Mar
31
Las interacciones fundamentales
por Emilio Silvera ~ Clasificado en Interacciones fundamentales ~ Comments (3)
- Gravedad
- Electromagnetismo
- Interacción débil (fuerza nuclear débil)
- Interacción fuerte (fuerza nuclear fuerte)
Como pueden haber deducido, me estoy refiriendo a cualquiera de los cuatro tipos diferentes de interacciones que pueden ocurrir entre los cuerpos. Estas interacciones pueden tener lugar incluso cuando los cuerpos no están en contacto físico y juntas pueden explicar todas las fuerzas que se observan en el universo.
Viene de lejos el deseo de muchos físicos que han tratado de unificar en una teoría o modelo a las cuatro fuerzas, que pudieran expresarse mediante un conjunto de ecuaciones. Einstein se pasó los últimos años de su vida intentándolo, pero igual que otros antes y después de él, aún no se ha conseguido dicha teoría unificadora de los cuatro interacciones fundamentales del universo. Se han hecho progresos en la unificación de interacciones electromagnéticas y débiles.
Figuras
Estos diagramas son una concepción artística de los procesos físicos. No son exactos y no están hechos a escala. Las áreas sombreadas con verde representan la nube de gluones o bien el campo del gluón, las líneas rojas son las trayectorias de los quarks.
En el texto del recuadro dice: Un neutrón decae en un protón, un electrón y un antineutrino, a través de un bosón virtual (mediador). Este es el decaimiento beta del neutrón.
En el texto del recuadro dice: Una colisión electrón – positrón (antielectrón) a alta energía puede aniquilarlos para producir mesones B0 y Bbarra0 a través de un bosón Z virtual o de un fotón virtual.
El texto del recuadro dice: Dos protones que colisionan a alta energía pueden producir varios hadrones más partículas de masa muy grande tales como los bosones Z. Este tipo de suceso es raro pero puede darnos claves cruciales sobre cómo es la estructura de la materia.
Aunque no pueda dar esa sensación, todo está relacionado con las interacciones fundamentales de la materia en el entorno del espacio-tiempo en el que se mueven y conforman objetos de las más variadas estructuras que en el Universo podemos contemplar, desde una hormiga a una estrella, un mundo o una galaxia. Las fuerzas fundamentales de la Naturaleza siempre están presentes y de alguna manera, afecta a todo y a todos.
Cuando hablamos de la relatividad general, todos pensamos en la fuerza gravitatoria que es unas 1040 veces más débil que la fuerza electromagnética. Es la más débil de todas las fuerzas y sólo actúa entre los cuerpos que tienen masa. Es siempre atractiva y pierde intensidad a medida que las distancias entre los cuerpos se agrandan. Como ya se ha dicho, su cuanto de gravitación, el gravitón, es también un concepto útil en algunos contextos. En la escala atómica, esta fuerza es despreciablemente débil, pero a escala cosmológica, donde las masas son enormes, es inmensamente importante para mantener a los componentes del universo juntos. De hecho, sin esta fuerza no existiría el Sistema Solar ni las galaxias, y seguramente, nosotros tampoco estaríamos aquí. Es la fuerza que tira de nuestros pies y los mantiene firmemente asentados a la superficie del planeta. Aunque la teoría clásica de la gravedad fue la que nos dejó Isaac Newton, la teoría macroscópica bien definida y sin fisuras de la gravitación universal es la Teoría de la Relatividad General de Einstein, mucho más completa y profunda. En realidad nos trajo una nueva Cosmología.
Gravedad cuántica y la teoría cuántica de campos
Nadie ha podido lograr, hasta el momento, formular una teoría coherente de la Gravedad Cuántica que unifique las dos teorías. Claro que, la cosa no será nada fácil, ya que, mientras que aquella nos habla del macrocosmos, ésta otra nos lleva al microcosmos, son dos fuerzas antagónicas que nos empeñamos en casar.
La Teoría de Planck no se lleva bien con la Teoría de Einstein, y, según parece, la teoría cuántica de la gravedad subyace en la Teoría de Cuerdas. Cuando los físicos trabajan con las ecuaciones de campo de ésta teoría, sin que nadie los llame y como por arte de magua, allí aparecen las ecuaciones de Einstein de la Relatividad General. ¿Qué significado tendrá eso?
