Mar
11
¿Qué es la Vida? ¡Ya me gustaría a mí saberlo!
por Emilio Silvera ~ Clasificado en La complejidad de la Vida ~ Comments (1)
Nanofotónica: luz + nanopartículas = Futuro tecnológico
La Vida, esa gran desconocida y, la paradoja de que, cualquiera de nosotros somos una muestra.
Lo cierto es que no podemos contestar a esa pregunta con propiedad. Sabemos lo que son los seres vivos e incluso, es posible que existan algunas especies que estando vivas ni lo podamos saber ni las podemos detectar. Sabemos de los materiales que son necesarios para que la vida esté presente en nuestro Universo y, en éstas mismas páginas hemos expuestos amplios trabajos sobre el tema de la vida, su posible origen, de cómo se “fabrican” los materiales necesarios para su existencia en las estrellas… Se podría decir, sin andar muy lejos de la verdad, que la vida, es la materia evolucionada hasta el nivel de la consciencia (si nos referimos ala vida en su más alta expresión).
Los meteoritos, como se ha podido demostrar en muchos estudios realizados sobre una diversidad de ellos, son portadores de aminoácidos necesarios para la vida. Recordemos aquí, por ejemplo:
Más antiguo que la Tierra
“El meteorito Murchison recibe su nombre de la localidad de Murchison, Victoria en Australia. Los Fragmentos del meteorito que cayeron sobre el pueblo el 28 de septiembre de 1969. El meteorito, una condrita carbonácea tipo II (CM2) contenía aminoácidos comunes como la glicina, alanina y ácido glutámico, pero también algunos poco comunes como la isovalina y pseudoleucina. El informe incial estableció que los aminoácidos eran racémicos, apoyando la teoría de que su fuente era extraterrestre. Se aisló también una mezcla compleja de alcanos que era similar a la encontrada en el experimento de Miller y Urey. La Serina y la treonina se consideran habitualmente como contaminantes terrestres y estos compuestos se encontraban notablemente ausentes en las muestras.”
Fragmento del meteorito Murchison y partículas individuales aisladas (se muestran en el tubo de ensayo).
“Más investigaciones encontraron que algunos aminoácidos estaban presentes en exceso enantiomérico. La homoquiralidad se considera una propiedad biológica única. Se ponían en entredicho algunas afirmaciones sobre la base de que los aminoácidos que entran en las proteínas no eran racémicos en el meteorito, mientras que el resto si lo eran. En 1997 las investigaciones mostraron que los enantiómeros individuales de Murchison estaban enriquecidos con el isótopo 15N del nitrógeno en comparación con sus correspondientes terrestres, lo que confirmaba una fuente extraterrestre del exceso del enantiómero L-enantiomer en el sistema solar. A la lista de materiales orgánicos identificados en el material del meteorito se le añadió el poliol en 2001″
Par de granos del metorito Murchison.
“Abundando en la idea de que la homoquiralidad (la existencia de solo aminoácidos de la serie L y azúcares de la serie D) fue provocada por la deposición de moléculas quirales de los meteoritos, la investigación demostró en 2005 que los aminoácidos como la L–prolina es capaz de catalizar la formación de azúcares quirales. La catálisis es no lineal, lo que significa que la prolina en un exceso enantiomérico del 20% produce una alosa con un exceso enantiomérico del 55% comenzando con el benziloxiacetaldeido en una reacción secuencial de tipo aldólica en un disolvente como el DMF. En otras palabras una pequeña cantidad de aminoácidos quirales podrían explicar la evolución de los azúcares de serie D.”
Muchos de los meteoritos hallados en la Tierra y venidos del espacio exterior traen muestras de la materia necesaria para la vida que se ha formado en el espacio exterior en Nebulosas y otros lugares llenos de energía y radiación.
Imagen: Fotografía de uno de los fragmentos del meteorito. Las muestras fueron recuperadas para su análisis en un estudio financiado por la NASA | H. Siegfried Via ABC. La teoría de la Panspermia, que defiende la aparición de la Vida en la Tierra como consecuencia de la llegada a nuestro planeta procedente del espacio exterior de las primeras formas de vida, tiene otra prueba a su . No es la primera vez que se descubren aminoácidos en un meteorito. Anteriormente, científicos del centro Goddard de Astrobiología los habían encontrado en las muestras del cometa Wild-2 y en varios meteoritos ricos en carbono.
Aunque parezca amorfo y feo en algunas de sus formas y estados, el Carbono puede llegar a conformar las cosas más bellas, tales como… ¡La Vida!
