miércoles, 22 de octubre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Los materiales para la vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Supernovas, los elementos y las distancias del UniversoSupernovas - Astronavegador

 

“La Nucleosíntesis de supernovas se refiere a la producción de nuevos elementos químicos dentro de las supernovas. Ocurre principalmente debido a la nucleosíntesis explosiva durante la combustión de oxígeno explosivo y la combustión del silicio. Estas reacciones de fusión crean los elementos silicio, azufre, cloro, argón, potasio, calcio, escandio, titanio, vanadio, cromo, manganeso, hierro, cobalto y níquel. Como resultado de su expulsión desde supernovas individuales, sus abundancias crecen incrementalmente en el medio interestelar.”

NucleosíntesisNucleosíntesis (el origen de los elementos) | Geofrik's Blog

“Debido a las grandes cantidades de energía liberadas en una explosión de supernovas se alcanzan temperaturas mucho mayores que en las estrellas. Las temperaturas más altas para un entorno donde se forman los elementos de masa atómica de mayor de 254, el californio siendo el más pesado conocido, aunque sólo se ve como elemento sintético en la Tierra. En los procesos de fusión nuclear en la nucleosíntesis estelar, el peso máximo para un elemento fusionado en que el níquel, alcanzando un isótopo con una masa atómica de 56. La fusión de elementos entre el silicio y e níquel ocurre sólo en las estrellas más grandes, que termina como explosiones de supernovas (ver proceso de combustión del silicio). Un proceso de captura de neutrones conocido como el proceso-s que también ocurre durante la nucleosíntesis estelar puede crear elementos por encima del bismuto con una masa atómica de aproximadamente 209. Sin embargo, el proceso-s ocurre principalmente en estrellas de masa pequeña que evolucionan más lentamente.”

 

Origen y evolución del Universo

En la imagen se muestran los elementos asociados a diferentes estados de la vida de una estrella. Todas las estrellas nacen cuando comienzan a fusionar hidrógeno para formar helio.

El Sol, que se encuentra en su fase principal*, está sobre todo generando helio.

Cuando el Sol se encuentre en su fase final, será una gigante roja y generará los elementos señalados en rojo.

En las  supernovas se generan el resto de los elementos señalados en azul.

Física, Astronomía, Literatura Y Más - Posts | FacebookAstronomía. Artículo de la Enciclopedia.

La Astrofísica nos abrió nuevos caminos y nos trajo conocimiento profundamente escondidos en las entrañas de la Naturaleza.

¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (Big Bang, teoría del estado estacionario, etc.

Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferentes de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida.

Una de las cosas que siempre me han llamado poderosamente la atención, han sido las estrellas y las transformaciones que, dentro de ellas y los procesos que en su interior se procesan, dan lugar a las transiciones de materiales sencillos hacia materiales más complejos y, finalmente, cuando al final de sus vidas expulsan las capas exteriores al espacio interestelar dejando una extensa región del espacio interestelar sembrada de diversas sustancias que, siguiendo los procesos naturales e interacciones con todo lo que en el lugar está presente, da lugar a procesos químicos que transforman esas sustancias primeras en otras más complejas, sustancias orgánicas simples como, hidrocarburos y derivados que, finalmente, llegan a ser los materiales necesarios para que, mediante la química-biológica del espacio, den lugar a moléculas y sustancias que son las propicias para hacer posible el surgir de la vida.

                                                        

La Química de los Carbohidratos es una parte de la Química Orgánica que ha tenido cierta entidad propia desde los comienzos del siglo XX, probablemente debido a la importancia química, biológica (inicialmente como sustancias de reserva energética) e industrial (industrias alimentaria y del papel) de estas sustancias. Ya muy avanzada la segunda mitad del siglo XX han ocurrido dos hechos que han potenciado a la Química de Carbohidratos como una de las áreas con más desarrollo dentro de la Química Orgánica actual.

Sustancias organicasSustancias organicas

Caracteristicas de sustancias organicas e inorganicasCompuestos químicos orgánicos.  Las sustancias orgánicas se encuentran en  todos los organismos vegetales y animales:  alimentos (pan, carne,  legumbres, - ppt descargar

Todos los animales, plantas y microbios están compuestos fundamentalmente, por las denominadas sustancias orgánicas. Sin ellas, la vida no tiene explicación (al menos que sepamos). De esta manera, en el primer período del origen de la vida tuvieron que formarse dichas sustancias, o sea, surgimiento de la materia prima que más tarde serviría para la formación de los seres vivos.

La característica principal que diferencia a las sustancias orgánicas de las inorgánicas, es que en el contenido de las primeras se encuentra como elemento fundamental el Carbono.

En las sustancias orgánicas, el carbono se combina con otros elementos: hidrógeno y oxígeno (ambos elementos juntos forman agua), nitrógeno (este se encuentra en grandes cantidades en el aire, azufre, fósforo, etc. Las distintas sustancias orgánicas no son más que las diferentes combinaciones de los elementos mencionados, pero en todas ellas, como elemento básico, siempre está el Carbono.

Es bueno o malo para la salud comer carne roja?Los humanos ¿Qué somos? ¿Herbívoros, omnívoros o carnívoros? | Cómo ser un  cromañón sano y feliz - Blogs hoy.es

Nosotros, los humanos, somos omnívoros, es decir comemos de todo: plantas y animales. Algunos de los carnívoros comen, a veces, plantas también, como los perros. Otros, como el chancho, comen muchas plantas y a veces también carne.