Seguimos empeñados en buscar esa teoría que una lo muy grande con lo muy pequeño y la Gravedad, hasta el momento no da el sí. De hecho, en el Modelo Estándar de la Física de Partículas está ausente.
Por el momento, no hay una teoría cuántica de la interacción gravitatoria satisfactoria. Es posible que la teoría de supercuerdas pueda dar una teoría cuántica de la gravitación consistente, además de unificar la gravedad con los demás interacciones fundamentales sin que surjan los dichosos e indeseados infinitos.
Las partículas colisionan ente sí y se producen cambios y transiciones de fase
Algunos han puesto en duda la realidad del Modelo Estándar que, como se ha dicho aquí en otros trabajos, está construido con el contenido de una veintena de parámetros aleatorios (uno de ellos era el Bosón de Higgs) que no son nada satisfactorios para dar una conformidad a todo su entramado que, aunque hasta el momento ha sido una eficaz herramienta de la física, también es posible que sea la única herramienta que hemos sabido construir pero que no es ¡la herramienta!
Es posible que sola sea cuestión de tiempo y de más investigación y experimento. En el sentido de la insatisfacción reinante entre algunos sectores, se encuentran los físicos del experimento de alta energía BaBar, en el SLAC, un acelerador lineal situado en Stanford (California). Según ellos, la desintegración de un tipo de partículas llamado «B to D-star-tau-nu» es mucho más frecuente de lo predicho por el modelo estándar. Puede que no sea importante y puede que, hasta la existencia del Bosón de Higgs esté en peligro a pesar de que en el LHC digan que se ha encontrado.
Esquema del decaimiento Beta y una sencilla explicación de la interacción débil
La fuerza débil recibe su nombre porque a la escala de sus interacciones es la más débil dentro del modelo estándar. Pero ojo, esto no incluye la gravedad, puesto que la gravedad no pertenece al modelo estándar por el momento. La interacción débil ocurre a una escala de metros, es decir, la centésima parte del diámetro de un protón y en una escala de tiempos muy variada, desde segundos hasta unos 5 minutos. Para hacernos una idea, esta diferencia de órdenes de magnitud es la misma que hay entre 1 segundo y 30 millones de años.
La interacción débil, que es unas 1010 veces menor que la interacción electromagnética, ocurre entre leptones y en la desintegración de los hadrones. Es responsable de la desintegración beta de las partículas y núcleos. En el modelo actual, la interacción débil se entiende como una fuerza mediada por el intercambio de partículas virtuales, llamadas bosones vectoriales intermediarios, que para esta fuerza son las partículas W+, W– y Z0. Las interacciones débiles son descritas por la teoría electro-débil, que las unifica con las interacciones electromagnéticas.
Propiedades de los Bosones mediadores intermediarios de la fuerza débil
La teoría electro-débil es una teoría gauge de éxito que fue propuesta en 1.967 por Steven Weinberg y Abdus Salam, conocida como modelo WS. También Sheldon Glashow, propuso otra similar.
La interacción electromagnética es la responsable de las fuerzas que controlan la estructura atómica, reacciones químicas y todos los fenómenos electromagnéticos. Puede explicar las fuerzas entre las partículas cargadas, pero al contrario que las interacciones gravitacionales, pueden ser tanto atractivas como repulsivas. Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se puede interpretar tanto como un modelo clásico de fuerzas (ley de Coulomb) como por el intercambio de unos fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tiene una teoría clásica bien definida dadas por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas se describe con la electrodinámica cuántica, que es una forma sencilla de teoría gauge.
El electromagnetismo está presente por todo el Universo
La interacción fuerte es unas 102 veces mayor que la interacción electromagnética y, como ya se dijo antes, aparece sólo entre los hadrones y es la responsable de las fuerzas entre nucleones que confiere a los núcleos de los átomos su gran estabilidad. Actúa a muy corta distancia dentro del núcleo (10-15 metros) y se puede interpretar como una interacción mediada por el intercambio de mesones virtuales llamados Gluones. Está descrita por una teoría gauge llamada Cromo-dinámica cuántica.
La interacción fuerte, también conocida como interacción nuclear fuerte, es la interacción que permite unirse a los quarks para formar hadrones. A pesar de su fuerte intensidad, su efecto sólo se aprecia a distancias muy cortas del orden del radio atómico. Según el Modelo estándar, la partícula mediadora de esta fuerza es el Gluón. La teoría que describe a esta interacción es la cromo-dinámica cuántica (QCD) y fue propuesta por David Politzer, Frank Wilczek y David Gross en la década de 1980 y por lo que recibieron el Nobel 30 años más tarde cuando el experimento conformó su teoría.
