Ene
14
Ylia Prigogine ¡Qué personaje!
por Emilio Silvera ~ Clasificado en Personajes de la Historia ~ Comments (0)
Ylia Prigogine haciendo lo que sólo unos privilegiados pueden hacer: desvelando los principios del mundo. En la pizarra, la entropía. La irreversibilidad del Tiempo trae el orden al caos, decía. De alguna manera pretendía explicar que nada permanece y todo cambia bajo los efectos del inexorable paso del Tiempo.
Ilya Prigogine (25 de enero de1017 – 28 de mayo de 2003, Bruselas) fue un físico, químico, sistémico y profesor universitario belga de origen ruso. Premio Nobel de Química de 1977 por su investigación que le llevaron a crear el concepto, en 1967, de estructuras disipativas.
“Desde los inicios de la biología, filósofos y científicos se habían dado de que las formas vivas, de múltiples y misteriosas maneras, combinan la estabilidad de la estructura con la fluidez del cambio. Como los remolinos, dependen de un flujo constante de materia; como las llamas, transforman los materiales de los que se nutren para mantener su actividad y crecer; pero a diferencia de remolinos y llamas, las estructuras vivas también se desarrollan, se reproducen y evolucionan.“
Estructura disipativa
El término estructura disipativa busca representar la asociación de las ideas de orden y disipación. El nuevo hecho fundamental es que la disipación de energía
“Las estructuras disipativas constituyen la aparición de estructuras coherentes, autoorganizadas en sistemas alejados del equilibrio. Se trata de un concepto de Ilya Prigogine, que recibió el Premio Nobel de Química «por una gran contribución a la acertada extensión de la teoría termodinámica a sistemas alejados del equilibrio, que sólo pueden existir en conjunción con su entorno».
El término estructura disipativa busca representar la asociación de las ideas de orden y disipación. El nuevo hecho fundamental es que la disipación de energía y de materia, que suele asociarse a la noción de pérdida y evolución hacia el desorden, se convierte, lejos del equilibrio, en fuente de orden.”
Inestabilidad de Bénard
El ejemplo clásico utilizado por Prigogine para las estructuras disipativas es la «inestabilidad de Bénard». Se trata de una capa horizontal de líquido que tiene una diferencia de temperatura entre la superficie superior e inferior producto de que ésta última es calentada. Existe por tanto un gradiente de temperatura, al estar la base más caliente que la superficie, que produce la conducción de calor de abajo hacia arriba. La inestabilidad se produce cuando el gradiente sobrepasa cierto límite. En este caso el transporte de calor por conducción –colisión entre partículas— se ve aumentado por un transporte por convección, en el que las moléculas participan de un movimiento colectivo. Se forman vórtices que distribuyen la capa líquida en «celdas» de agua. Si se analiza la probabilidad de que un fenómeno como la «inestabilidad de Bénard» se produzca espontáneamente, se llega a la conclusión de que dicho fenómeno es prácticamente imposible.
Lejos del equilibrio
Lejos del equilibrio, la materia se comporta de forma diferente a las regiones cercanas al equilibrio. Las nociones de no linealidad, fluctuación, bifurcación y autoorganización son fundamentales: es el dominio de las estructuras disipativas, las que se encuentran en el origen de los estudios de sistemas complejos.
En un lenguaje vulgar, una estructura disipativa, sería la encargada de permitir alcanzar un cierto orden (muchas veces asociado al mero orden biológico) a expensas de un aporte continuo de energía externa al sistema. De ahí, que se le asocia al no equilibrio, pues origina condiciones que no son alcanzables espontáneamente, pero a las que sí se llegan, y mantienen en equilibrio, si cíclicamente se le incorpora energía. Se dice que tales sistemas concluyen en un «equilibrio estacionario».
Ilya Prigogine en uno de sus más célebres libros, de título ¿Tan sólo una ilusión?, que consta de una antología de diez ensayos (elaborados entre 1972 y 1982) en los que el autor habla con especial ahínco sobre este nuevo estado de la materia: las estructuras disipativas, asegurando que con estos novedosos conceptos se abre un «nuevo diálogo entre el hombre y la Naturaleza».
Para Prigogine tiempo y eternidad son dos conceptos diferentes. El tiempo no es la eternidad, ni es el eterno retorno. La estructura del espacio-tiempo está ligada a la irreversibilidad pero el tiempo no es solamente irreversibilidad, devenir y evolución.
Para Prigogine… “el Tiempo…”
Aquí acaba de nacer su Tiempo particular
Para Prigogine no podemos hablar de un nacimiento del Tiempo pero sí de un nacimiento de nuestro Tiempo así como de un nacimiento de nuestro Universo. Existen muchos tipos de tiempos: el tiempo astronómico, el tiempo de la dinámica, el tiempo químico interno, el tiempo biológico interno, que es la inscripción del código genético que prosigue a lo largo de miles de millones de años de la vida misma, el tiempo musical, etc. Es una convención humana contar el tiempo a partir de un acontecimiento, como por ejemplo, el nacimiento de Cristo.
El vacío fluctuante donde el Tiempo trataba de “nacer”
El nacimiento de nuestro tiempo no es el nacimiento del tiempo. Ya en el vacío fluctuante preexistía el tiempo en estado potencial. El tiempo potencial es un tiempo que está ya siempre ahí, en estado latente pero que requiere un fenómeno de fluctuación para concretarse. El tiempo no ha nacido con nuestro Universo: el tiempo precede a la existencia y podrá hacer que nazcan otros universos.
Los fenómenos irreversibles conducen a nuevas estructuras y, desde el momento en que aparecen estas nuevas estructuras, no hay vuelta atrás, no podemos pensar que los humanos somos los responsables de la aparición de la perspectiva del antes y del después. El antes y el después nos preceden, no son invenciones humanas, aunque sí lo es la forma en que medimos el tiempo, con relojes que tienen un movimiento periódico.
Si para Aristóteles, el tiempo es eterno y no tiene inicio y, para Einstein, el tiempo es una ilusión humana, es eterno, no reversible, pero relativo, para Prigogine el tiempo precede al Universo. Para él el tiempo es irreversible y no es una ilusión como creía Einstein.