Las sustancias orgánicas más sencillas y elementales son los llamados hidrocarburos o composiciones donde se combinan el Oxígeno y el Hidrógeno. El petróleo natural y otros derivados suyos, como la gasolina, el keroseno, etc., son mezcolanzas de varios hidrocarburos. Con todas estas sustancias como base, los químicos obtienen sin problemas, por síntesis, gran cantidad de combinados orgánicos, en ocasiones muy complejos y otras veces iguales a los que tomamos directamente los seres vivos, como azúcares, grasas, aceites esenciales y otros. Debemos preguntarnos como llegaron a formarse en nuestro planeta las sustancias orgánicas.

Está claro que, para los iniciados en estos temas, la cosa puede parecer de una complejidad inalcanzable, nada menos que llegar a comprender ¡el origen primario de las sustancias orgánicas!

Claves para entender en qué consiste la ecosfera | EcotrendiesLa Biosfera, la Ecosfera y los Ecosistemas. La Biosfera La blosfera o  biosfera es el sistema formado por el conjunto de los seres vivos propios  del planeta. - ppt descargar

Es nuestro planeta y el único habitado (hasta donde podemos saber). Está en la eco-esfera, un espacio que rodea al Sol y que tiene las condiciones necesarias para que exista vida. Claro que, ¡son tantos los mundos! Cómo vamos a ser nosotros nos únicos que poblemos el Universo? ¡Que desperdicio de espacio!

 

 

 

La observación directa de la Naturaleza que nos rodea nos puede facilitar las respuestas que necesitamos. En realidad, si ahora comprobamos todas las sustancias orgánicas propias de nuestro mundo en relación a los seres vivos podemos ver que, todas, son producidas hoy día en la Tierra por efecto de la función activa y vital de los organismos.

Las plantas verdes absorben el carbono inorgánico del aire, en calidad de anhídrido carbónico, y con la energía de la luz crean, a partir de éste, sustancias orgánicas necesarias para ellas. Los animales, los hongos, también las bacterias y el resto de organismos, menos los de color verde, se alimentan de animales o vegetales vivos o descomponiendo estos mismos, una vez muertos, pueden proveerse de las sustancias orgánicas que necesitan. Con esto, podemos ver como todo el mundo actual de los seres vivos depende de los dos hechos análogos de fotosíntesis y quimio-síntesis, aplicados en las líneas anteriores.

Incluso las sustancias orgánicas que se encuentran bajo tierra como la turba, la hulla o el petróleo, han surgido, básicamente, por efecto de la acción de diferentes organismos que en un tiempo remoto se encontraban en el planeta Tierra y que con el transcurrir de los siglos quedaron ocultos bajo la maciza corteza terrestre.

Todo esto fue causa de que muchos científicos de finales del siglo XIX y principios del XX, afirmaran que era imposible que las sustancias orgánicas produjeran en la Tierra, de forma natural, solamente mediante un proceso biogenético, o sea, con la única intervención de los organismos. Esta opinión predominante entre los científicos de hace algunas décadas, constituyó un obstáculo considerable para hallar una respuesta a la cuestión del origen de la vida.

Para tratar esta cuestión era indispensable saber cómo llegaron a constituirse las sustancias orgánicas; pero ocurría que éstas sólo podían ser sintetizadas por organismos vivos. Sin embargo, únicamente podemos llegar a esta síntesis si nuestras observaciones no van más allá de los límites del planeta Tierra. Si traspasamos esa frontera nos encontraremos con que en diferentes cuerpos celestes de nuestra Galaxia se están creando sustancias orgánicas de manera abio-genética.

Teoría abiogenética | Universe today, Universe, ScienceAmbiente extremo - Wikiwand

“La abiogénesis se refiere al proceso natural del surgimiento u origen de la vida a partir de la no existencia de esta, es decir, partiendo de materia inerte, como simples compuestos orgánicos.), es decir, en un ambiente que excluye cualquier posibilidad de que existan seres orgánicos en aquel lugar.”

Así es la superficie de una estrella gigante roja

   Estrella de carbono (estrella gigante roja)

Con un espectroscopio podemos estudiar la fórmula química de las atmósferas estelares, y en ocasiones casi con la misma exactitud que si tuviéramos alguna muestra de éstas en el Laboratorio. El Carbono, por ejemplo, se manifiesta ya en las atmósferas de las estrellas tipo O, que son las que están a mayor temperatura, y su increíble brillo es lo que las diferencia de los demás astros (Ya os hablé aquí de R. Lepori, la estrella carmesí, o, también conocida como la Gota de Sangre, una estrella de Carbono de increíble belleza).

                                              Así es la superficie de una estrella gigante roja

En la superficie de las estrellas de Carbono existe una temperatura que oscila los 20.000 y los 28.000 grados. Es comprensible, entonces, que en esa situación no pueda prevalecer aún alguna combinación química. La materia está aquí en forma relativamente simple, como átomos libres disgregados, sueltos como partículas minúsculas que conforman la atmósfera incandescente de estos cuerpos estelares.

