento de micro organismos en ambientes extremos.

Desde el punto de vista más astronómico, la Astrobiología estudia la evolución química del Universo, su contenido molecular en regiones de formación estelar, la formación y evolución de discos proto-planetarios y estrellas, incluyendo la formación de sistemas planetarios y la caracterización de planetas extrasolares. En este campo en particular se han producido avances recientes muy importantes con la obtención de imágenes directas de planetas extrasolares y la identificación de algunos de ellos como puntos aislados de su estrella central gracias a técnicas de interferometría.

Herschel - EsasCosas

Observatorio Espacial Herschel

El Laboratorio Espacial Herschel que penetra en lo más profundo del Cosmos tratando de desvelar lo esencial para desentrañar los procesos de formación estelar. La caracterización de atmósferas de planetas extrasolares con tránsitos han permitido detectar CO₂ en la atmósfera de otros mundos y se ha descubierto el planeta más parecido a la Tierra por su tamaño y suelo rocoso aunque con un período demasiado corto para ser habitable. El lanzamiento de la misión Kepler de la NASA nos permite abrigar esperanzas de encontrar finalmente un planeta “hermano” del nuestro en la zona de habitabilidad de otra estrella.

Los satélites Herschel y Planck

La Zona Habitable (HZ) está comprendida por el rango de distancias desde una estrella en las que el agua líquida puede existir. También el rango de tipos de estrellas que puede tener planetas está limitado a aquellas estrellas en las cuales puede haber el tiempo tiempo suficiente como para que se formen planetas. El espacio de búsqueda incluye la mayoría de HZ de todas las estrellas menos masivas que las espectrales tipo A.

El campo de la Astronomía planetaria, la Astrobiología estudia la evolución y caracterización de ambientes habitables en el sistema solar con el fin de elucidar los procesos planetarios fundamentales para producir cuerpos habitables.

Esto incluye el análisis de ambientes extremos y análogos al de Marte en nuestro planeta, como resulta serla cuenca del Río Tinto en Huelva, así como la exploración de otros cuerpos del sistema solar, Marte en particular.

Rio Tinto, el paraje natural más insólito de AndalucíaAMYP: RÍO TINTO. (Huelva)

El río Tinto y su entorno, más de una década como Paisaje Protegido - Huelva  Buenas Noticias

Imagen del Río Tinto en Huelva. ¿No os parece cualquier lugar de Marte?

El descubrimiento en Marte de agua en forma de hielo así como las claras evidencias de la existencia de agua líquida en su superficie en el pasado, proporcionadas por la observación de modificaciones de la componente mineralógica atribuidas al agua líquida en el subsuelo. Hoy por hoy, se considera que la presencia de agua líquida es una condición necesaria, aunque no suficiente, para la aparición de la vida ya que proporciona el caldo de cultivo para que las moléculas prebióticas se transformen en microorganismos biológicos.

En estas investigaciones el estudio del satélite Titán de Saturno mediante la sonda europea Huygens ha marcado un hito importante al acercarnos a un entorno prebiótico donde el metano ejerce un papel dominante.

En este sentido la posibilidad de explorar el satélite Europa, alrededor de Júpiter, es un claro objetivo de la Astrobiología dado que la espesa corteza de hielo que lo cubre puede esconder una gran masa de agua líquida.

Cómo trabajan los astrobiólogos: un día en el "laboratorio" de astrobiologíaProyectos - LABORATORIO DE ASTROBIOLOGIA DEL NOROESTE

Finalmente, la Astrobiología también contempla una serie de actividades más próximas al laboratorio en el que se analiza la evolución molecular, desde la química prebiótica, pasando por la adaptación molecular, hasta los mecanismos bioquímicos de interacción y adaptación al entorno. En este campo son muy importantes los estudios centrados en los límites de la biología, como la virología, y herramientas para la comprensión de los mecanismos de transmisión de información, de supervivencia y adaptabilidad, como las cuasi-especies. Entre los últimos avances de la química prebiótica de interés para la Astrobiología se encuentra el análisis de la quiralidad, una preferencia de la química de los organismos vivos por una simetría específica que nos puede acercar al proceso de su formación durante el crecimiento de la complejidad y la jerarquización de los procesos. Naturalmente, los mecanismos de transferencia de información genética resultan críticos para comprender la adaptabilidad molecular y son otro objetivo prioritario de la Astrobiología.