Cada cosa viviente está hecha (entre otros elementos) de carbono. Está en nuestra atmósfera, en la corteza de la tierra y en los cuerpos de las plantas y animales. respiramos, exhalamos dióxido de carbono. Cuando las plantas respiran, toman el dióxido de carbono. Sin carbono, la vida no podría darse. El carbono es el bloque básico todas las formas de vida en la Tierra. Afortunadamente, es también uno de los elementos más abundantes en nuestro planeta. Al igual que toda la materia, el carbono ni se crea ni se destruye, por lo que todos los organismos vivos deben encontrar una manera de volver a utilizar continuamente el suministro finito que se encuentra disponible.
El carbono es el elemento químico que sustenta toda la vida en la Tierra. En la naturaleza existen 92 elementos químicos en natural. Es decir, 92 tipos distintos de átomos. Son las pequeñas piezas que se combinan entre sí para formar toda la materia conocida. Los átomos se combinan para formar moléculas, y las moléculas se unen para formar la materia. Todo lo que vemos a nuestro alrededor se forma con sólo esos 92 elementos. Incluidos nosotros mismos.
El 95% del cuerpo de los seres vivos se compone por sólo cuatro elementos: carbono, oxígeno, hidrógeno y nitrógeno. De ellos, el carbono es el más importante. Sin él, no podría formarse el ADN. Las proteínas, glúcidos, vitaminas y grasas son compuestos de carbono.
El carbono es un elemento muy abundante en el Cosmos. Los átomos de carbono se unen entre sí formando largas cadenas que sirven de base para construir otras moléculas más complejas. facilidad para enlazar moléculas es lo que permitió la evolución hasta los organismos vivos. En la tierra primitiva se dio una excelente combinación de grandes cantidades de carbono y agua, que fueron determinantes para el origen de la vida. El carbono es la base química de la vida en presencia de agua que, en el Universo, también está por todas partes.
También aquí, donde se forman los pensamientos y los sentimientos, el Carbono está presente. Los hidratos de carbono son una parte necesaria para cualquier persona sana , ya que aportan el combustible que el cuerpo necesita para su actividad física. El cerebro necesita los lípidos y otros jugos que lo mantienen “engrasado” y a punto.
El Carbono es un elemento esencial para muchas cosas, y, podríamos destacar, sin temor a equivocarnos que, la vida, es la más importante de entre todas ellas. En cualquier parte que queramos mirar nos dirán, del Carbono, cosas como éstas:
“El carbono es un elemento notable por varias razones. Sus formas alotrópicas incluyen, sorprendentemente, una de las sustancias más blandas (el grafito) y la más dura (el diamante) y, el punto de vista económico, uno de los materiales más baratos (carbón) y uno de los más caros (diamante). Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Así, con el oxígeno el dióxido de carbono, vital para el crecimiento de las plantas (ver ciclo del carbono); con el hidrógeno numerosos compuestos denominados genéricamente hidrocarburos, esenciales para la industria y el transporte en la forma de combustibles fósiles; y combinado con oxígeno e hidrógeno forma gran variedad de compuestos como, por ejemplo, los ácidos grasos, esenciales para la vida, y los ésteres que dan sabor a las frutas; además es vector, a través del ciclo carbono-nitrógeno, de parte de la energía producida por el Sol.”
Hacia 1860, varios químicos sugirieron que la asimetría óptica de los compuestos orgánicos debía surgir a partir de la estructura tetraédrica del átomo de Carbono. A finales del siglo XIX, la teoría correcta fue formulada de manera independiente, por dos químicos que, de manera simultánea, dieron con la clave al sugerir que, el átomo de Carbono de un compuesto carbonado se encuentra situado en el centro de esa estructura tetraédrica, unido mediante enlaces químicos a otros cuatro átomos, situados en uno de los vértices del tetraedro. El átomo de Carbono puede albergar 8 electrones en su corteza, tiene solamente cuatro; por tanto, por decirlo de manera sencilla, dispone de cuatro plazas vacantes que pueden ser ocupadas por electrones de las cortezas de otros cuatro átomos.
La teoría que es correcta, fue expuesta por el joven francés Joseph Achille Le Bel, y el otro, el joven neerlandés llamado Jacobus Henricus van´t Hoff, ambos razonaron que tal estructura tetraédrica será asimétrica y no superponible a su imagen especular.