Las estrellas tipo B son muy luminosas y azules

La atmósfera de las estrellas tipo B, característica por su luz brillante blanco-azulada y cuya corteza tiene una temperatura que va de 15.000 a 20.000 grados, también tienen vapores incandescentes de carbono. Pero aquí este elemento tampoco puede formar cuerpos químicos compuestos, únicamente existe en forma atómica, o sea, en forma de pequeñísimas partículas sueltas de materia que se mueven a una velocidad de vértigo.

Sólo la visión espectral de las estrellas Blancas tipo A, en cuya superficie hay una temperatura de unos 12.000º, muestras unas franjas tenues, que indican, por primera vez, la presencia de hidrocarburos –las más primitiva combinaciones químicas de la atmósfera de estas estrellas. Aquí, sin que existan antecedentes, los átomos de dos elementos (el carbono y el hidrógeno) se combinan resultando un cuerpo más perfecto y complejo, una molécula química.

Observando las estrellas más frías, las franjas características de los hidrocarburos son más limpias cuando más baja es la temperatura y adquieren su máxima claridad en las estrellas rojas, en cuya superficie la temperatura nunca es superior a los 4.000º.

Es curioso el resultado obtenido de la medición de Carbono en algunos cuerpos estelares por su temperatura:

  • Proción: 8.000º
  • Betelgeuse: 2.600º
  • Sirio: 11.000º
  • Rigel: 20.000º

 

Como es lógico pensar, las distintas estrellas se encuentran en diferentes períodos de desarrollo. El Carbono se encuentra presente en todas ellas, pero en distintos estados del mismo.

Las estrellas más jóvenes, de un color blanco-azulado son a la vez las más calientes. Éstas poseen una temperatura muy elevada, pues sólo en la superficie se alcanzan los 20.000 grados.

Los científicos descubrieron una enorme cantidad de silicatos cristalinos e hidrocarburos policíclicos aromáticos, dos sustancias que indican la presencia de oxígeno y de carbono, respectivamente. Así todos los elementos que las componen, incluido el Carbono, están en forma de átomos, de diminutas partículas sueltas. Existen estrellas de color amarillo y la temperatura en su superficie oscila entre los 6.000 y los 8.000º. En estas también encontramos Carbono en diferentes combinaciones.

El Sol, pertenece al grupo de las estrellas amarillas y en la superficie la temperatura es de 6.000º. El Carbono en la atmósfera incandescente del Sol, lo encontramos en forma de átomo, y además desarrollando diferentes combinaciones: Átomos de Carbono, Hidrógeno y Nitrógeno, Metino, Cianógeno, Dicarbono, es decir:

  1. Átomos sueltos de Carbono, Hidrógeno y Nitrógeno.
  2. Miscibilidad combinada de carbono e hidrógeno (metano)
  3. Miscibilidad combinada de carbono y nitrógeno (cianógeno); y
  4. Dos átomos de Carbono en combinación (dicarbono).

 Moléculas Diatómicas Elementos Diagrama Colores Ilustración del Vector -  Ilustración de yodo, intercambio: 193040799

 

En las atmósferas de las estrellas más calientes, el carbono únicamente se manifiesta mediante átomos libres y sueltos. Sin embargo, en el Sol, como sabemos, en parte, se presenta ya, formando combinaciones químicas en forma de moléculas de hidrocarburo de cianógeno y de dicarbono.

Para hallar las respuestas que estamos buscando en el conocimiento de las sustancias y materiales presentes en los astros y planetas, ya se está realizando un estudio en profundidad de la atmósfera de los grandes planetas del Sistema solar. Y, de momento, dichos estudios han descubierto, por ejemplo, que la atmósfera de Júpiter está formada mayoritariamente por amoníaco y metano. Lo cual hace pensar en la existencia de otros hidrocarburos. Sin embargo, la masa que forma la base de esos hidrocarburos, en Júpiter permanece en estado líquido o sólido a causa de la abaja temperatura que hay en la superficie del planeta (135 grados bajo cero). En la atmósfera del resto de grandes planetas se manifiestan estas mismas combinaciones.

Ha sido especialmente importante el estudio de los meteoritos, esas “piedras celestes” que caen sobre la Tierra de vez en cuando, y que provienen del espacio interplanetario. Estos han representado para los estudiosos los únicos cuerpos extraterrestres que han podido someter a profundos análisis químico y mineralúrgico, de forma directa. Sin olvidar, en algunos casos, los posibles fósiles.

Estos meteoritos están compuestos del mismo material que encontramos en la parte más profunda de la corteza del planeta Tierra y en su núcleo central, tanto por el carácter de los elementos que los componen como por la base de su estructura. Es fácil entender la importancia capital que tiene el estudio de los materiales de estas piedras celestes para resolver la cuestión del origen de las primitivas composiciones durante el período de formación de nuestro planeta que, al fin y al cabo, es la misma que estará presente en la conformación de otros planetas rocosos similares al nuestro, ya que, no lo olvidemos, en todo el universo rigen las mismas leyes y, la mecánica de los mundos y de las estrellas se repiten una y otra vez aquí y allí, a miles de millones de años-luz de nosotros.

Así que, se forman hidrocarburos al contactar los carburos con el agua. Las moléculas de agua contienen oxígeno que, combinado con el metal, forman los hidróxidos metálicos, mientras que el hidrógeno del agua mezclado con el carbono forman los hidrocarburos.