La interacción fuerte, como se ha explicado muchas veces, es la más fuerte de todas las fuerzas fundamentales de la Naturaleza, es la responsable de mantener unidos los protones y neutrones en el núcleo del átomo. Como los protones y neutrones están compuestos de Quarks, éstos dentro de dichos bariones, están sometidos o confinados en aquel recinto, y, no se pueden separar por impedirlo los gluones que ejercen la fuerza fuerte, es decir, esta fuerza, al contrario que las demás, cuando más se alejan los quarks los unos de los otros más fuerte es. Aumenta con la distancia.
En la incipiente teoría del campo electromagnético sugerida por Faraday, desaparecía la distinción esencial entre fuerza y materia, introduciendo la hipótesis de que las fuerzas constituyen la única sustancia física.
Las características de las fuerzas eran:
-
Cada punto de fuerza actúa directamente sólo sobre los puntos vecinos.
-
La propagación de cualquier cambio de la intensidad de la fuerza requiere un tiempo finito.
-
Todas las fuerzas son básicamente de la misma clase; no hay en el fondo fuerzas eléctricas, magnéticas ni gravitatorias, sino sólo variaciones (probablemente geométricas) de un sólo tipo de fuerza subyacente.
Lo importante al considerar la influencia de la metafísica de Faraday en sus investigaciones, es su suposición de que la teoría de campos ofrece una explicación última a todos los fenómenos. Los cuerpos sólidos, los campos eléctricos y la masa de los objetos son, de alguna forma, sólo apariencias. La realidad subyacente es el campo, y el problema de Faraday era encontrar un lazo de unión entre las apariencias y la supuesta realidad subyacente
Estaría bueno que al final del camino se descubriera que todas son una sola fuerza
El concepto de campo de Faraday ha dado mucho juego en Física, es un concepto ideal para explicar cierttos fenómenos que se han podido observar en las investigaciones de las fuerzas fundamentales y otros. El campo no se ve, sin embargo, está ahí, rodea los cuerpos como, por ejemplo, un electrón o el planeta Tierra que emite su campo electromagnético a su alrededor y que tan útil nos resulta para evitar problemas.
Me he referido a una teoría gauge que son teorías cuánticas de campo creadas para explicar las interacciones fundamentales. Una teoría gauge requiere un grupo de simetría para los campos y las potenciales (el grupo gauge). En el caso de la electrodinámica, el grupo es abeliano, mientras que las teorías gauge para las interacciones fuertes y débiles utilizan grupos no abelianos. Las teorías gauge no abelianas son conocidas como teorías de Yang–Mills. Esta diferencia explica por qué la electrodinámica cuántica es una teoría mucho más simple que la cromo-dinámica cuántica, que describe las interacciones fuertes, y la teoría electro-débil que unifica la fuerza débil con la electromagnética. En el caso de la gravedad cuántica, el grupo gauge es mucho más complicado que los anteriores necesarios para la fuerza fuerte y electro-débil.
En las teorías gauge, las interacciones entre partículas se pueden explicar por el intercambio de partículas (bosones vectoriales intermediarios o bosones gante), como los gluones, fotones y los W y Z.
El físico Enrico Fermi, refiriéndose al gran número de partículas existentes, dijo: “Si tuviera que saber el nombre de todas las partículas, me habría hecho botánico.” Por todo lo antes expuesto, es preciso conocer los grupos o familias más importantes de partículas, lógicamente “el espacio tiempo” nos limita y, me remitiré a las más comunes, importantes y conocidas como:
– Protón, que es una partícula elemental estable que tiene una carga positiva igual en magnitud a la del electrón y posee una masa de 1’672614×10-27 Kg, que es 1836,12 veces la del electrón. El protón aparece en los núcleos atómicos, por eso es un nucleón que está formado por partículas más simples, los Quarks. Es decir, un protón está formado por dos quarks up y un quark down.