Prigogine se pregunta si la autonomía del tiempo desarrolla algún papel en la evolución de la vida, en la evolución biológica. La vida ha creado nuestro tiempo gracias a la creación de las biomoléculas, que son moléculas orgánicas a quienes la irreversibilidad les quebró la simetría. Al quebrar esta simetría espacial también quebró la simetría temporal, o sea, la simetría entre pasado y futuro. Eso es la historia de las moléculas, historia que permanece en su ADN y podemos rastrear.
Origen del Universo
En su teoría sobre el origen del Universo, la relación entre espacio-tiempo por un lado y materia por el otro, no es simétrica. El espacio-tiempo se transforma en materia cuando la inestabilidad del vacío se corresponde con una explosión de entropía, lo cual es un fenómeno irreversible. La materia sería, por lo tanto, para Prigogine, una contaminación del espacio-tiempo. El tiempo precede al Universo.
En 1922, gracias a Einstein, se abandona el modelo de un Universo estático, por el modelo de un Universo en expansión. En 1965 se descubre que el Universo está formado fundamentalmente por fotones, ya que existen 109 fotones por cada barión. El desorden se asocia a los fotones, mientras que el orden se asocia a los bariones. O sea, que nuestro Universo tiene más desorden que orden.
Según Prigogine el Universo es el resultado de una transición de fase a gran escala, el paso de un estado a otro. El Universo sería el resultado de una inestabilidad sucedida a una situación que le ha precedido.
Contrariamente a la idea clásica de que habría habido una entropía despreciable que aumenta hasta la muerte térmica, estado en el que la entropía sería terminal, Prigogine localiza una enorme producción de entropía en el origen del Universo.
Por eso, para Prigogine la muerte térmica está en los inicios del Universo. La entropía total de Universo procede del predominio de los fotones. Prigogine hace comenzar el Universo de una inestabilidad, un cambio de fase: el Universo que conocemos sería el resultado de una transformación irreversible de otro estado físico, de un vacío fluctuante de anti-materia.
El vacío fluctuante podía disminuir su energía emitiendo agujeros negros, lo cual es un fenómeno irreversible. En un primer momento, por la inestabilidad de las partículas de la masa crítica original, se van constituyendo grupos de masa que son pequeños agujeros negros del orden de 10-3 g.
En ese momento el Universo se expande de manera exponencial, pero esos agujeros negros se descomponen en tiempos de 10-35 segundos. O sea que la materia lleva consigo el signo de la flecha del tiempo. En ese momento aparece el Universo que ya está formado por fotones y bariones porque el tiempo se transformó en materia después de esta explosión de entropía.
El Universo caliente y pequeño era un Universo en equilibrio que se transformó en un Universo de no-equilibrio con la aparición de la materia. Si el Universo continuara en equilibrio no existiría la materia, y la aparición misma de la materia es una manifestación de la irreversibilidad. La existencia de materia y no de anti-materia es la prueba de una ruptura de la simetría anterior.
En el siglo XXI ya no se cree, como se pensaba en el siglo XX, que la evolución del Universo va en la dirección de la degradación, sino que la evolución va en la dirección del aumento de la complejidad, con nuevas estructuras que aparecen en cada nuevo nivel progresivamente, en todos los niveles existentes, sean del orden no viviente, como en las galaxias o estrellas, sean del orden viviente, como en los sistemas biológicos. Tanto en el orden microscópico como en el orden macroscópico.
El Universo es más complejo de que creemos que es
Aunque todavía existen quienes creen que el porvenir del Universo es una repetición, un eterno retorno y que el tiempo no es más que una ilusión humana y, también existen, quienes creen, como en la termodinámica clásica, que la evolución del Universo consiste en una inevitable decadencia debido al agotamiento de los recursos disponibles, Prigogine sostiene, gracias a los avances de la ciencia y los nuevos conocimientos matemáticos, como los fractales, que la realidad de nuestro Universo es mucho más compleja que eso.
La complejidad siempre ha estado presente y, como vemos, siempre va en aumento
Existen demasiadas posibilidades y elementos a tomar en cuenta y, existen siempre nuevos procesos de transformación y de aumento de la complejidad.
Como veréris, de vez en cuando conviene echar una mirada por ahí para saber de personajes y de sus pensamientos que, como siempre digo, todos sabemos alguna cosa y, es conveniente, que todos los demás sepan de ella. En este caso, he traído aquí a este personaje de cuyos pensamientos podemos nutrir nuestros conocimientos para que podamos ser, algo menos ignorante.
Publica: emilio silvera
Fuente Wikipedia
Ene
13
¡Enanas blancas! Estrellas misteriosas
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (3)
Una enana blanca es una pequeña y densa estrella que es el resultado final de la evolución de así todas las estrellas (por el ejemplo el Sol), excepto las muy masivas. Según todos los estudios y observaciones, cálculos, experimentos de simulación, etc., estas estrellas se forman cuando, al final de la vida de las estrellas medianas, cuando agotan el combustible de fusión nuclear, se produce el colapso de sus núcleos estelares, y quedan expuestas cuando las partes exteriores de la estrella son expulsadas al espacio interestelar para formar una Nebulosa Planetaria.
El Núcleo se contrae bajo su propia gravedad hasta que, habiendo alcanzado un tamaño similar al de la Tierra , se ha vuelto tan densa (5 x 108 Kg/m3) que sólo exista su propio colapso por la presión de degeneración de los electrones (como sabéis los electrones son fermiones que estando sometidos al Principio de exclusión de Pauli, no pueden ocupar ninguno de ellos el mismo lugar de otro al tener el mismo número cuántico y, siendo así, cuando se juntan demasiado, se degeneran y comienzan una frenética carrera que, en su intensidad, puede, incluso frenar la implosión de una estrella -como es el caso de las enanas blancas).
Las enanas blancas se forman con muy altas temperaturas superficiales (por encima de los 10 000 K) debido al calor atrapados en ellas, y liberado por combustiones nucleares previas y por la intensa atracción gravitacional que sólo se ve frenada por la degeneración de los electrones que, finalmente, la estabilizan como estrella enana blanca.