Los hidrocarburos originados en la atmósfera terrestre se mezclaron con las partículas de agua y amoníaco que en ella existían, creando sustancias más complejas. Así, llegaron a hacerse presentes la formación de cuerpos químicos. Moléculas compuestas por partículas de oxígeno, hidrógeno y carbono.

Todo esto desembocó en el saber sobre los Elementos que hoy podemos conocer y, a partir de Mendeléiev (un eminente químico ruso) y otros muchos…se hizo posible que el estudio llegara muy lejos y, al día de hoy, podríamos decir que se conocen todos los elementos naturales y algunos artificiales que, nos llevan a tener unos valiosos datos de la materia que en el universo está presente y, en parte, de cómo funciona cuando, esas sustancias o átomos, llegan a ligarse los unos con los otros para formar, materiales más complejos que, aparte de los naturales, están los artificiales o transuránicos.

Aquí en la Tierra, las reacciones de hidrocarburos y sus derivados oxigenados más simples con el amoníaco generaron otros cuerpos con distintas combinaciones de átomos de carbono, hidrógeno, oxígeno y nitrógeno (CHON) en su moléculas llamadas paras la vida una vez que, más tarde, por distintos fenómenos de diversos tipos, llegaron las primeras sustancias proteínicas y grasas que, dieron lugar a los aminoácidos, las Proteínas y el ADN y RDN que, finalmente desembocó en eso que llamamos vida y que, evolucionado, ha resultado ser tan complejo y, a veces, en ciertas circunstancias, peligroso: ¡Nosotros!

emilio silvera

El sueño de viajar a las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Futuro    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Espacio

 

Hawking anuncia una nave que llegará a las estrellas en 20 años

 

 

Quién es Yuri Milner, el ruso que busca extraterrestres con Stephen Hawking?  - 15.04.2016, Sputnik MundoProyecto Starshot - YouTube

 

Rumbo a Alfa Centauri con Breakthrough Starshot — AstrobitácoraDiseñan un sistema de propulsión para llegar a otra estrella en solo 20  años | Ciencia | La República

Junto al magnate ruso Yuri Milner, el físico presenta el proyecto Starshot, una nano-nave capaz de viajar a un 20% de la velocidad de la luz que enviarán a Alfa Centauri.

Quién es Yuri Milner, el multimillonario ruso detrás de los primeros viajes  interestelares - BBC News Mundo

 

 

Milner y Hawking, durante la presentación. E.E

 

El millonario ruso Yuri Milner y el físico Stephen Hawking han presentado un proyecto de nano-nave espacial que podría alcanzar Alfa Centauri, la estrella más cercana a nuestro sistema solar, en apenas una generación.

“Me llamaron Yuri por Yuri Gagarin”, ha dicho hoy en una esperada comparecencia Milner, acompañado del famoso físico británico. El ruso, que a principios de este año anunció junto a Hawking una inversión de 100 millones de dólares para encontrar vida extraterrestre, ha presentado las tres fases en que consiste el proyecto Starshot, que en inglés se traduce como ‘disparo a las estrellas’.

NASA: La tecnología que nos llevará donde nunca hemos estado antes en el  espacioNASA: La tecnología que nos llevará donde nunca hemos estado antes en el  espacio

La primera es el Starchip, del tamaño de un sello y equipado con sensores, cámaras y todo lo necesario. Un satélite en miniatura “que puede ser producido en masa con el coste de un iPhone”, ha dicho Milner. Luego está Lightsail, un tejido resistente del que varios metros pesan apenas unos gramos, y que servirá de vela para esta nave espacial. Finalmente, la guinda del concepto es que el Starshot irá propulsado con un rayo de luz, formado por docenas de láseres que se unirán en un punto sobre la atmósfera para enviar la nave a las estrellas a toda velocidad.

“La nave será acelerada a un 20% de la velocidad de la luz”, ha dicho Milner, “mil veces más rápido que la aeronave más rápida existente”. Como resultado, Milner y Hawking asegura que su artilugio podría alcanzar, literalmente, las estrellas en 20 años, tomar imágenes y enviarlas de vuelta a la Tierra en un rayo de luz. “Todo está basado en un conocimiento científico ya disponible y todo estará en acceso abierto”, ha dicho el magnate ruso.

           

Hawking ha intervenido también para preguntar al aire “¿qué hace únicos a los seres humanos? Algunos dicen que el lenguaje, otros que la capacidad de razonar… obviamente no han conocido a muchos humanos”, bromeó el físico. “Creo que lo que nos hace únicos es la capacidad de trascender nuestros límites: yo perdí la voz, pero la he recuperado gracias a un sintetizador”.

Según Hawking, “trascendemos los límites con nuestras mentes y con las máquinas, y el límite al que nos enfrentamos ahora es un gran vacío entre nosotros y las estrellas, y ahora, con rayos de luz, el Starchip y el Lightsail alcanzaremos Alfa Centauri en una generación, estamos a punto de acometer el próximo gran salto hacia el cosmos”.

Su compinche en este fascinante reto, Milner, ha recordado que cuando nació, en plena Guerra Fría, “estábamos en mitad de una carrera espacial, y ahora sin embargo estamos en un esfuerzo colaborativo que dirá tanto de nosotros como de Alfa Centauri. Por primera vez en la historia de la humanidad podemos hacer algo más que mirar a las estrellas, podemos alcanzarlas”.

Noticias de prensa.

PD.