emilio silvera

¡Nuestro “Sentido Común”! Que a veces nos engaña

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Sabes Cuál Es El Centro Del Universo? Descúbrelo Aquí

 

“La visión de la Tierra como centro del universo fue ampliamente aceptada durante aproximadamente 1500 años. No fue seriamente puesta en duda hasta 1543, cuando Nicolás Copérnico sugirió que el Sol era el centro del Universo. Bueno, en realidad esa predicción la hizo muchos años antes, en el siglo III a. C., Aristarco de Samos y sus coetáneos no le prestaron la menor atención.”

Cómo sería el mundo si la Tierra fuera realmente plana, según la ciencia -  BBC News Mundo

 

¡Nuestros predecesores! Para ellos, era absolutamente evidente que la Tierra fuera estable y que estaba inmóvil. Éramos el centro del Universo. La ciencia occidental moderna parte de la negación de este axioma derivado del sentido común. Tal negación, origen y prototipo de las mayores paradojas de la ciencia, constituiría nuestra invitación a un mundo invisible e infinito. Llegó un día en que el hombre, se dio cuenta de la desnudez de sus sentidos. El Sentido común, pilar de la vida cotidiana, ya no servía para gobernar el mundo. En el momento en que el conocimiento “científico”, sofisticado, dio lugar a verdades incuestionables, las cosas dejaron de ser lo que parecían.

EL sistema geocéntrico, el sistema heliocéntrico y la cienciaTeoría geocéntrica - Wikipedia, la enciclopedia libre

 

Las cosmologías antiguas utilizaban mitos pintorescos y convincentes para adornar los veredictos del sentido común y para describir los movimientos de los cuerpos celestes. En los muros de las tumbas de los faraones egipcios del valle de los Reyes encontramos vistosas representaciones del dios del aire sosteniendo la cúpula celeste por encima de la tierra. Asimismo, observamos que el dios del sol, Ra, conduce su barca cada día por el cielo y que, cada noche, en otra barca que surca las aguas por debajo de la tierra, retorna al punto de partida de su viaje diurno, que vuelve a iniciar. Como hemos visto, esta visión mítica no impidió que los egipcios elaboraran el más preciso de los calendarios solares, que fue utilizado durante miles de años. Para los egipcios, tales mitos tenían sentido, no contradecían lo que veían cada día y cada noche con sus ojos.

Teoría copernicana (heliocéntrica) y Teoría ptolemaica (geocéntrica) -  Online Star RegisterRevolución de Copérnico - Wikipedia, la enciclopedia libre

                                                               Copérnico – Astrónomo polaco.

Con el tiempo, todo aquello cambió, y, la mente humana evolucionó. ¿Por qué se tomó Nicolás Copérnico tantas molestias para desplazar un sistema que era sostenido con firmeza por la experiencia cotidiana, la tradición y la autoridad? Cuánto más nos familiarizamos con la era de Copérnico, vemos con mayor claridad que los que no se dejaban convencer por él simplemente demostraban sensatez. Las pruebas de que disponían no exigían una revisión del sistema. Habrían de pasar varias décadas para que los astrónomos y matemáticos reunieran datos nuevos y hallaran nuevos instrumentos, y al menos un siglo para que los legos se convencieran de lo que era contrario al sentido común. Lo cierto es que, pese a todas las modificaciones ideadas por astrónomos y filósofos, el esquema antiguo no incluía todos los datos conocidos. Pero tampoco lo hizo la simplificación de Copérnico.

TEORÍA HELIOCÉNTRICA. – Juglares del Siglo XXIIlustración de Medieval Astrónomo y más Vectores Libres de Derechos de  Astrónomo - iStock

Parece que no era la fuerza de los hechos sino una preocupación estética y metafísica lo que empujaba a Copérnico. Se le ocurrió que un sistema diferente sería mucho más hermoso. Su mente inquieta y su atrevida imaginación hicieron el resto. Como astrónomo, Copérnico no era más que un aficionado. No se ganaba la vida con la Astronomía ni con ninguna aplicación de esta ciencia. Al menos desde el punto de vista actual, era extraordinariamente polifacético, lo que le sitúa en la línea central del alto Renacimiento. Nació cuando Leonardo da Vinci se encontraba en plena actividad y fue contemporáneo de Miguel Ángel.