Este tipo de estrellas, con el paso del tiempo, se enfrían gradualmente, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30 por ciento de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades de 10-3 – 10-4 veces la del Sol, pasan desapercibidas. La máxima máxima posible de una enana blanca es de 1,44 masas solares, el límite de Shandrasekhar. Un objeto de masa mayor se contraería aún más y se convertiría en una estrella de neutrones o, de tener muha masa, en un agujero negro
Después de eyectar las cpas exteriores que forman la Nebulosa Planetaria, se condensa más más
Las enanas blancas son estrellas calientes y pequeñas, generalmente como del tamaño de la Tierra, por lo que su luminosidad es muy baja. Se cree que las enanas blancas son los residuos presentes en el centro de las nebulosas planetarias. Dicho de otra manera, las enanas blancas son el núcleo de las estrellas de baja masa que quedan después de que la envoltura se ha convertido en una nebulosa planetaria.
El núcleo de una enana blanca consiste de material de electrones degenerados. Sin la posibilidad de tener nuevas reacciones nucleares, y probablemente después de haber perdido sus capas externas debido al viento solar y la expulsión de una nebulosa planetaria, la enana blanca se contrae debido a la fuerza de gravedad. La contracción hace que la densidad en el núcleo aumente hasta que se den las condiciones necesarias para tener un material de electrones degenerados. Este material genera presión de degeneración, el cual contrarresta la contracción gravitacional.
En azul la enana blanca Sirio B
Al ser estudiadas más a fondo las propiedades de las enanas blancas se encontró que al aumentar su masa, su disminuye. A partir de esto es que se encuentra que hay un límite superior para la masa de una enana blanca, el cual se encuentra alrededor de 1.4 masas solares (MS). Si la masa es superior a 1.4 MS la presión de degeneración del núcleo no es suficiente para detener la contracción gravitacional. Este se llama el límite de Chandrasekhar.
Debido a la existencia de este límite es que las estrellas de entre 1.4 MS y 11 MS deben perder masa para poder convertirse en enanas blancas. Ya explicamos que dos medios de pérdida de masa son los vientos estelares y la expulsión de nebulosas planetarias.
A esto puede dar lugar la unión de dos enanas blancas
Después de que una estrella se ha convertido en enana blanca, lo más probable es que su destino sea enfriarse y perder brillo. Debido a que las enanas blancas tienen una baja luminosidad, pierden energía lentamente, por lo que pueden permanecer en esta etapa en el orden de años. Una vez que se enfrían, se vuelven rocas que se quedan vagando por el Universo. Este es el triste destino de nuestro Sol.
La detección de enanas blancas es difícil, ya que son objetos con un brillo muy débil. Por otro lado, hay ciertas diferencias en las enanas blancas según su masa. Las enanas blancas menos masivas sólo alcanzan a quemar hidrógeno en helio. Es decir, el núcleo de la estrella nunca se comprime lo suficiente como para alcanzar la temperatura necesaria para quemar helio en carbono. Las enanas blancas más masivas sí llevan a cabo reacciones nucleares de elementos más pesados, es decir, en su núcleo podemos encontrar carbono y oxígeno.
Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha). Esta enana blanca tiene una temperatura en la superficie de 35.500 K.
Allá por el año 1908, siendo Chandraskhar un avanzado estudiante de física, vivía en Madrás, en la Bahía de Bengala (En cuyo Puerto trabajó Ramanujan), y, estando en la aquella ciudad el célebre científico Arnold Sommerfeld, le pidió audiciencia y se pudo entrevistar con él que, le vino a decir que la física que estudiaba estaba pasada, que ahora se estaban estudiando nuevos caminos de la física y, sobre todo, uno a cuya teoría se la llamaba mecánica cuántica que podía explicar el comportamiento de lo muy pequeño.
Chandrasekhar
Cuando se despidieron Sommerfeld dio a Chandrasekhar la prueba de imprenta de un artículo técnico que acaba de escribir. Contenía una derivación de las leyes mecano-cuánticas que gobiernan grandes conjuntos de electrones comprimidos en volúmenes pequeños, por ejemplo (para este caso) en una estrella enana blanca.
A partir de aquel artículo, Chandrasekhar buscó más información y estudió estos fenómenos estelares que desembocaban en enanas blancas. Este tipo de estrella habían sido descubiertas por las astrónomos a través de sus telescopios. Lo misterioso de las enanas blancas era su densidad extraordinariamente alta de la materia en su interior, una densidad muchísimo mayor que la de cualquier otra cosa que los seres humanos hubieran encontrado antes. Chandrasekhar no tenía forma de saberlo cuando abrió un libro de Eddintong que versaba sobre la materia, pero la lucha por desvelar el misterio de e4sta alta densidad le obligaría fibnalmente a él y a Eddintong a afrontar la posibilidad de que las estrellas masivas, cuando mueren, pudieran contraerse para formar agujeros negros.
De las enanas blancas más conocidas y cercanas, tenemos a Sirio B. Sirio A y Sirio B son la sexta y la séptima estrellas en orden de proxomidad a la Tierra, a 8,6 años-luz de distancia, y Sirio es la estrella más brillante en nuestro cielo. Sirio B orbita en torno a Sirio de la misma manera que lo hace la Tierra alrededor del Sol, pero Sirio B tarde 50 años en completar una órbita a Serio y la Tierra 1 año al Sol.
Eddintong describía como habían estimado los astrónomos, a partir de observaciones con telescopios, la masa y la circunferencia de Sirio B. La masa era de 0,85 veces la masa del Sol; la circunferencia media 118.000 km. Esto significaba que la densidad media de Sirio B era de 61.000 gramos por centímetro cúbico, es decirm 61.000 veces mayor que la densidad del agua. “Este argumento se conoce ya desde hace algunos añis -nos decía Eddintong-” Sin embargo, la mayoría de los astrónomos de aquel tiempo, no se tomaban en serio tal densidad, Sin embargo, si hubieran conocido la verdad que ahora conocemos: (Una masa de 1,05 soles, una circunferencia de 31.000 km y una densidad de 4 millones de gramos por cm3), la habrían considerado aún más absurda.
Arriba la famosa Nebulosa planetaria ojo de Gato que, en su centro luce una estrella enana blanca de energéticas radiaciones en el ultravioleta y que, a medida que se vaya enfriando, serán de rayos C y radio hasta que, dentro de unos 100 millones de años vieja y fría, será más rojiza y se habrá convertido en eun cadáver estelar.