Mi predicción es que llegará la fecha y nada se habrá conseguido, y, si el Proyecto se realiza… ¿Llegaráa Alfa Centauri?

Todo tiene su final

Autor por Emilio Silvera    ~    Archivo Clasificado en El Espacio Exterior y nosotros    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

EL PAÍS
Pudimos leer en los medios:  “La sonda Cassini se aproxima a su ¡Gran Final! en Saturno

“Se adentrará entre el planeta y sus anillos para acabar desintegrada en la atmósfera del gigante gaseoso.”

 

 

Looking Back On The Cassini-Huygens Mission to Saturn - YouTube
          La sonda Cassini y Saturno EL PAÍS VÍDEO

Desde que en octubre del año 1997 fuera lanzada la sonda Cassini, hasta que el 15 de septiembre de 2017 se destruya, habrán pasado 20 años. Durante ese tiempo ha sido la primera nave que ha orbitado en Saturno, ha retratado el planeta y sus anillos, las lunas Titán y Encélado, buscando la presencia de vida y ayudando a resolver innumerables misterios.

Se trata de un proyecto en el que han colaborado la NASA y la Agencia Espacial Europea (ESA), que desarrollaron la sonda Huygens cuya misión fue aterrizar sobre Titán, y la Agencia Espacial Italiana (ASI).

Resultado de imagen de La nave no tripulada Cassini-Huygens

La nave no tripulada Cassini-Huygens fue lanzada por un cohete Titán 4B y con un peso de 5.670 kilogramos ha recorrido más de 3.500 millones de kilómetros. Cassini llegó a Saturno en el año 2004, y se convirtió en el primer satélite artificial tras una larga maniobra, enviando valiosa información desde que entró en órbita.

En noviembre de 2016 la sonda Cassini empezó a cambiar el rumbo, con el objetivo de sobrevolar el polo norte de Saturno y el anillo más alejado del planeta. A partir de abril de 2017, la nave se ha ido acercando a Titán para aprovechar su empuje gravitatorio y adentrarse en el espacio entre el anillo más interno y el planeta, una extensión de unos 2.400 kilómetros de ancho, realizando 22 órbitas, cada una con una duración de seis días, y acercándose como nunca se había llegado al sexto planeta del Sistema Solar. La información que consiga, según ha explicado la NASA, puede responder a grandes preguntas sobre Saturno, cuál es su estructura interna, cuánto dura un día en el planeta, a qué velocidad gira su núcleo, y cuándo se formaron sus anillos. Será la primera ocasión en la que se van a analizar partículas de hielo de los anillos principales y las capas externas de la atmósfera.

 

 LEGO MOC Cassini Huygens by B.Voss DESIGN | Rebrickable - Build with LEGO

 

MÁS INFORMACIÓN

El  día 11 de septiembre realizó su último sobrevuelo, que se ha dio en llamar el ‘beso de despedida’, y que servió para encaminar a Cassini hacia su desintegración en la atmósfera de Saturno cuatro días más tarde. En estos momentos el combustible se está agotando, y se intenta evitar que sus restos contaminen los lagos de Titán o los mares de Encélado, porque se han descubierto géiseres con compuestos químicos esenciales para sustentar microbios.

Entre la información que ha enviado la sonda, destacan unas fotografías que muestran las vistas de la descomunal tormenta hexagonal que reina en el polo norte del planeta y las imágenes de mayor resolución que se hayan tomado de Pandora, la luna de 84 kilómetros de diámetro en el anillo exterior. También datos publicados sobre el lado nocturno de Titán presenta entre 10 y 200 veces más luz que su lado diurno, los científicos creen que podría deberse a la eficiente difusión frontal de la luz solar por la extensa neblina de su atmósfera, un comportamiento que en nuestro Sistema Solar solo presenta Titán.

Cassini llega al final de su viaje, pero hasta el momento de su desintegración nos seguirá transmitiendo lo que pasa tan lejos de la Tierra.

La Masa y la Energía ¿Qué son en realidad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Los tripletes de Quarks (2 up -arriba- y 1 down -abajo-, forman hadrones de la rama bariónica, es decir protones y neutrones que son los nucleones que conforman el núcleo atómico. Los Bosones llamados Gluones son los emisarios de la la fuerza nuclear fuerte que los mantiene allí confinados. Si tratan de separase, la fuerza aumenta y lo impide.

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “re-normalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.

                                  Number of Families of Quarks and Leptons

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

                                                     Definición y ejemplos de fuerzas nucleares débiles

La interacción débil, recordareis, fue inventada por Enrico Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Fabiola Gianotti, la directora del CERN | Vidas científicas | Mujeres con  cienciaEl hallazgo de la "partícula de Dios" abre una nueva era de la física - La  Opinión de A Coruña

                Fabiola Gianotti, portavoz del experimento ATLAS, ofrece algunos avances:

“En nuestros datos observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”

Física de partículas el modelo estándar de partículas de dios higgs boson,  ciencia, ángulo, texto png | PNGEggLos 7 pecados del Modelo Estándar – Novum

“El Modelo Estándar es la teoría que engloba prácticamente todo lo que hoy sabemos sobre física de partículas. Basándose en las reglas de la mecánica cuántica (en la teoría cuántica de campos para ser precisos) describe con una exactitud asombrosa las interacciones entre partículas subatómicas. Entre estas interacciones encontramos: el electromagnetismo, que como su nombre indica describe el campo eléctrico y el campo magnético (que en realidad es como un todo). También describe la fuerza nuclear fuerte, que mantiene unidos los protones y neutrones dentro del núcleo atómico y los quarks unidos entre sí. Finalmente también describe la interacción nuclear débil, responsable de las desintegraciones radiactivas y componente fundamental para que el Sol nos aporte calor y luz.