Nicolás Copérnico y la revolución del cosmos

Nicolás Copérnico y la revolución del cosmos

 

 

Copérnico se daba cuenta de que su sistema parecía transgredir el sentido común. Por esa misma razón, sus amigos habían tenido que “instarlo e incluso apremiarlo hasta el fastidio” para que publicara la obra. “Insistían en que, si bien era posible que al principio mi teoría sobre el movimiento de la Tierra pareciera extraña, resultaría admirable y aceptable una vez que la publicación de mis comentarios aclaratorios disipara las brumas de la paradoja”.

Con todo esto, sólo quiero dejar una pequeña muestra de la dificultad con la que hemos ido avanzando en el camino de la Ciencia. No siempre ha sido un camino de rosas el poder enseñar al mundo la verdadera faz de la Naturaleza, todo vez que, el mundo, la que veía era otra muy distinta y, sus sentidos, se negaban a admitir que las cosas pudieran ser diferentes a como ellos la podían ver.

Galileo by leoni.jpg

                 Galileo por Leoni

Galileo que era un científico de vocación, escribió un libro que se trataba de “dos ciencias nuevas”, una que se ocupaba de la mecánica y otra de la resistencia de los materiales. Como era costumbre en la época, también ese libro fue escrito en italiano y adoptó la forma de diálogo sostenido entre los personajes Salvati, Sagredo y Simplicio. Dado que la Inquisición había prohibido todos sus libros, la obra hubo de ser sacada furtivamente del país para que la publicaran los Elzevir en Leyden. Este fue el último libro de Galileo y en él ponía los cimientos sobre los cuales Huygens y Newton construirían la ciencia de la dinámica y, finalmente, una teoría de la gravitación universal.

El microscopio y el telescopio fueron ambos productos de la misma era, pero mientras que Copérnico y Galileo se han convertido en héroes populares, en los profetas de la modernidad, Hooke y Leeuwenhoek, sus equivalentes en el mundo microscópico, han quedado relegados al panteón de las ciencias especializadas. Copérnico y Galileo desempeñaron importantes papeles en la tan conocida batalla entre “ciencia” y “religión”; no sucedió lo mismo con Hooke y Leewwenhoek.

El telescopio ha supuesto una revolucin en la

 

Los astrónomos de todo el planeta conmemoran este martes el cuarto centenario del reconocimiento oficial por parte de las autoridades de la República de Venecia del primer telescopio, un invento del científico italiano Galileo Galilei (1564-1642) que cambió para siempre el rumbo de la Astronomía.

 

Quién inventó el Primer Microscopio? Zacharías Janssen 1590.DiarioDeDaniel3B: ZACHARIAS JANSSEN Y EL MICROSCOPIO

 

No se sabe quién inventó el microscopio. El principal candidato es Zacharias Jansen, humilde fabricante de anteojos de Middelburg. Si sabemos que el microscopio como las gafas y el telescopio, se usaban mucho antes de que se comprendieran los principios de la óptica, y probablemente su invención fue tan accidental como la del telescopio. No podía haber sido inventado por alguien que quisiera echar una mirada al mundo microscópico nunca imaginado hasta entonces.

25 de agosto de 1609: Galileo Galilei presenta su primer telescopio -  Primicias 24

Poco después de que fueran fabricados los primeros telescopios, la gente los utilizaba para ver ampliados objetos cercanos. En 1614, Galileo le decía a un visitante: “Con este tubo he visto moscas que parecían tan grandes como corderos, y he comprobado que están cubiertas de pelo y tienen unas uñas muy afiladas mediante las cuales se sostienen y andan sobre el cristal, aunque estén patas arriba, insertando la punta de las uñas en los poros del cristal”.

El aparato llamó la atención del ejército para tener más localizado al enemigo lejano. Más tarde, a Galileo se le ocurrió apuntar su telescopio hacia el cielo, y, ya nunca lo apartó de él. Con aquel simple movimiento, él, cambiaría el mundo y, la Tierra, entró a formar parte de un Sistema mayor que ahora llamamos Universo.