– Neutrón, que es un hadrón como el protón pero con carga neutra y también permanece en el núcleo, pero que se desintegra en un protón, un electrón y un antineutrino con una vida media de 12 minutos fuera del núcleo. Su masa es ligeramente mayor que la del protón (símbolo mn), siendo de 1’6749286(10)×10-27 kg. Los neutrones aparecen en todos los núcleos atómicos excepto en el del hidrógeno que está formado por un solo protón. Su existencia fue descubierta y anunciada por primera vez en 1.932 por James Chadwick (1891-1974. El protón está formado por tres quarks, dos quarks down y un quark up. Fijáos en la diferencia entre las dos partículas: la aparentemente minúscula diferencia hace que las dos partículas “hermanas” se comporten de formas muy distintas: la carga del protón es +2/3 +2/3 -1/3 = +1. Pero como el neutrón tiene up/down/down su carga es +2/3 -1/3 -1/3 = 0. ¡No tiene carga! No porque no haya nada con carga en él, sino porque las cargas que hay en su interior se anulan.
Andamos a la caza de los neutrinos
Los neutrinos, se cree que no tienen masa o, muy poca, y, su localización es difícil. Se han imaginado grandes recipientes llenos de agua pesada que, enterrados a mucha profundidad en las entrañas de la Tierra, en Minas abandonadas, captan los neutrinos provenientes del Sol y otros objetos celestes, explosiones supernovas, etc.
– Neutrino, que es un leptón que existe en tres formas exactas pero (se cree que) con distintas masas. Tenemos el ve (neutrino electrónico) que acompaña al electrón, vμ (neutrino muónico) que acompaña al muón, y vt (neutrino tau) que acompaña a la partícula tau, la más pesada de las tres. Cada forma de neutrino tiene su propia antipartícula.
El neutrino fue postulado en 1.931 para explicar la “energía perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953 y definitivamente en 1.956. Los neutrinos no tienen carga y se piensa que tienen masa en reposo nula y viajan a la velocidad de la luz, como el fotón. Hay teorías de gran unificación que predicen neutrinos con masa no nula, pero no hay evidencia concluyente.
- El punto de partida de la denominada Mecánica Ondulatoria, desarrollada por Schrödinger, es la onda de materia de de Broglie y la consideración del átomo como un sistema de vibraciones continuas.
Se ha conseguido fotografíar a un electrón. Poder filmar y fotografiar un electrón no es fácil por dos razones: primero, gira alrededor del núcleo atómico cada 0,000000000000000140 segundos , y, segundo, porque para fotografiar un electrón es necesario bombardearlo con partículas de luz (y cualquier que haya intentado sacarle una foto a un electrón sabe que hay que hacerlo sin flash).
– Electrón, que es una partícula elemental clasificada como leptón, con una carga de 9’109 3897 (54)×10-31Kg y una carga negativa de 1´602 177 33 (49) x 10-19 culombios. Los electrones están presentes en todos los átomos en agrupamientos llamados capas alrededor están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo; cuando son arrancados del átomo se llaman electrones libres. Su antipartícula es el positrón, predicha por Paul Dirac.
El núcleo del átomo constituye el 99% de la masa
En los átomos existen el mismo número de protones que el de electrones, y, las cargas positivas de los protones son iguales que las negativas de los electrones, y, de esa manera, se consigue la estabilidad del átomo al equilibrarse las dos fuerzas contrapuestas. El electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1940). El problema de la estructura (si la hay) del electrón no está resuelto. Si el electrón se considera como una carga puntual, su auto-energía es infinita y surgen dificultades en la ecuación conocida como de Lorente–Dirac.
“La llamada ecuación de Dirac es la versión relativista de la ecuación de ondas de la mecánica cuántica y fue formulada por Paul Dirac en 1928, quien juntó dos de las ideas más importantes de la ciencia: la mecánica cuántica (la ecuación de Schrödinger) que describe el comportamiento de objetos muy pequeños; y la teoría especial de Einstein de la relatividad, que describe el comportamiento de objetos en movimiento rápido. Por lo tanto, la ecuación de Dirac describe cómo las partículas como electrones se comportan cuando viajan a casi la velocidad de la luz, también describe de forma natural el spin y predice la existencia de antimateria.”
Radios del modelo Bhor
Es posible dar al electrón un tamaño no nulo con un radio ro, llamado radio clásico del electrón, dado por e2/(mc2) = 2’82×10-13cm, donde e y m son la carga y la masa, respectivamente, del electrón y c es la velocidad de la luz. Este modelo también tiene problemas, como la necesidad de postular las tensiones de Poincaré.