Uno también se puede preguntar qué pasa con la gravedad.”

Partículas elementales - La fisica y quimica

 

El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.

El 4 de julio de 2012 se anunció el descubrimiento de un nuevo bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo fue concedido cuando el CERN afirmó con claridad y rotundidad que se había descubierto “el” Higgs, y, si el CERN era conservador, la Academia Sueca lo era aún más. Sin embargo, el rumor apuntaba a que quizás bastaría con que el CERN dijera que se había descubierto “un” Higgs.

¿Por qué, a pesar de todas las noticias que surgieron desde el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado?

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

El modelo estándar de diagrama de partículas elementales, ampliar el  conocimiento., texto, rectángulo, programa de computadora png | PNGWing

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electro-débil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electro-débil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

2013 junio 24 : Blog de Emilio Silvera V.CMS Masterclass ppt descargar

Para cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿Dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios.

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que viene a ser una de las soluciones que le faltaba al Modelo Estándar para que todo encaje con la teoría.

¡Ya veremos en que termina todo esto! Dijeron que descubrieron el famoso Bosón pero… Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011— y que no pudo disfrutar del Nóbel.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, Wy Z0 de masa grande.

Biografia de Steven WeinbergLas energías de futuro en el CONAMA 9

Weinberg y Salam (arriba)se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electro-débil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental que ahora parece que va asomando la cabeza en el LHC.

Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El Modelo Estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

En el mundo... - GAE UNAM: Gravitación y Altas Energías | Facebook

Después de todo esto, tal como lo plantearon los del CERN,  se puede llegar a la conclusión de que, el campo de Higgs, el Modelo Estándar y nuestra idea de cómo se hizo el Universo dependía de que se encontrara el Bosón de Higgs.  Y entonces, por fin, el mayor Acelerador del mundo, el LHC, nos dijo que el Bosón había sido encontrado y las pruebas tenían una fiabilidad enorme.

¡La confianza en nosotros mismos no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fin, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veraz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.

¿Pasará igual con las cuerdas? Claro que, para verificar esta teoría se necesitaría una energía de 1019 GeV, y, esa energía no la tendríamos ni uniendo todos los esfuerzos de los gobiernos de nuestro mundo. Es una energía que estaba presente en la “creación”, y, quizás, en los agujeros negros.

emilio silvera

Muere Leon Lederman, el físico que tuvo que vender su Nobel para pagarse el  tratamiento médico - Cultura InquietaBlog de La_Morsa: El libro de León Lederman: "La partícula divina"

Agradecido le quedo a León Lederman que con sus ideas ha nutrido el presente trabajo.

Guardar

¡La Vida! Ese gran misterio

Autor por Emilio Silvera    ~    Archivo Clasificado en La vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿La Vida? Algo que no sabemos explicar pero, lo intentamos. Como dice Kauffman:
“La vida cristaliza a partir de un nivel crítico de diversidad molecular, debido a que…”.
A mí me gusta decir, que la vida es,  ¡el estado más evolucionado de la materia! Algo tan sorprendente y complejo que no hemos podido (todavía) explicar, como a partir de la materia “inerte” se pudo llegar hasta las ideas, los pensamientos y… ¡Los Sentimientos!

Las mejores fotos de la Tierra desde el espacio160 ideas de La tierra vista desde el espacio | vistas, tierra, tierra  desde el espacio

Aquí surgió la vida que conocemos. El planeta y su entorno, tenían todos los ingredientes necesarios para que, tal maravilla, pudiera surgir a un Universo que, siendo tan inmensamente grande y estar lleno de asombrosos objetos y sucesos, ninguno de ellos, se podría comparar con este que llamamos vida y que, asciende desde la materia “inerte” hasta los pensamientos.

Sean cuales sean los orígenes de la vida, las teorías que incluyen redes, conexiones y criticalidad auto organizada proporcionan unas ideas nuevas y poderosas sobre el modo en que funciona la vida una vez que ha surgido. Claro que, el origen de la vida ha hecho que muchas mentes despiertas y dotadas de un profundo entendimiento, emitan teorías que, aunque no todas puedan ser reflejo de lo que la vida es, hay que admitir que cada una de ellas, al menos nos indica un posible camino por el que la vida pudo surgir.

Dichas teorías o especulaciones en algunos casos, han ofrecido un ejemplo sorprendente de la medida en que la complejidad de los seres vivos (sin duda, lo más complejo que existe en el universo) podría estar basada en una profunda sencillez, cuyo secreto, está escondido en la materia.