Los bioquímicos, es decir, los químicos que estudian los procesos de los seres vivos, no pueden imaginar de vida alguno (excepto, tal vez, alguna forma inactiva muy elemental) que no requiera decenas de miles de clases distintas de tejidos, cada uno de ellos diseñado para llevar a cabo una labor altamente especializada. Pensemos, por ejemplo, en la complejidad de un ojo, que no es más que uno de los muchos órganos del cuerpo.
El ojo tiene que sintetizar compuestos determinados para poder constituir cada una de sus partes: el cristalino, los músculos que permiten cambiar la de éste último, los que abren y cierran las pupilas, las capas de la córnea, los líquidos que llenan las distintas variedades, la retina, el coroides, la esclerótica, el nervio óptico de los vasos sanguíneos… Cada una de ellas necesita sustancias enormemente complejas que, además, deben poseer las propiedades adecuadas para hacer exactamente lo que se supone que hacen.
Miles de millones de tales tejidos especializados son esenciales para las formas vivientes de la Tierra. Es imposible imaginar que la evolución de éstos haya podido realizarse sin la ayuda del Carbono, un elemento que sobrepasa a los demás en su capacidad de formar una variedad casi ilimitada de compuestos, uno de ellos con propiedades específicas.
Se han imaginado y recreado posibles formas de vida basadas en el Silicio en planetas de alta temperatura. ¿Quién puede decir lo que ahí fuera nos podemos encontrasr?
Tenemos que pensar que todo lo que existe, sea animado o inanimado, se trate del cerebro de un insecto, de las conexiones de nuestro cerebro o de los nanotubos de carbono, todo sin excepción, está formado por la misma cosa: Quarks y Leptones que, combinados en la debida proporción, conforman la materia presente en todo el Universo y que es poseedora de la energía que está presente por todas partes en sus distintas manifestaciones.
De todas las maneras y, aunque mirando objetivamente la realidad, seamos nosotros los que prevalecemos sobre todos los demás, no debemos presumir demasiado por ello, dado que, la diferencia entre nosotros y algunos objetos y seres de la Tierra…, no es tan grande. Seamos humildes y sencillos, reconozcamos nuestras debilidades y comprendamos que, en definitiva, sólo somos una parte más, de la Naturaleza grandiosa que define al Universo.
Distribución de los elementos; Un simple ejemplo
Organismo |
Hombre |
Alfalfa |
Bacteria |
Carbono |
19,37 % |
11,34 % |
12,14 % |
Hidrógeno |
9,31 % |
8,72 % |
9,94 % |
Nitrógeno |
5,14 % |
0,83 % |
3,04 % |
Oxígeno |
61,81 % |
77,90 % |
73,68 % |
Fósforo |
0,63 % |
0,71 % |
0,60 % |
Azufre |
0,64 % |
0,10 % |
0,32 % |
CHNOPS/ TOTAL |
97,90 % |
99,60 % |
99,72 % |
Podríamos pensar que la vida es la forma más evolucionada de la materia. Claro que, para llegar a ese nivel máximo de la vida, tendría que estar presente la consciencia.
¡El Carbono! Un elemento esencial para la vida… y mucho más.
emilio silvera
Mar
11
¿Dónde están las respuestas?
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
¡Son posibles tantas cosas!
Algunos quieren encontrar las respuestas en la religión (que si ha sido escogida voluntariamente… ¡bien está!). Pero, como todos sabemos, es cosa de fe. Creer en aquello que no podemos ver ni comprobar no es precisamente el camino de la ciencia que empieza por imaginar, después conjeturar, más tarde teorizar, se comprueba una y mil veces la teoría aceptada a medias y sólo cuando todo está amarrado y bien atado, todas esas fases pasan a la categoría de una ley o norma que se utiliza para continuar investigando en la buena dirección. Einstein solía decir: “La religión sin Ciencia es ciega.”
Otros han sido partidarios de la teoría del caos y argumentan que a medida que el nivel de complejidad de un sistema aumenta, entran en juego nuevos tipos de leyes. Entender el comportamiento de un electrón o un quark es una cosa; utilizar este conocimiento para comprender el comportamiento de un tornado es otra muy distinta. La mayoría está de acuerdo con este aspecto. Sin embargo, las opiniones divergen con respecto a si los fenómenos diversos y a veces inesperados que pueden darse en sistemas más complejos que las partículas individuales son realmente representativos del funcionamiento de los nuevos principios de la física, o si los principios implicados son algo derivado y están basados, aunque sea de un modo terriblemente complicado, en los principios físicos que gobiernan el ingente número de componentes elementales del universo.