Aquellos trabajos de Chandraskar y Eddintong desembocaron en un profundo conocimiento de las estrellas de neutrones y, se llego a saber el por qué conseguían el equilibrio que las estabilizaba a través de la salvación que, finalmente encontraban, en la mecánica cuántica, cuando los electrones degenerados por causa del Principio de exclusión de Pauli, no dejaban que la fuerza gravitatoria continuara el proceso de contracción de la estrella y así, quedaba estabilizada como estrella de neutrones.
De la misma manera, se repetía el proceso para estrellas más masivas que, no pudiendo ser frenadas en su implosión gravitatoria por la degeneración de los electrones, sí que podÍa frenarse la Gravedad, mediante la degeneración de los Neutrones. Cuando esa estrella más masiva se contraía más y más, el Principio de exclusión de pauli que impide que los fermiones estén juntos, comenzaba su trabajo e impedía que los neutrones (que son fermiones), se juntaran más, entonces, como antes los electrones, se degeneraban y comenzaban a moverse con velocidades relativistas y, tan hecho, impedía, por sí mismo que la Gravedad consiguiera comprimir más la masa de la estrella que, de esta manera, quedaba convertida, finalmente, en una Estrella de Neutrones.
Al formarse la estrella de neutrones la estrella se colapsa hasta formar una esfera perfecta con un radio de tan solo unos 10 kilómetros. En este punto la presión neutrónica de Fermi resultante compensa la fuerza gravitatoria y estabiliza la estrella de neutrones. Apenas una cucharilla del material que conforma una estrella de neutrones tendría una masa superior a 5 x 1012 kilogramos.
Los modelos de estrellas de neutrones que se han logrado construir utilizando las leyes físicas presentan varias capas. Las estrella de neutrones presentarían una corteza de hierro muy liso de, aproximadamente, un metro de espesor. Debajo de esta corteza, prácticamente todo el material está compuesto por núcleos y partículas atómicas fuertemente comprimidos formando un “cristal” sólido de materia nucleica.
Son objetos extremadamente pequeños y densos que surgen cuando estrellas masivas sufren una explosión supernova del tipo II, el núcleo se colapsa bajo su propia gravedad y puede llegar hasta una densidad de 1017 Kg/m3. Los electrones y los protones que están muy juntos se fusionan y forman neutrones. El resultado final consiste solo en neutrones, cuyo material, conforma la estrella del mismo nombre. Con una masa poco mayor que la del Sol, tendría un diámetro de sólo 30 Km, y una densidad mucho mayor que la que habría en un terón de azúcar con una masa igual a la de toda la humkanidad. Cuanto mayor es la masa de una estrella de neutrones, menor será su diámetro. Está compuesta por un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeado por más o menos una corteza sólida de 1 km de grosos compuesta de elementos como el hierro. Los púlsares son estrellas de neutrones magnetizadas en rotación. Las binarias de rayos X masivas también se piensan que contienen estrellas de neutrones.
Todos aquellos argumentos sobre el comportamiento de las enanas blancas vinieron a desembocar en la paradoja de Edddintong que, en realidad, fue resulta por el Joven Chandrasekhar en el año 1925 al leer un artículo de R.H. Fowler “Sobre la materia densa”. La solución residía en el fallo de las leyes de la física que utilizaba Eddintong. Dcihas leyes debían ser reemplazadas por la nueva mecánica cuántica, que describía la presión en el interior de Sirio B y otras enanas blancas como debida no al calor sino a un fenómeno mecano-cuántico nuevo: los movimientos degenerados de los electrones, también llamado degeneración electrónica.
La degeneración electrónica es algo muy parecido a la claustrof0via humana. Cuando la materia es comprimida hasta hasta una densidad 10.000 veces mayor que la de una roca, la nube de electrones en torno a cada uno de sus núcleos atómicos se hace 10.000 veces más condensada, Así, cada electrón queda confinado en una “celda” con un volumen 10.000 veces menor que el volumen en el que previamente podía moverse. Con tan poco espacio disponible, el electrón, como nos pasaría a cualquiera de nosotros, se siente incómodo, siente claustrofobia y comienza a agitarse de manera incontrolada, golpeando con enorme fuerza las paredes de las celdas adyacentes.
El Sol será una gigante roja y enana blanca después dejando una nebulosa planetaria y la Tierra Yerma
Nada puede detenerlo, el electrón está obligado a ello por las leyes de la mecánica cuántica. Esto está producido por el Principio de exclusión de Pauli que impide que dos fermiones estén juntos, así que, esta fuerza es, la que finalmente posibilita que la estrella que se comprime más y más, quede finalmente construida y estable como una enana blanca.
emilio silvera
Ene
13
La supergravedad
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (3)
La fuerza gravitatoria es, sin duda, una fuerza muy importante que actúa sobre las partículas elementales que tienen masa. Es cierto que, la fuerza, cuando se trata de que interaccione con minusculos objetos, es casi despreciable, eso ocurre con los átomos y moléculas y todas las demás partículas de las que aquí hemos hablado en infinidad de ocasiones. Pero cuando miramos a partículas considerablemente menores que el tamaño del núcleo atómico, se alcanza un punto de retorno. La gravedad actúa sobre la masa de las partículas, mientras que todas las demás fuerzas actúan sobre algo que llamamos “carga”. La diferencia es que la carga depende muy ligeramente del grado de amplificación de nuestro microscopio, mientras que la masa está conectada con la energía.
y si tratamos de localizar una partícula en un volumen menor entonces, de acuerdo con las leyes de la mecánica cuántica, ahó habrá más movimientos y la energía de movimiento (llamada “energía cinética”) aumenta. Por esta razón, a distancias menores corresponden energías mayores y, por lo tanto, también masas mayores. Cuando las distancias son tan pequeñas que los movimientos se hacen relativistas (esto es, alcanzan velocidades cercanas a la velcoidad de la luz) los efectos de la fuerza gravitatoria comienzan a aumentar gradualmente en comparación con las demás fuerzas; sin embargo, aún son increíblemente débiles y tienen un largo camino por recorrer hasta poder competir en intensidad.