Claro que, lo mismo que se descubrió el mundo de lo muy grande, y, paralelamente, también se descubriría el mundo de lo muy pequeño.
Al igual que el Telescopio había unido la Tierra y los cuerpos celestes más distantes en un solo esquema de pensamiento, las imágenes del microscopio revelaban un mundo minúsculo que se asemejaba de modo sorprendente al que se veía diariamente a gran escala. En Historias Insectorum Generalis, Jan Swammerdam desmostraba que los insectos, como los animales “superiores” poseían una intrincada anatomía y no se reproducían por generación espontánea. En el microscopio vio que los insectos se desarrollaban igual que el hombre, por epigénesis, o desarrollo gradual de un órgano después de otro. Con todo, sobrevivió la creencia en otras formas de generación espontánea, hasta que, en el siglo XIX, Luis Pasteur realizó sus brillantes experimentos.

Qué es Epigenesis? » Su Definición y Significado [2021]Epigenesis by jhoiner blancoQué es Epigenesis? » Su Definición y Significado [2021]Bacteria | NHGRI

El microscopio abrió las puertas de oscuros continentes en los que nunca se había entrada con anterioridad y que en muchos sentidos eran fáciles de explorar. Las grandes travesías marítimas habían exigido grandes inversiones, en genio organizador, capacidad de liderazgo y el de carisma de personajes como Colón, Magallanes o Vasco de Gama. La exploración astronómica exigía coordinación de las exploraciones realizadas en distintos lugares y con medios cada vez más costosos. Pero un hombre sólo, situado en cualquier parte con un microscopio, podía aventurarse por vez primera por vericuetos a los que no habían llegado los expertos navegantes o los valerosos pilotos.

Antoni van Leeuwenhoek fue con su microscopio el primer promotor de esta nueva ciencia de la exploración de otros mundos que resultaron estar en este. Sería bonito relatar aquí la historia del personaje pero, no tenemos el espacio necesario para ello.

foto

Os contaré que, en una ocasión, disponiendo de un microscópico, comenzó a buscar algo que hace con él. En septiembre de 1674, por pura curiosidad, llenó un frasco de cristal de un agua turbia y verdosa, que la gente de campo llamaba “rocío de miel”, procedente de un lago pantanoso situado a tres kilómetros de Delft, y bajo la mente de aumento descubrió “muchísimos animáculos diminutos”. A continuación dirigió su microscopio hacia una gota de agua de pimienta, infusión a base de pimienta negra utilizada en sus observaciones:

“Entonces vi con claridad que se trataba de pequeñas anguilas o lombrices apiñadas y culebreando, igual que si viera en un charco lleno de pequeñas anguilas y agua, todas retorciéndose por encima de otras, y parecía que toda el agua estaba vivía y llena de estos múltiples animáculos. Para mí, ésta fue, entre todas las maravillas que he descubierto en la naturaleza, la más maravillosa de todas; y he de decir, en lo que a mí concierne,  que no se ha presentado ante mis ojos ninguna visión más agradable que esos miles de criaturas vivientes, todas vivas en un diminuta gota de agua, moviéndose unas junto a otras, y cada una de ellas con su propio movimiento…”

Tuberculosis | causas, síntomas, prevención y tratamiento

                        Mycobacterium tuberculosis

 Qué es? - Escherichia coli

                                       Escherichia coli

 Borrelia burgdorferi - Wikipedia, la enciclopedia libreBorrelia Burgdorferi - Bay Area Lyme Foundation

                           

                                                                   Borrelia burgdorferi

 Cyanobacteria - WikipediaB.C: Pushing Back The Origin Of Cyanobacteria

                                                  

                                                                           Cyanobacterium

Cyanobacterium and green algae, LM - Stock Image - C032/1252 - Science  Photo LibraryDifference Between Blue Green Algae and Green Algae | Compare the  Difference Between Similar Terms

 

           Anabaena sp. (cyanobacterium) and Netrium and Zygnema sp. (green algae)

   Different paramecia infected with Holospora bacteria. a Paramecium... |  Download Scientific Diagram

          Holospora undulata

         Chromatium - microbewiki

                                     Chromatium

          Achromatium - Wikipedia

                    Achromatium

Bacteria entering a cell - Imgur

 

Tras descubrir el mundo de las bacterias, Leeuwenhoek prosiguió la tarea dignificando a estos individuos. Contradiciendo los dogmas aristotélicos relativos a los “animales inferiores”, declaró que cada uno de estos animáculos disponía de la dotación completa de órganos corporales necesarios para el tipo de vida que llevaba.