“La teoría del todo o teoría unificada fue el sueño incumplido de Einstein. A este empeñó dedicó con pasíón los últimos 30 años de su vida. No lo logró, y hoy continúa sin descubrirse. Consiste en una teoría definitiva, una ecuación única que dé respuesta a todas las preguntas fundamentales del Universo. Claro que, Einstein no sabía que las matemáticas para plasmar esa Teoría mágica… ¡No se habían inventado en su tiempo ni tampoco en el nuestro!
La teoría del todo debe explicar todas la fuerzas de la Naturaleza, y todas las características de la energía y la materia. Debe resolver la cuestión cosmológica, es decir, dar una explicación convincente al origen del Universo. Debe unificar relatividad y cuántica, algo hasta ahora no conseguido. Y además, debe integrar otros universos en caso de que los haya. No parece tarea fácil. Ni siquiera se sabe si existe una teoría del todo en la Naturaleza. Y, en caso de que exista, si es accesible a nuestro entendimiento y a nuestras limitaciones tecnológicas para descubrirla.”
Einstein se pasó los últimos treinta años de su vida en la bíusqueda de esa teoría que nunca pudo encontrar. En los escaparates de la 5ª Avenida de Nueva York, exponían sus ecuaciones y la gente, sin entender lo que veían, se arremolinaban ante el cristal para verlas.
Casi todo el mundo está de acuerdo en que el hallazgo de la Gran Teoría Unificada (teoría del Todo), no significaría de modo alguno que la psicología, la biología, la geología, la química, y también la física, hubieran resuelto todos sus problemas.
El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que esta planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas. Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.
La búsqueda de esa teoría final que nos diga cómo es el universo, el tiempo y el espacio, la materia y los elementos que la conforman, las fuerzas fundamentales que interaccionan, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que ha realizado durante los últimos décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado.
Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.
El Universo de lo muy grande y el de lo muy pequeño… ¡Es el mismo universo! Simplemente se trata de mirar en distintos ámbitos del saber, y, la importancia de las medidas… ¡también es relativia! Porque, ¿podríamos valorar la importancia de los electrones. La existencia de los fotones, o, simplemente la masa del protón? Si alguno de esos objetos fuese distinto, el Universo también lo sería.
La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza.
Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.
Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo.
Accede al artículo original espacioprofundo.es/2013/01/11/einstein-tenia-razon-el-espacio-tiempo-es-una-estructura-suave/ © Espacio Profundo
De la estructura del espacio-tiempo, como de la Teoría de cuerdas…. ¡Nos queda mucho por desvelar!
Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impedía ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar.
La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble belleza y de logros y avances tecnológicos que ahora ni podemos imaginar.
Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.
Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.
El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino revelador de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.
El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch que, según parece, nunca será un hecho y, el universo, tendrá una “muerte” térmica, es decir, cuando el alejamiento de las galaxias lo haga más grande, más oscuro y más frío. En el cero absoluto de los -273 ºC, ni los átomos se moverán.
Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.
Pero… ¿somos en verdad tan insignificantes
emilio silvera
Mar
10
Espacio-tiempo curvo y los secretos del Universo
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
La densidad de energía-momento en la teoría de la relatividad se representa por cuadri-tensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. Esa aparente sencilla ecuación de Einstein nos habla de la geometría del espacio y, si tenemos que hacer justicia al gran pensador, habrá que reconocer que con su teoría de la Relatividad General nació la moderna cosmología. Sus ecuaciones no sólo nos habló de agujeros negros, también nos dice cómo funciona la Naturaleza, como es el Universo, las implicaciones que surgen de la presencia de materia en el espacio…
Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distorsiona el espacio-tiempo. Estamos en un Universo dinámico en el que nada está quieto, todo se mueve, todo es energía. Las cosas se transforman y todo cambia. Lo que ayer fue un objeto brillante y luminoso, mañana pudiera ser un objeto oscuro y denso con una fuerza de atracción irresistible.
“El espacio-tiempo de Minkowski es una variedad lorentziana de curvatura nula e isomorfa a donde el tensor métrico puede llegar a escribirse en un sistema de coordenadas cartesianas como:
Valor de ħ (h-barra) | Unidades |
---|---|
1,054 571 817 × 10-34 | J⋅s |
6,582 119 569 × 10-16 |
Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…
Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.
Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fin, podremos tener una teoría cuántica de la gravedad.
Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.
Esta pretende ser la imagen de un extraño objeto masivo, un quásar que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).
Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.
Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.
Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.
Supernova 1987 A
El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.
Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espacio-tiempo y dibujar la geometría del universo.
Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.
Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo.
Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos no han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.
Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercer aspecto en la distorsión espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrededor del horizonte del agujero.
El objeto que traspasa el Horizonte de sucesos se encuentra en el punto de no retorno
Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.
Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividad general deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.
Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.
Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta la extenuación:
“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado” Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.“
El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.
Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debilidad resulta engañosa porque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.
¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recién llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!
emilio silvera
Mar
9
Somos fruto de la evolución del Universo
por Emilio Silvera ~ Clasificado en Evolución ~ Comments (4)
La Naturaleza es sabia. De otra manera no se podría comprender cómo ha podido poner dentro de nosotros todos esos “ingredientes” que nos hace ser como somos y sentir como sentimos. ¿Cómo explicar el Amor?
Una Galaxia es simplemente una parte pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, todo forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en el comportamiento de las otras. La Luna y la Tierra, nosotros con el planeta, el planeta y el resto del Sistema solar, las galaxias del Grupo Local… ¡Todo incide en todo! De alguna manera.
Sí, en nuestro universo cuando algo cambia, muchas otras cosas serán distintas. Un ejemplo simple sería imaginar que la masa del protón o la carga del electrón variara aunque solo fuese una diezmillonésima. En ese caso, los átomos no se podrían formar y, la vida no existiría en nuestro Universo. Precisamente por eso, ambas, la masa del protón y la carga del electrón… ¡Son constantes universales que no varían con el paso del tiempo!
La conciencia se ha ido desarrollando poco a poco
Pocas dudas pueden caber a estas alturas del hecho de que poder estar hablando de estas cuestiones, es un milagro en sí mismo. Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.
La conciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.
Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que, de momento, los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.
Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas. Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que ahora presentimos.
El carácter especial de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que, desde este punto de vista, puede considerarse un ente digno del estudio científico perfectamente legítimo.
“Para que su información sea relevante las neuronas deben conectarse entre sí formando circuitos que conforman el sistema nervioso. Se calcula que un cerebro adulto tiene unos 86.000 millones de neuronas, cada una procesa su propia información que luego envía a otras de las que también recibe noticias. Cada neurona se conecta hasta con otras cincuenta mil.”
Se genera dentro de nosotros pero… ¡Permanece fuera! Es inmaterial
La conciencia plantea un problema especial que no se encuentra en otros dominios de la ciencia. En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes. Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica. Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo. Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.)
Conexiones sin fin
En el caso de la conciencia, sin embargo, nos encontramos con una simetría. Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca. No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada. Lo que realmente queremos hacer es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro interior: una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes. Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Thomas Nagel, saber qué se siente al ser un murciélago. Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que nos hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales. En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía.
Ninguna descripción, por prolija que sea, logrará nunca explicar cabalmente la experiencia subjetiva. Muchos filósofos han utilizado el ejemplo del color para explicar este punto. Ninguna explicación científica de los mecanismos neuronales de la discriminación del color, aunque sea enteramente satisfactorio, bastaría para comprender cómo se siente el proceso de percepción de un color. Ninguna descripción, ninguna teoría, científica o de otro tipo, bastará nunca para que una persona daltónica consiga experimentar un color.
En un experimento mental filosófico, Mary, una neurocientífica del futuro daltónica, lo sabe todo acerca del sistema visual y el cerebro, y en particular, la fisiología de la discriminación del color. Sin embargo, cuando por fin logra recuperar la visión del color, todo aquel conocimiento se revela totalmente insuficiente comparado con la auténtica experiencia del color, comparado con la sensación de percibir el color. John Locke vio claramente este problema hace mucho tiempo.
Pensemos por un momento que tenemos un amigo ciego al que contamos lo que estamos viendo un día soleado del mes de abril: El cielo despejado, limpio y celeste, el Sol allí arriba esplendoroso y cegador que nos envía su luz y su calor, los árboles y los arbustos llenos de flores de mil colores que son asediados por las abejas, el aroma y el rumor del río, cuyas aguas cantarinas no cesan de correr transparentes, los pajarillos de distintos plumajes que lanzan alegres trinos en sus vuelos por el ramaje que se mece movido por…
… una brisa suave, todo esto lo contamos a nuestro amigo ciego que, si de pronto pudiera ver, comprobaría que la experiencia directa de sus sentidos ante tales maravillas, nada tiene que ver con la pobreza de aquello que le contamos, por muy hermosas palabras que para hacer la descripción empleáramos.