Claro que, todo esto, incluso para los grandes expertos, es altamente confuso y, nos viene a decir que, el límite nuestras teorías está definido por las unidades de Planck. Más allá de ellas (El Tiempo de Planck, la masa y la Energía de Planck, etc.) nada sabemos.
Los conocimientos sobre el Universo aumentan
Encuentran el agujero negro más cercano a la Tierra
En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas super-masivas se pueden producir, en cualquier momento, sucesos de energías increíbles que, son captados por nuestros ingenios detectando magnitudes de energías nunca antes conocidas. Estrellas nuevas y masivas que irradian en el ultravioleta generando fuerzas que inundan regiones inmensas y bañando la materia interestelar de manera tal que, en esas estrellas nuevas han comenzado aquellos mecanismos de creación de la materia que se transforma continuamente mediante su desarrollo evolutivo que, la llevará, finalmente, al surgimiento de la vida.
Pero sigamos , según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros. Esta masa la conocemos con el nombre de masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que la es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único número de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!). Esto significa que tratamos de localizar una partícula con la precisión de una longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, así, sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.
Si la Gravedad llega a ser una interacción fuerte, será un verdadero desastre. No se puede evitar lamentando que hará de la gravedad algo tan difícil como “la cromo-dinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos de estudiar más intensa es esta fuerza, hasta el extremo de que incluso los intentos más burdos para describirla darán lugar a resultados completamente absurdos.
Todo lo que conocemos acerca de la Naturaleza será inválido en la escala de Planck, y nosotros que pensábamos que conocíamos todo con gran precisión. La Teoría de Einstein acerca de la Naturaleza de la fuerza gravitatoria funciona espléndidamente. parte de un principio muy fundamental, uno que prácticamente tiene que ser correcto: la gravedad es una propiedad del espacio y el tiempo mismos. El Espacio y el Tiempo están “curvados” quiero decir exactamente lo que sucede a un trozo de papel cuando se humedece: de deforma y no hay manera de alisarlo ni pasándole la plancha caliente. La guerza Gravitatoria es la responsable de semejante rugosidad en el espacio tiempo.
El Tiempo transcurre más despacio en las cercanías de un agujero negro
Sabemos que el espacio se curva en presencia e grandes masas que también, llegan a distorsionar el Tiempo. Otra cuestión sería saber el por qué de tan extraño suceso que hemos adjudicado al funcionamiento de la Interacción gravitatoria de la que, sabiendo mucho, no hemos podido llegar a saberlo todo.
Cuando más cerca estamos de la Longitud de Planck más fuerte resulta la necesidad de aplicar las leyes de la me´canica cuántica a esas arrugas del espacio-tiempo. Mientras las arrugas sean pequeñas, sabemos hacerlo y así obtenemos una teoría conocida como “gravedad cuántica”. Esta teoría predice la existencia de los ya tantas veces mencionados Gravitones. esas “partículas” elementales con espín 2 y masa cero.
Explicándolo brevemente, la Longitud de Planck hace referencia a que cualquier partícula que mida menos de esa longitud, dejará de tener una geometría clásica, es decir, un objeto sin las dimensiones que conocemos, las cuales son largo, ancho, y profundidad. Cuando hablamos de espuma cuántica, nos referimos a que el tejido del universo, se halla sobre estas longitudes. La longitud de Planck es de…
¿será así la espuma cuántica
Cuanto más cerca estamos de la Longitud de Planck, más rugoso se vuelve el espacio-tiempo, simplemente porque las arrugas más pequeñas se hacen más pronunciadas que las grandes. Las incertidumbres usuales, típicas de la mecánica cuántica, harán que las arrugas sean más borrosas. Y si tratamos de ir más allá de la Longitud de Planck, todo funciona mal. La curvatura y la incertidumbre llegan a ser tan grandes que la noción de “distancia entre dos puntos” deja de tener sentido, porque no hay reglas para medir que se ajusten a este espacio. El espacio y el tiemopo mismos se vuelven magnitudes inútiles. La definición matemática de lo que “significa” el espacio y el tiempo depende de la definición de “distancia entre dos puntos”. Esto probablemente implica que antes de encontrar una descripción útil del mundo sub-Plankiano, tendremos que cambiar completamente lo que sabemos de física.
La última parada antes de que tal cosa suceda se llama “super-gravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿qué es la super-gravedad? Meternos en esos berenjenales matemáticos sería algo engorroso y (para muchos) aburrido.
¿Qué pasa entonces con la super-gravedad? Aquí, al principio las cosas parecen mucho mejores e incluso al nivel de tres lazos nada parece ir mal. Los entusiastas afirman que esto no podía ser una coincidencia y que la teoría final de todas las fuerzas podría estar a la vista. ¿Una teoría de todas las fuerzas? ¿Podemos imaginar una cosa así? ¿Sería posible una formulación exacta de las leyes de la física? ¿Se podría encontrar eso alguna vez?. Claro que, todo esto nos lleva a “universos” insospechados, lugares cada vez más pequeños en un reino donde el espacio y el tiempo dejan de existir, ya no podemos hablar de puntos y, nos vemos obligados a tener que hablar de cuerdas vibrantes.
¿Quién sabe? Como decía en alguna ocasión, también en esta ocasión, los teóricos podrían haber dado en el blanco y, con su intuición “infinita”, haber descubierto que toda la materia del universo está formada por cuerdas vibrantes y armónicas que se conjugan de diferentes maneras, produciendo con sus pulsos, nuevas partículas.
¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!
emilio silvera
Ene
12
¿El misterio más profundo? ¡La Mente!
por Emilio Silvera ~ Clasificado en Cerebro y Mente ~ Comments (3)
¡La Hiperdimensionalidad!
Estados de Conciencia ¿Dónde están sus niveles=
La Naturaleza de la Mente es el misterio más profundo de la Humanidad, se trata, además, de un enigma de proporciones gigantescas, que se remonta a milenios atrás, y que se extiende desde el centro del cerebro hasta los confines del Universo.