Con todo este pequeño recorrido, en el que he tomado algunos ejemplos al azar, sólo he querido significar que, la Ciencia, a lo largo de la historia de la Humanidad, ha ido tomando diversos caminos y, unas veces debido a mentes preclaras que tenían el don de “ver” lo que otros no podían, y, otras veces, por hechos del destino y la casualidad o el azar, el hombre, ha podido ir avanzando y conociendo el mundo en el que le ha tocado vivir y, al decir mundo, me refiero no sólo a la Tierra, sino que, me estoy refiriendo al Universo, tanto de lo grande como de lo pequeño.

Qué onda con los microbios en nuestro cuerpo? | Martha_debayle | W Radio  MexicoMicrobios que habitan en el cuerpo humano.

            Lo cierto es que convivimos con ellos con los que hemos adoptado la simbiosis necesaria

Ahora sabemos que, si nosotros estamos aquí, tal presencia es posible gracias a la existencia de esos minúsculos animáculos que descubriera Leeuwenhoek que, en sus diferentes dominios, hacen lo necesario para que nosotros podamos vivir en simbiosis con ellos y, además, son los verdaderos responsables del clima del planeta que nos permite llevar una vida tranquila gracias a la atmósfera que dichos bichitos fabrican para nosotros.

¡La Ciencia! Son tantas cosas.

emilio silvera

Esos puntitos brillantes del cielo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

LAS ESTRELLAS:

Identifican el mayor cúmulo de estrellas supermasivas conocido -  Republica.com

Que por cierto, son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

Un estallido estelar revela el mecanismo de formación de las estrellas  masivas

Estrellas masivas que expulsan gases, ya que, cuando la masa es muy grande, su propia radiación las puede destruir y, de esta manera, descongestionan la tensión y evitan un final anticipado. Debajo tenéis una estrella super-masiva que ha expulsado gases formando una nebulosa para evitar su muerte. Estaba congestionada y, sólo la expulsión de material la puede aliviar y conseguir que siga brillando como estrella evitando explotar como supernova.

Leer más

No siempre la prensa cuenta las cosas con rigor científico

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (20)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“El frenesí de partos estelares en la Vía Láctea alcanzó su punto máximo hace 10.000 millones de años, pero nuestro sol llegó tarde a la fiesta, ya que no se formó hasta hace unos 5.000 millones de años. En ese momento la tasa de formación de estrellas en nuestra galaxia había llegado a un goteo.”

La evolución estelar y el diagrama Hertzsprung-Russell - Astronomía Online

La proto estrella que más tarde sería el Sol brillando en la secuencia principal, nació debido a una anomalía gravitatoria en una nube molecular gigante, y, desde hace 4.600 M de años, ha estado fusionando Hidrógeno en Helio a razón de 4.654.600 Tn cada segundo de Hidrógeno en 4.650.000 Tn de Helio. Las 4.600 Toneladas “perdidas” en la Transición, fueron eyectadas al Espacio Interestelar en forma de Luz y Calor, de lo que a la Tierra llega una pequeña parte que es suficiente para la fotosíntesis y la Vida.

Hallan campos magnéticos en chorro de protoestrella, El Siglo de Torreón

“Pero la tardía aparición del sol en realidad puede haber fomentado el crecimiento de los planetas de nuestro sistema solar. Los elementos más pesados que el hidrógeno y el helio fueron más abundantes después del auge de formación de estrellas, a medida que las estrellas más masivas terminaron su vida de forma temprana y enriquecieron la galaxia con el material que sirvió de componentes básicos para la formación de los planetas e incluso la vida en la Tierra.”

INFORMACIÓN

Cuáles son las características del Sol? - QuoraEl calor del Sol

Según todos los estudios realizados por los Astrónomos en estrellas similares al Sol, tanto en el comienzo como en el final de sus “vidas”, se sabe que al Sol le quedan unos 5.000 M de años de vida. Sin embargo, dentro de unos 1.000 M de años, comenzará la fase de convertirse en una Gigante roja que fusionará el Helio en Carbono y el Carbono en Oxígeno.