La mente humana es tan compleja que, no todos ante la misma cosa, vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De entre diez personas solo coinciden tres, los otro siete divergen en la apreciación de lo que el dibujo o la figura les sugiere.
Lo cierto es que aquí, el libre albedrio es limitado, y, dependiendo de nuestras circunstancias personales, podremos escoger o no el camino a seguir y otras decisiones que siempre estarán supeditas a… ¡Tántas cosas!
Esto nos viene a demostrar la individualidad de pensamiento, el libre albedrío para decidir. Sin embargo, la misma prueba, realizada en grupos de conocimientos científicos similares y específicos: Físicos, matemáticos, químicos, etc., hace que el número de coincidencias sea más elevada, más personas ven la misma respuesta al problema planteado. Esto nos sugiere que, la mente está en un estado virgen que cuenta con todos los elementos necesarios para dar respuestas pero que necesita experiencias y aprendizaje para desarrollarse.
Para algunos, la conciencia es acomodaticia, otros no podemos esquivarla
¿Debemos concluir entonces que una explicación científica satisfactoria de la conciencia queda para siempre fuera de nuestro alcance?
¿O es de alguna manera posible, romper esa barrera, tanto teórica como experimental, para resolver las paradojas de la conciencia?
La respuesta a estas y otras preguntas, en mi opinión, radica en reconocer nuestras limitaciones actuales en este campo del conocimiento complejo de la mente, y, como en la Física cuántica, existe un principio de incertidumbre que, al menos de momento (y creo que en muchos cientos de años), nos impide saberlo todo sobre los mecanismos de la conciencia y, aunque podremos ir contestando a preguntas parciales, alcanzar la plenitud del conocimiento total de la mente no será nada sencillo, entre otras razones está el serio inconveniente que suponemos nosotros mismos, ya que, con nuestro que hacer podemos, en cualquier momento, provocar la propia destrucción.
Dentro de nuestros cerebros están todos los objetos del Universo y, también, todas las respuestas a las preguntas que planteamos y no han tenido respuestas. Sin embargo, es sólo cosa de tiempo, a medida que la evolución avance, las respuestas llegaran con el conocimiento de cómo funciona la Naturaleza, la madre de todo lo que pasa a nuestro alrededor y también, de lo que, de momento, no podemos ver.
Una cosa si está clara: ninguna explicación científica de la mente podrá nunca sustituir al fenómeno real de lo que la propia mente pueda sentir. ¿Cómo se podría comparar la descripción de un gran amor con sentirlo, vivirlo física y sensorialmente hablando?
Hay cosas que no pueden ser sustituidas, por mucho que los analistas y especialistas de publicidad y marketing se empeñen, lo auténtico siempre será único. Si acaso, el que más se puede aproximar, a esa verdad, es el poeta.
emilio silvera
Mar
8
¿El Modelo Estándar? ¡La perfección imperfecta!
por Emilio Silvera ~ Clasificado en Física ~ Comments (3)
Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas
Demos una vuelta por el Modelo Estándar.
Con el título que arriba podemos leer de “La perfección imperfecta”, me quiero referir al Modelo estándar de la física de partículas y de las interacciones fundamentales y, algunos, han llegado a creer que sólo faltan algunos detalles técnicos y, con ellos, la física teórica está acabada.
Tenemos un modelo que engloba todo lo que deseamos saber acerca de nuestro mundo físico. ¿Qué más podemos desear? Los pobres ilusos no caen en la cuenta de que el tal Modelo, al que no podemos negarle su valía como una herramienta muy valiosa para la física, no deja de estar incompleto y, además, ha sido construido con algunos parámetros aleatorios (unos veinte) que no tienen justificación. Uno de ellos era el Bosón de Higgs y, según nos han contado los del LHC, ha sido hallado. Sin embargo, esperamos que nos den muchas explicaciones que no han estado presente en todas las algaradas y fanfarrias que dicho “hallazgo” ha producido, incluidos los premios Principe de Asturias y el Nobel. ¡Veremos en que queda todo esto al final!
Bueno, lo que hasta el momento hemos logrado no está mal del todo pero, no llega, ni con mucho, a la perfección que la Naturaleza refleja y que, nosotros perseguimos sin llegar a poder agarrar sus múltiples entrecijos y parámetros que conforman ese todo en el que, sin ninguna clase de excusas, todo debe encajar y, de momento, no es así. Muchos son los flecos sueltos, muchas las incognitas, múltiples los matices que no sabemos perfilar.