Tenemos conciencia de dónde estamos
Es un secreto que provocó vértigo y depresión en alguna de las mentes más preclaras de algunos de los filósofos y pensadores más grandes que en el mundo han sido. Sin embargo, este amplio vacío de ignorancia está, ahora, atravesado, por varios rayos de conocimiento que nos ayudará a comprender cómo se regula la energía mental. Hay personajes, como nuestro contertulio, de Argentina, Antonio Salguero que, con más o menos acierto, se preocupan por este misterio, y, al menos, exponen ideas nuevas y originales que… ¡Quién sabe…!
Vaya por delante que, son muchas las preguntas que no sabemos contestar: ¿Es la materia inerte? ¿Es posible que pueda evolucionar hacia la consciencia y los pensamientos? ¿Es como dice Salguero, una dualidad mental en la que están presentes dimensiones extra, y, la mecánica cuántica, o, partículas subatómicas, intervienen en un proceso desconocido, pero que está con nosotros.
El cerebro tiene una actividad permanente y tratamos de comprender sus mecanismos
Aunque puede que no sepamos que es la Mente, sabemos algunas cosas sobre el cerebro. Está formado por una red, una increíble maraña de “cables” eléctricos que serpentean a través de una gran cantidad de “sustancias” neuroquímicas. Existen quizás cien mil millones de neuronas en el cerebro humano, tantas como estrellas hay en la Vía Láctea, y, cada una de ellas recibe datos eléctricos de alrededor de mil neuronas, además de estar en contacto y en comunicación con unas cien mil neuronas más.
El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.
Es bien conocido y ha sido mil veces comprobado, el hecho de que, mientras dormimos, nuestras mentes siguen trabajando y las ideas bullen dentro del cerebro, e, incluso, no pocas veces, nos despiertan sobresaltados si el tema tratado es inquietante. Los pensamientos que el cerebro genera, durante todo el tiempo de nuestras vidas, están surgiendo como el producto inmaterial de una Mente prodigiosa que nos acompaña desde que nacemos y que toma consciencia en los primeros meses de nuestra niñez, a partir de esos momentos, va tomando forma y crece de manera exponencial: A más conocimientos más grande será la Mente para comprender el mundo que la rodea y el Universo al que pertenece.
Ramón y Cajal plasmó de manera exacta en estos dibujos lo que llevamos en el cerebro
La unidad a partir de la cual se configuran todas las fabulosas actividades del cerebro es una célula del mismo, la neurona. Las neuronas son unas células fantásticamente ramificadas y extendidas, pero diminutas.
La hipótesis neuronal de las células anatómicamente separadas se estableció cuando Santiago Ramón y Cajal (1852-1934) modificó el método cromo-argéntico de Golgi y lo utilizó en una serie magistral de experimentos. Aunque Golgi y Ramón y Cajal compartieron el premio Nobel en 1906, siguieron siendo rivales encarnizados hasta el final.
Si todas las neuronas del cerebro, los cien mil millones, están anatómicamente separadas unas de otras, ¿Cómo podían los mensajes eléctricos que pasaban a través de cada una de ellas saltar de una neurona a la siguiente?. La respuesta es que no saltan sino que hacen otra cosa, y esto tiene una importancia fundamental en relación con el modo en que funciona el cerebro.
El descubrimiento fue realizado por Otto Loewi, cuando trabajaba en Australia durante la década de 1920. Loewei estaba trabajando con la transmisión neuronal del cerebro al corazón a través del nervio vago. Aisló el corazón de una rana con el nervio vago intacto, y demostró que la estimulación del nervio hacía que los latidos del corazón fueran más lentos. Pero él quería saber cómo se transmitía al corazón el mensaje eléctrico que transporta el nervio vago. ¿Se trataba de una conexión eléctrica o química, o de alguna otra cosa diferente? La clave estaba en una solución química que bañaba el corazón después de la estimulación del nervio vago que como consecuencia segregaba esta sustancia química que hacía de intermediaria en la transmisión del mensaje desde una célula a la siguiente.
El cerebro es una máquina más potente de lo que podemos comprender
Por lo tanto, los impulsos eléctricos nerviosos pasan a los extremos de las neuronas, donde la llegada del impulso hace que la terminación nerviosa libere una sustancia química (un neurotransmisor), que cruza el estrecho espacio que hay entre dos neuronas (la sinapsis), y entonces la sustancia química actúa sobre la segunda neurona para modificar su capacidad de emitir , a su vez, impulsos nerviosos. Cada neurona liberará sólo un tipo de neurotransmisor (habitualmente), pero lo liberará hacia muchas neuronas diferentes.
Las neuronas que tan importante función desarrollan en la dinámica general del cerebro
Existen dos neurotransmisores principales en el cerebro: el glutamato y el GABA. El glutamato actúa sobre la segunda neurona para aumentar la probabilidad de que emita un impulso nervioso (por lo que es un transmisor excitante), mientras que el GABA actúa para disminuir la probabilidad de que lo emita (luego es un transmisor inhibidor).
Constantemente recorre nuestro cuerpo miles de moléculas implicadas en la transmisión de información que conectan unos sistemas con otros: hormonal, neuronal o inmune. Estas moléculas, hormonas, citoquinas, factores varios o neurotransmisores hacen que nuestro organismo sea una entidad particular y personal. Uno de esos neurotransmisores, el principal excitatorio cerebral, es el glutamato…
El glutamato es un aminoácido producido por el cerebro a partir del momento en el que se cierra la barrera hematoencefálica y deja de poder captarse del torrente sanguíneo. Este compuesto se sintetiza en unas células denominadas astrocitos, que forman parte del conjunto glial que, a su vez, participan en el mantenimiento del conjunto del sistema nervioso –central y periférico-.
La energía está en nosotros y transmite datos y hace conexiones múltiples para conseguir el todo que somos
No obstante, una neurona no recibe una sola entrada desde una sinapsis neuronal individual, sino que recibe muchos miles. Decenas de miles de sinapsis desde miles de neuronas diferentes cubren la superficie ramificada de una sola neurona. Omito explicar aquí (podría ser tedioso para del lector) todos los mecanismos de los transmisores entre sinapsis y las ramas de salida (los axones) por las que se desplazan las señales eléctricas como ondas.