Planetas que sobreviven a la fase de gigante roja - EurekaCuándo y cómo morirá el Sistema Solar?

La Gigante roja engullirá a Mercurio y Venus y quedará muy cerca de la Tierra que, debido a las altas temperaturas reinantes para entonces, verá evaporarse sus mares y océanos y, la Vida, tal como la conocemos desaparecerá del planeta.

Acercar las estrellas: Las supergigantes y gigantes rojas del cielo  nocturno.

eXeEstrellas Gigantes Rojas | Guía Ilustrada de la Astronomía

Claro que todo ese proceso tiene que ser explicado para saber el por qué de esos cambios y cómo se producen las transiciones de fase que convierten a la estrella original en una cosa distinta de la que fue.

Las estrellas como el Sol, al producir la Fusión Nuclear radia con inusitada potencia y tiende a hincharse (como la leche cuando hierve), es decir, quiere expandirse. Sin embargo, la propia fuerza de Gravedad que genera tan ingente masa, frena esa expansión y la estrella alcanza la estabilidad.

Que pasaria si el sol se convirtiera en una gigante roja - QUE PASARIA SI EL  SOL SE APAGARA - YouTube

Claro que, agotado el combustible nuclear de fusión, la estrella se expande para convertirse en una Gigante Roja que, eyectará sus capas exteriores al Espacio Interestelar formando una Nebulosa Planetaria, mientras que la mayor parte de la masa, habiendo quedado huérfana de la fusión, quedará a merced de la Gravedad que la comprimirá más y más.

Nebulosa Planetaria. Una nebulosa planetaria es una nebulosa de emisión

Ese puntito blanco que vemos en el centro de la Nebulosa es la enana blanca que antes fue el Sol. Radia en el Ultravioleta rabioso ionizando el material circundante que forma la nebulosa.

Descubierta la primera enana blanca con una atmósfera de oxígeno

La Enana Blanca ha sido comprimida de tal manera que, su diámetro, sólo será de unos 10.000 Km, lo que antes tenía 109 veces el diámetro de la Tierra. La Densidad alcanzada por la Enana Blanca es de una tonelada por cm

Pauli Exclusion Principle

Para entender por que se produce el fenómeno de que el Sol llegue a convertirse en enana blanca, hay que explicar lo que son los fermiones y que éstos están sometidos a un principio de la mecánica cuántica.

El Principio de exclusión de Pauli es una regla de la Mecánica cuántica, descubierto por W.E. Pauli en 1925 y establece que no puede haber fermiones con todos sus números cuánticos idénticos (esto es, el mismo estado cuántico) dentro del mismo sistema cuántico. Es una consecuencia del teorema de la estadística del espín.

White Dwarfs and Electron Degeneracy

Los electrones y los neutrones son fermiones sometidos a ese Principio. Así, cuando la masa del Sol es comprimida más y más por la fuerza de Gravedad, los electrones (que son fermiones), se ven apretados los unos contra los otros y llegan a sentir una especie de “claustrofobia”, que los degeneran y comienzan a moverse a velocidades relativistas, lo que hace que la Gravedad sea frenada y la masa quede convertida en una enana blanca radiando en el Ultravioleta,

Enana blanca - Wikipedia, la enciclopedia libreTransporte de energía en enanas blancas. ¿Qué pasa con los campos  magnéticos? | Astrobites en español

Así estará muchos años mientras se enfría para que finalmente se convierta en un cadáver estelar. Si la estrella original es más masiva que el Sol, entonces, al ser la Gravedad más potente, ni la degeneración de ,los electrones la puede frenar. La consecuencia es que los electrones se fusionan con los protones y se convierten en Neutrones que, sí se degeneran para dejar finalmente una estrella de Neutrones.

Siendo la masa mucho mayor, el resultado sería un Agujero Negro, pero esa es otra historia.

emilio silvera

Nota: Dejo esta narración de unos hechos que aclaran, mucho mejor, lo que le pasará al Sol cuando agote la energía nuclear de fusión. Ya que, el reportaje de OK Diario de más abajo… No me dejó sartisfecho.