Es cierto que, el Modelo estándar, en algunos momento, nos produce y nos da la sensación de que puede ser perfecto. Sin embargo, esa ilusoria perfección, no es permanente y en algunas casos efímera. En primer lugar, podríamos empezar a quejarnos de las casi veinte constantes que no se pueden calcular. Pero si esta fuese la única queja, habría poco que hacer. Desde luego, se han sugerido numerosas ideas para explicar el origen de estos números y se han propuesto varias teorías para “predecir” sus valores. El problema con todas estas teorías es que los argumentos que dan nunca llegan a ser convincentes.
La cuarta generación de partículas del Modelo Estándar
¿Por qué se iba a preocupar la Naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el proncipio de la relatividad, pero nos resistimos a abandonar todos los demás principios que ya conocemos; ¡esos, después de todo, han sido enormemente útiles en el descubrimiento del Modelo estándar! una herramienta que ha posibilitado a todos los físicos del mundo para poder construir sus trabajos en ese fascinante mundo de la mecánica cuántica, donde partículas infinitesimales interactúan con las fuerzas y podemos ver, como se comporta la materia en determinadas circunstancias. El mejor lugar para buscar nuevos principios es precisamente donde se encuentran los puntos débiles de la presente teoría.
“Colisión del Bosón de Higgs desintegrándose en fermiones”. Primeras evidencias de un nuevo modo de desintegración del bosón de Higgs. Las primeras evidencias de la desintegración del recién descubierto bosón de Higgs en dos partículas denominadas tau, pertenecientes a la familia de partículas que compone la materia que vemos en el Universo. Hasta ahora los experimentos del LHC habían detectado la partícula de Higgs mediante su desintegración en otro tipo de partículas denominadas bosones, portadoras de las fuerzas que actúan en la Naturaleza, mientras las evidencias de desintegraciones en fermiones no eran concluyentes. Esta es la primera evidencia clara de este nuevo modo de desintegración del bosón de Higgs.”
La regla universal en la física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez menores, más pequeñas en el espacio y en el tiempo. Supongamos por un momento que tenemos a nuestra disposición un Acelerador de Partículas 10.000 veces más potente que el LHC, donde las partículas pueden adquirir esas tantas veces más energías de las alcanzadas actualmente. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas partículas que ahora no conocemos, que serían mucho más pequeñas que las que ahora podemos contemplar. En este punto se me ocurre la pregunta: ¿Seguiría siendo correcto el Modelo estándar? 0, por el contrario, a medida que nos alejemos en las profundidades de lo muy pequeño, también sus normas podrían variar al mismo tiempo que varían las dimensiones de los productos hallados. Recordad que, el mundo no funciona de la misma manera en nuestro ámbirto macroscópico que ante ese otro “universo” cuántico de lo infinitesimal.
¿Podéis imaginar conseguir colisiones a 70.000 TeV? ¿Qué podríamos ver? Y, entonces, seguramente, podríamos oír en los medios la algarada de las protestas de algunos grupos: “Ese monstruo creado por el hombre puede abrir en el espacio tiempo agujeros de gusano que se tragará el mundo y nos llevará hacia otros universos” Comentarios así estarían a la orden del día. Los hay que siempre están dispuestos a protestar por todo y, desde luego, no siempre llevan razón, toda vez que, la mayoría de las veces, ignoran de qué están hablando y juzgan si el conocimiento de causa necesario para ello. De todas las maneras, sí que debemos tener sumo cuidado con el manejo de fuerzas que… ¡no siempre entendemos! Cuando el LHC se vuelva a poner en marcha, se utilizarán energías que llegan hasta los 14 TeV, y, esas son palabras mayores.
¿Justifica el querer detectar las partículas que conforman la “materia oscura”, o, verificar si al menos, podemos vislumbrar la sombra de las “cuerdas” vibrantes de esa Teoría del Todo, el que se gasten ingentes cantidades de dinero en esos artilugios descomunales? Bueno, a pesar de todos los pesares, la respuesta es que SÍ, el rendimiento y el beneficio que hemos podido recibir de los aceleradores de partículas, justifica de manera amplia todo el esfuerzo realizado, toda vez que, no solo nos ha llevado a conocer muchos secretos que la Naturaleza celosamente guardaba, sino que, de sus actividades hemos tenido beneficios muy directos en ámbitos como la medicina, las comunicaciones y otros que la gente corriente desconocen.