Una neurona, o una red de neuronas, puede así recoger información de muchas fuentes, incluídos los sentidos, la memoria y las emociones, para controlar la señal que ella misma va a emitir y que finalmente puede ocasionar una contracción o una relajación muscular.
Aditivos artificiales evitémoslos
El glutamato es el principal neurotransmisor del cerebro, pero paradójicamente es también una toxina poderosa para las células del sistema nervioso. Cuando los niveles de glutamato son bajos, actúan como una señal entre neuronas, pero si son excesivos las sobreexcitan y las matan.. Esta acción “excito-tóxica” del glutamato parece ser la causa de muerte neuronal durante las apoplejías y en las enfermedades neurodegenerativas, tales como la de Alzheimer, la de Parkison, y la esclerosis múltiples.
El glutamato es uno de los aditivos más frecuentes en los alimentos, presentándose en forma de sal como glutamato monosódico (GMS). Actúa reforzando el sabor y es omnipresente en la cocina china: la salsa de soja es especialmente rica en glutamato. Afortunadamente, el glutamato que está en el intestino y en la sangre apenas penetra en el cerebro, porque la barrera “sangre-cerebro” impide que glutamato cruce desde la sangre al cerebro.
La comida China no es siempre recomendable
No obstante, en medicina existe un trastorno conocido como “síndrome del restaurante chino” -donde nunca he comido, ni comeré- que puede aparecer por comer demasiados alimentos saturados de glutamato y que consiste en unos niveles tan elevados en la sangre que no puede impedir que entre en el cerebro y cause la muerte neuronal. Claro que, otras fuentes nos dicen que el GABA, actúa como calmante y de alguna manera, contrarresta el mal. De hecho, los barbitúricos, el principio activo de las píldoras para dormir que toman algunos enfermos depresivos y las benzodiacepinas, como el Librium o el Valium, que reduce la ansiedad, actúan, por ejemplo, reforzando la acción del GABA en su receptor neuronal.
Gira y gira… pero, ¿hacia qué lado la ves girar?
Sí, la mente es poderosa y, si miras finamente la imagen de arriba, veras como la chica que gira hacia la derecha, de pronto, y sin saber cómo, la ves girando hacia la izquierda. ¿Es la mente la que produce el cambio?
emilio silvera
Ene
12
¿Puede existir la vida basada en el silicio?
por Emilio Silvera ~ Clasificado en General ~ Comments (7)
Todos sabemos que la vida está esencialmente basada en el carbono y quizá alguna vez te hayas sentido tentado a preguntarte: pero ¿por qué la vida no pudo evolucionar de un elemento diferente? Se dice que el carbono es la base de la vida porque se encuentra presente en las estructuras biológicas de todos los seres vivos. Vemos carbono en moléculas como la glucosa, que es aquella que encontramos en alimentos como frutas y verduras, y al incorporarlas nos dan energía, por ejemplo; En las proteínas que nos permiten transportar el oxígeno que inspiramos.
Una vida de carbono
El carbono es el elemento químico que sustenta toda la vida en la Tierra. En la naturaleza existen 92 elementos químicos en estado natural. Es decir, 92 tipos distintos de átomos. Son las pequeñas piezas que se combinan entre sí para formar toda la materia conocida. Los átomos se combinan para formar moléculas, y las moléculas se unen para formar la materia. Todo lo que vemos a nuestro alrededor se forma con sólo esos 92 elementos. Incluidos nosotros mismos.
El 95% del cuerpo de los seres vivos se compone por sólo cuatro elementos: carbono, oxígeno, hidrógeno y nitrógeno. De ellos, el carbono es el más importante. Sin él, no podría formarse el ADN. Las proteínas, glúcidos, vitaminas y grasas también son compuestos de carbono.
¿Qué elemento de la tabla periódica sería un buen candidato para reemplazar al carbono?, pues recordemos cómo se organizan los elementos en la tabla. Los elementos en un mismo grupo tienden a mostrar propiedades similares. El carbono pertenece al grupo IV, y el elemento más cercano a este en ese grupo es el silicio. Ambos tienen 4 electrones de valencia, lo que hace posible que ambos puedan formar hasta cuatro enlaces covalentes.
El primero en proponer en serio la vida basada en el silicio como una alternativa a la vida basada en el carbono en la comunidad científica fue el astrofísico alemán Julius Schneider. El usó esta teoría en 1891 para predecir la vida en los planetas rocosos de nuestro sistema solar. Luego en 1893, James Emerson Reynolds propuso que la vida basada en el silicio podría existir, pero a temperaturas extremadamente altas, porque los compuestos de silicio conocidos en ese momento eran estables, incluso a altas temperaturas.
Treinta años después, J.B.S Haldane sugirió que la vida basada en el silicio podría existir en las rocas fundidas en el interior de la Tierra. El manto de la Tierra contiene suficiente silicio y, como se dijo antes, los compuestos de silicio son muy estables a altas temperaturas. En años recientes el Dr. Thomas Gold, un renombrado astrofísico austríaco (ahora fallecido), escribió un libro sobre la posibilidad de la vida basada en el silicio en el interior de la Tierra: The Deep Hot Biosphere, un libro ciertamente muy controversial y que valdría la pena leer.
Con el conocimiento de que el carbono y el silicio tiene propiedades químicas similares y que el silicio es el segundo elemento más abundante en la corteza terrestre (mucho más abundante que el carbono), hay que preguntarse no sólo si la vida de silicio puede existir sino también por qué no existe ya, al menos en nuestras condiciones ambientales. La respuesta según Nicholas Linn se encuentra principalmente en el tamaño y la diferencia entre la energía de los orbitales de los átomos de carbono y los átomos de silicio.
¿Podría la vida de Silicio estar entre nosotros y no la hemos sabido percibir?
Un átomo de silicio tiene 8 electrones más que un átomo de carbono y el tamaño de enlace homogéneo es de 235 pm a comparación de los 77 pm del carbono. La nube electrónica más grande del silicio hace que los electrones de valencia tengan mayor energía, así los enlaces del silicio generalmente son más débiles que los del carbono. Esta diferencia por sí sola es suficiente para explicar por qué el carbono crea vida y el silicio crea rocas, al menos en las condiciones estándares de la Tierra.