                                Resultado de imagen de funcionamiento de las células a niveles de genes

Son muchos los misterios que a todos los niveles subyacen en lo que conocemos como vida, por ejemplo, en el funcionar de las células, al nivel de los genes que aportan las instrucciones que gobiernan lo que a veces se llama de una manera imprecisa la maquinaria de la célula. Estas instrucciones se encuentran en última instancia codificadas en el ADN, las grandes moléculas de las que están constituidos los genes; pero tanto la maquinaria como la estructura del cuerpo están hechas de proteínas. Elementos tales como el pelo y las uñas de los dedos, así como los músculos, son tipos de proteínas y también lo son sustancias como la hemoglobina, que transporta el oxígeno en la sangre, y las enzimas, que son los catalizadores biológicos esenciales que favorecen las reacciones químicas importantes para la vida.

http://apod.nasa.gov/apod/image/0707/trifid_spitzer_f.jpgEl ADN se comunica con el universo | astrocopasEstudio revela que el ADN puede sobrevivir a un viaje al espacio -  Magnética 107.1 FM

Las propias proteínas son grandes moléculas formadas por subunidades llamadas aminoácidos, y esta es la razón por la que resulta tan intrigante el descubrimiento de que los aminoácidos existen en el tipo de nubes interestelares a partir de las cuales se forman las estrellas como el Sol y los planetas como la Tierra y todos los que vemos en nuestro Sistema solar.

                               Resultado de imagen de El código genético que está en el ADN contiene instrucciones para fabricar proteínas

El código genético que está en el ADN contiene instrucciones para fabricar proteínas y, luego, estas proteínas realizan las tareas de que se compone la vida. Pero, en este proceso hay otro paso que resulta sorprendente. Cuando un gen se activa (cómo y por qué sucede esto va más allá de los objetivos de esta explicación), la información que interesa en ese momento se copia primero en una molécula muy similar llamada ARN. Posteriormente, la maquinaria de la célula lee el ARN y actúa según sus instrucciones para fabricar la proteína adecuada.

Este proceso de dos pasos probablemente nos esté diciendo algo sobre el modo en que se originó la vida, y existe alguna posibilidad de que el ARN se “inventara” antes que el ADN. En la situación que describe Kauffman,  la “cristalización” de la vida tiene lugar en el nivel de las proteínas, en una sopa química rica en aminoácidos, donde surgieron las primeras redes auto-catalíticas de la vida; en este modelo encaja fácilmente la posibilidad de que el ARN participara en una fase temprana y que, posteriormente, las presiones evolutivas asociadas con la competencia entre las distintas redes auto-catalíticas pudieran haber conducido al sistema a la situación que vemos en la actualidad.

Imagen analizada visualmente

Los puntos relevantes que aconsejan estos pensamientos en la investigación desarrollada sobre el modo en que funcionan las células son, por un lado, el hecho de que los genes actúan para controlar la maquinaria celular y, por otro (siendo éste el aspecto crucial) que los genes pueden afectarse mutuamente, cuando un gen activa o desactiva a otro.

Cuando fueron desarrollados estos trabajos de investigación se pensaba que había unos cien mil genes diferentes en el ADN humano –es decir, en el genoma humano-. Desde entonces, el proyecto del genoma humano ha demostrado que tal estimación era excesiva, y que sólo hay alrededor de un tercio de dicho número de genes para especificar lo que debe ser una criatura humana.

                                    Resultado de imagen de La evolución con el tiempo transforma una especie en otra

A todo esto, no tenemos más remedio que admitir que la evolución es un hecho, al igual que lo es la forma elíptica de la órbita que describe un planeta alrededor del Sol. Tanto en el registro fósil como en los diversos estudios realizados sobre la vida actual en la Tierra, se puede encontrar un número considerable de pruebas relativas al modo en que actúa la evolución, transformando una especie en otra. La teoría de la selección natural, a la que llegaron de manera independiente Charles Darwin y Alfred Russell Wallace en la segunda mitad del siglo XIX, es un modelo que ofrece una explicación  de por qué se produce la evolución, del mismo modo que la teoría de la gravedad, desarrollada por Newton durante la segunda mitad del siglo XVII, es un modelo que explica porque los planetas describen órbitas elípticas. Ni la teoría, ni el modelo, constituyen la última palabra sobre la cuestión que abordan. De hecho, la teoría de Newton fue mejorada por la de Einstein a principios del siglo XX, que descubrió un modelo más completo para explicar cómo actúa la Gravedad –la teoría general de la relatividad– y, de la misma manera, en el ámbito de los estudios sobre la vida, vendrán otras nuevas maneras y formas de ver y enfocar los problemas que nos lleven a un entendimiento más amplia y fidedigno de cómo la vida se puedo abrir camino partiendo de la “materia inerte” hasta las pensamientos.

 

La hipotesis de la reina roja es una hipótesis de la teoría evolutiva que toma su nombre de un relato de Lewis Carroll, donde Alicia entra en un mundo donde por más que se mueva parece que no avance en absoluto debido a que el mundo a su alrededor -a su vez- también se mueve. Se trata en realidad de un libro escrito por Matt Ridley en 1993 donde el autor publica sus ideas respecto a ciertas cuestiones relacionadas con la co-evolucion de algunas especies y la influencia del sexo es la evolución.

Claro que, la Vida, tiene una regla esencial que, de no cumplirse, esa clase de vida está abocada a su desaparición, es decir, los individuos que sobreviven son aquellos que mejor se adaptan al medio-ambiente, es lo que se conoce como “la supervivencia del más apto”.