Muchas son las partículas de las que aquí podríamos hablar, sin embargo, me he limitado a las que componen la materia, es decir Quarks y Leptones que conforman Protones y Neutrones, los nucleaones del átomo que son rodeados por los electrones. El Modelo Estándar es la herramienta con la ue los físicos trabajan (de momento) hasta que surjan nuevas y más avanzadas teorías que permitan un modelo más eficaz y realista. De Wikipedia he cogido el cuadro comparativo de las fuerzas.
Tabla comparativa
Interacción7 | Teoría descriptiva | Mediadores | Fuerza relativa | Comportamiento con la distancia (r) | Alcance (m) |
---|---|---|---|---|---|
Fuerte | Cromodinámica cuántica (QCD) | gluones | 1038 | 10-15 | |
Electromagnética | Electrodinámica cuántica (QED) | fotones | 1036 | ||
Débil | Teoría electrodébil | bosones W y Z | 1025 | 10-18 | |
Gravitatoria | Gravedad cuántica | gravitones (hipotéticos) | 1 |
La teoría cuántica de campos es el marco general dentro del cual se inscriben la cromodinámica cuántica, la teoría electrodébil y la electrodinámica cuántica. Por otra parte la “gravedad cuántica” actualmente no consiste en un marco general único sino un conjunto de propuestas que tratan de unificar la teoría cuántica de campos y la relatividad general.
Van surgiendo por ahí nuevas conjeturas como, por ejemplo, las de Maldacena.
“Las consecuencias de esta conjetura son muy importantes, pues existe la posibilidad de que el resto de interacciones (electromagnéticas y nucleares) sean tan sólo una ilusión, el reflejo sobre el cristal de un escaparate del contenido de la tienda. Así, podría ser que el electromagnetismo tan sólo sea la imagen proyectada de la interacción de algunas cuerdas en un supuesto interior del espacio-tiempo. De la misma manera, la necesidad de compactificar las dimensiones adicionales desaparece en cierto modo si consideramos que, quizás, nuestro mundo sea solamente la frontera; siendo el interior del espacio-tiempo inaccesible.”
Que gran sorpresa sería si al final del camino se descubriera que en realidad solo existe una sola fuerza: La Gravedad, de la que se derivan las otras tres que hemos podido conocer en sus ámbitos particulares y que, ¿por qué no? podrían surgir a partir de aquella primera y única fuerza existente en los principios o comienzos del Universo: ¡La Gravedad! Que no acabamos de comprender.
emilio silvera
el 2 de noviembre del 2013 a las 8:42
Amigo Julian:
Siento mucho que tu comentario se perdiera en el éter luminífero de Aristóteles, o, también pudiera ser que, los duendecillos del hiperespacio de internet se lo llevaran. De vez en cuando ocurren cosas extrañas que no podemos explicar.
Un saludo.
el 2 de noviembre del 2013 a las 17:35
Amigo Emilio.
Perdone mi falta de practica en esto de la infolmatica, queria mandar unos escritos, pero se vé que no puedo, mañana le pediré ayuda a mi hermano Luis, me gustaria explicarle paso apaso para su criterio, para mí de mucha balided.
Un saludo de su amigo (Juli), para los amigos.
el 3 de noviembre del 2013 a las 5:39
¡Hola, Julian!
El caso es que somos muchos los que no estamos al tanto de la informática que es cosa de los jóvenes y profesionales, toda vez que, aunque lleva ya muchos años en el candelero, lo cierto es que su verdadera extensiòn a todos los ámbitos ha sido de hace una década hacia nuestros días. Todavía recuerdo aquel primer ordenador que me compré, un IBM que me costó 12.000 euros -era de los primeros que salieron al mercado- y, finalmente, lo tuve que vender porque aquello no era lo mío y continué durante un tiempo, haciendo los escritos con aquellas máquinas de escribir que, aunque ya más modernas, nunca podrían llegar a lo que es un ordenador.
Al final del camino, todo lo nuevo y mejor se impone y no tuve más remedio que aprender un poco de estos endiablados artilugios que, en verdad, son una maravilla para aquellos que saben sacarle todo el rendimiento que pueden dar.
Si tu hermano Luis te echa una mano y puedes cumplir con lo que deseas, estaré encantado de dar mi opinión sobre lo que tengas que decir.
Un cordial saludo.