Usando el software de modelamiento molecular y química computacional PC Spartan Pro v5.1, Nicholas Linn de la Universidad de Carolina del Norte realizó experimentos para determinar que o bien las diferencias entre el carbono y el silicio se pueden superar o que las propiedades químicas del silicio simplemente no son aptas para la formación de cualquier vida.
Molécula de Carbono
Una comparación de carbono y el silicio se elaboró y las propiedades de cada uno fueron probados. Ejecutando un alto nivel de cálculo (densidad funcional), la aplicación Spartan optimizó las geometrías de las moléculas, calculados energías totales y rastreando las superficies de densidad de los enlaces en isovalores estándar (.08 electrones / ų ). A través de estos métodos, la estabilidad y las interacciones del silicio y el carbono en las moléculas de tipo orgánico puede ser investigado empíricamente y la viabilidad de la vida a base de silicio puede ser determinada.
Los Resultados de Linn
Linn realizó diferentes experimentos comparando las moléculas de carbono reales con las moléculas de sílicio teóricas de la misma estructura. El primero tenía que ver con el modelamiento de la molécula de etino más conocida como acetileno, el alquino más sencillo.
C2H2 es una molécula de carbono simple con un enlace triple, la molécula de carbono más simple conteniendo un triple enlace. La versión de silicio produjo una molécula con mas de una sexta parte de la energía de la molécula de carbono y con una densidad electrónica baja en la región del enlace triple, sugiriendo un compuesto altamente inestable y débilmente enlazado. Un ensayo similar realizó con el eteno o etileno.
El compuesto de silicio tenía una muy alta energía y una baja densidad electrónica en el área de enlace, lo que sugiere que los enlaces dobles de silicio son muy débiles y que probablemente el silicio no forma dobles enlaces.
El tercer experimento consistía en modelar un anillo de benceno (C6H6), con átomos de silicio. Los anillos de benceno se producen en casi todas las grandes moléculas orgánicas no polimerizadas como los grupos fenilo y alteran a nivel crítico las propiedades moleculares.
Nuevamente, los resultados indican que el silicio no puede formar estructuras como lo hace el carbono. El ángulo del enlace Si-Si-H es demasiado agudo y es muy probable que no sea estable. Debido a que el átomo de silicio es mayor que el de carbono, no puede duplicar la unión π del carbono, que es necesaria para estabilizar los electrones deslocalizados en C6H6 y mantener la estructura de resonancia del anillo. Los resultados sugieren que el silicio no puede formar un anillo estable de seis miembros.
Otro experimento realizado ponía a prueba la creación de productos del proceso de respiración. En la respiración normal, la reacción
C6H12O6 + 6O2 —> 6CO2 + 6H2O + energía
ocurre. El CO2 producido es una sustancia de desecho gaseosa que es fácil de excretar. Si esta reacción ocurriera con el silicio, se produciiía SiO2 . Cuando fue modelado, el SiO2 formaba un sólido en vez de un gas, cosa que no es fácil de remover de un organismo.
Como el silicio tiene una alta afinidad por el oxígeno, estos sólidos se producirían con frecuencia, creando a una criatura bastante frágil. Ambos detalles complicarían severamente la fisiología de un organismo.
Otros anillos podrían sustituir al benceno, tales como las estructuras heterogéneas modelados a continuación, aunque tampoco se forman bien. Estas moléculas tenían altas energías y baja densidad en torno a los átomos de silicio, sin embargo las densidades individuales de los enlaces eran lo suficientemente altas como para que una molécula puede ser sostenida en condiciones apropiadas (anillo de densidad de C4O de comparación).
La incapacidad del silicio para formar cadenas mas largas se evidencia abajo.
La densidad del enlace en las cadenas de silicio son muy bajas para sustentar el polímero. Sin este tipo de cadenas, algunas moléculas indispensables como la glucosa y varios ácidos grasos no existirían para que un organismo las utilice.
Pero algo de evidencia empírica existente sustenta la posibilidad de que exista la vida basada en el silicio:
El silicio puede formar cadenas estables con un híbrido de silicio y carbono.
El siliciotambién interacciona con ácido fluorhídrico (un ácido débil), una sustancia que podría ser usada como solvente para separar moléculas específicas; el agua actúa de manera similar en la vida de plantas y animales ordenando varias vitaminas basadas en su solubilidad.
Estructuras porosas llamadas “zeolitas”, que son combinaciones de metaloides tipo minerales, como el silicio, pueden actuar como membranas semipermeables (como paredes de las células), lo que permite que ciertas moléculas pasen a través mientras que otras no. La zeolita en la parte inferior izquierda está transportando una molécula de xileno.
Después de revisar las propiedades del sílicio, es muy poco probable que exista vida basada en el silicio, al menos en las condiciones terrestres en las que hay vida como la conocemos. Simplemente el silicio no puede formar tanta diversidad de moléculas como lo hace el carbono bajo las condiciones naturales actuales, sin embargo el silicio tiene algunas propiedades que el carbono no posee. Tal vez en algún recóndito lugar del Universo es probable que pueda haberse desarrollado alguna forma de vida basada en el silicio. Como propuso el Dr. Thomas Gold, tal vez sea bajo condiciones de temperatura extrema, o quién sabe. Espero que un día seamos lo suficientemente afortunados como para encontrarla, si no es aquí en la Tierra, en otro lugar.
Por mi parte me alegro de estar compuesto de carbono, un organismo compuesto de silicio se vería masomenos así según Dickinson y Schaller:
La vida basada en el silicio podría ser como cristales animados, como en este dibujo de Dickinson y Schaller. Los elementos estructurales, como fibra de vidrio, conectadas por elementos tensores para crear estructuras flexibles y delicadas. |
Sinceramente creo que se vería bien como mascota.
Bueno, hasta aquí el post, algo largo, pero creo que interesante.
A darle Biotecnología!
Hasta la próxima!
Referencias bibliográficas
- Linn, N. 2001. Can Silicon based life exist?. Summer Ventures in Science and Mathematics. UNC, Charlotte.
- ATS. 2004. Silicon-based life. Is silicon-based life similar to terrestrial life possible?
- Silicon-based life. En: http://www.daviddarling.info/encyclopedia/S/siliconlife.html (14/02/13)