                                Imagen relacionada

En alguna ocasión os he hablado aquí (en relación a la biología evolutiva) a eso que se conoce como “el efecto de la Reina Roja”, según el personaje que aparece en Alicia en el País de las maravillas, de Lewis Carroll, que debe correr tan rápido como pueda, con el fin de permanecer en el mismo lugar.

El final de toda la historia desemboca, aparentemente, en un proceso de coevolución, en el que todas las especies implicadas en una red sufren cambios cuando una de ellas cambia, impulsará de forma natural los ecosistemas complejos desde los extremos hacia la interesante zona de la criticalidad auto-organizada, en la transición de las fases que se producen al borde del caos. Si un grupo de organismos está bloqueado en una estrategia estable, es probable que una mutación que afecte a una de las especies desbloquee la red, permitiendo su evolución.

La evolución por selección natural garantizará que un cambio perjudicial para las especies implicadas vaya desapareciendo a lo largo de varias generaciones; pero todo cambio beneficioso se propagará, y al hacerlo, desbloqueará otras redes, impulsando el sistema hacia el borde del caos. En el otro lado de la transición de las fases, en el régimen caótico, sucederá lo mismo, pero a la inversa. Dado que las reglas del juego de la vida cambian con cada generación, cualquier grupo de individuos que consiga hasta cierto punto aislarse del caos, reduciendo el número de sus conexiones con el mundo exterior, tendrá una oportunidad de evolucionar por selección natural, hasta llegar a un estado que se beneficia de las oportunidades que hayan podido surgir.

Hemos podido ver cómo, las interacciones entre especies, lo pueden cambiar todo y, casi siempre, desemboca en la supremacía de una que, generalmente, produce la extinción de la otra. Siendo eso así (que lo es) –aunque no en todos los casos-), tendremos que tener sumo cuidado cuando llegado el momento, podamos contactar por primera vez con seres de otros mundos que, no sabemos de qué propiedades podrán estar dotados física y mentalmente y, si sus morfologías y organismos son compatibles con los nuestros y con nuestro propio entorno.

Cuando tratamos de cuestiones que afectan a la vida, todo se nos vuelve complejo e ininteligible, es una de las disciplinas que no hemos podido llegar a dominar bien, dado que, como decía por ahí arriba, estamos tratando con lo más complejo que en el universo habita ¡La Vida!.

             

Claro que, aunque nuestro entorno sea el ideal no podemos dejar que todo transcurra sin  que nosotros, estemos pendientes de los comportamientos y, de no vigilar nuestro propio cuidado, las cosas podrían terminar de manera muy desagradable. De hecho, más de uno se ve abocado a su desaparición precisamente por no prestar atención a su propia vida que, siendo tan valiosa, se la deja escapar por unos placeres mal entendidos. La moderación es la madre de la razón.

Pero, como tántas veces hemos dicho aquí, la vida debe pulular por todas partes. De hecho científicos del Instituto de tecnología de Georgia en los Estados Unidos, descubren bacterias en la atmósfera de la Tierra por miles de millones. Como si de una burbuja que envolviera la Tierra se tratara, a una distancia de 9 kilómetros sobre la Tierra se han descubierto células de bacterias y hongos en un hostil lugar para la vida.  El frío, la luz ultravioleta y la sequedad no hacen de este punto un lugar propicio para la vida, pero los científicos han detectado un 20% de células de bacterias y hongos entre lo que en un principio se creía que solo era polvo.

Han descubierto bacterias mutantes en la Estación Espacial Internacional y los científicos temen por la propia seguridad de la Estación y también, de los que la ocupan. Según se ha publicado “Para ellas, ni siquiera las durísimas condiciones del espacio exterior son un obstáculo insalvable. De hecho, sobreviven incluso a las gélidas temperaturas que hay más allá de la atmósfera terrestre. Y lo hacen sin agua, sin nutrientes y sin nada que las proteja de la intensa y letal radiación del Sol y las estrellas. Las bacterias llevan viviendo dentro y fuera de la Estación Espacial Internacional desde que ésta empezara a ensamblarese, a finales de 1998. Y ahora se están convirtiendo en un problema serio, tanto para su estructura como para la integridad física de sus ocupantes.”

La isla flotante de los microbios

Erik Zettler
                            Algunas de las bacterias encontradas en el plástico flotante

Ha salido publicado que: “La actividad humana sobre el planeta produce inquietantes consecuencias. Los científicos han descubierto una gran multitud de microbios que han colonizado con éxito las islas de plástico que flotan sobre los océanos. Los microorganismos que forman estas comunidades representan un hábitat ecológico nuevo provocado por el hombre. Los investigadores tienen un nombre para ello. Lo denominan la «plastisfera».

En un estudio recientemente publicado en Environmental Science & Technology, los científicos de la Asociación de Educación del Mar (SEA), la Woods Hole Oceanographic Institution (WHOI) y el Laboratorio de Biología Marina (MBL), todos en Woods Hole, Massachusetts (EE.UU), analizaron desechos plásticos marinos recuperados de la superficie del mar en varios lugares del Océano Atlántico Norte. La mayoría eran fragmentos de un tamaño milimétrico.”

Lo cierto es, amigos míos que la Vida, en cuento se le da la más mínima oportunidad… ¡ Surge por doquier! Y todavía muchos no creen que pueda existir vida en otros planetas, otros mundos que, como la misma Tierra, les proporcione el medio necesario para formar un hábitat y multiplicarse de mil maneras y formas.

emilio silvera