Hoy, el Modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero tenemos algunas razones para sospechar que tales predicciones resultan estar muy alejadas de la realidad, o, incluso, ser completamente falsas. Cuando tenemos la posibilidad de llegar más lejos, con sorpresa podemos descubrir que aquello en lo que habíamos creído durante años, era totalmente diferente. El “mundo” cambia a medida que nos alejamos más y más de lo grande y nos sumergimos en ese otro “mundo” de lo muy pequeño, allí donde habitan los minúsculos objetos que conforman la materia desde los cimientos mismos de la creación.
Encendamos nuestro super-microscopio imaginario y enfoquémoslo directamente en el centro de un protón o de cualquier otra partícula. Veremos hordas de partículas fundamentales desnudas pululando. Vistas a través del super-microscopio, el modelo estándar que contiene veinte constantes naturales, describen las fuerzas que rigen la forma en que se mueven. Sin embargo, ahora esas fuerzas no sólo son bastante fuertes sino que también se cancelan entre ellas de una forma muy especial; están ajustadas para conspirar de tal manera que las partículas se comportan como partículas ordinarias cuando se vuelven a colocar el microscopio en la escala de ampliación ordinaria. Si en nuestras ecuaciones matemáticas cualquiera de estas constantes fueran reemplazadas por un número ligeramente diferente, la mayoría de las partículas obtendrían inmediatamente masas comparables a las gigantescas energías que son relevantes en el dominio de las muy altas energías. El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural.
¿Implica el ajuste fino un diseño con propósito? ¿Hay tantos parámetros que deben tener un ajuste fino y el grado de ajuste fino es tan alto, que no parece posible ninguna otra conclusión?
Antes decía: “El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural”. Es lo que se llama el “problema del ajuste fino”. Vistas a través del microscopio, las constantes de la Naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático, no hay nada que objetar, pero la credibilidad del Modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas o, lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas.
¿Y por qué debería ser el modelo válido hasta ahí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables, ellas podrían modificar completamente el mundo que Gulliver planeaba visitar. Si deseamos evitar la necesidad de un delicado ajuste fino de las constantes de la Naturaleza, creamos un nuevo problema:
Es cierto que nuestra imaginación es grande pero… No pocas veces ¡la realidad la supera!
No siempre tuvimos el conocimiento necesario para imaginar esa realidad de ahí fuera
Pero ¿en qué consiste el ajuste fino del universo?. El Principio Antrópico del que hablamos alguna vez
Cómo podemos modificar el modelo estándar de tal manera que el ajuste-fino no sea necesario? Está claro que las modificaciones son necesarias , lo que implica que muy probablemente hay un límite más allá del cual el modelo deja de ser válido. El Modelo estándar no será más que una aproximación matemática que hemos sido capaces de crear, tal que todos los fenómenos observados hasta el presente están de acuerdo con él, pero cada vez que ponemos en marcha un aparato más poderoso, debemos esperar que sean necesarias nuevas modificaciones para ir ajustando el modelo, a la realidad que descubrimos.
A la derecha el Fotón, Z y W± y el Gluón quedan representados el electromagnetismo y las fuerzas nucleares fuerte y débil pero… ¿Dónde queda la Gravedad. Cuando se trata de juntar con las otras fuerzas, por muy racionalmente que se haga… ¡Aquello explota! No se soportan la Cuántica con la Relatividad.
Al margen aparen (en la imagen de arriba) las partículas de la familia de los Bosones intermediarias de las fuerzas. Sin embargo, el Gravitón no aparece, la Gravedad se resiste a juntarse con las otras fuerzas en el Modelo. así que algo falla.
Se necesita una Teoría de la Gravedad Cuántica. Algunos dicen que se esconde en los agujeros negros, y, otros, postulan que subyace en la Teoría de Cuerdas, de donde (sin que nadie las llame) surgen las ecuaciones de campo de Einstein de la Relatividad General.
¿Cómo hemos podido pensar de otra manera? ¿Cómo hemos tenido la “arrogancia” de pensar que podemos tener la teoría “definitiva”? Mirando las cosas de esta manera, nuestro problema ahora puede muy bien ser el opuesto al que plantea la pregunta de dónde acaba el modelo estándar: ¿Cómo puede ser que el modelo estándar funcione tan extraordinariamente bien? y ¿por qué aún no hemos sido capaces de percibir nada parecido a otra generación de partículas y fuerzas que no encajen en el modelo estándar? La respuesta puede estar en el hecho cierto de que no disponemos de la energía necesaria para poder llegar más lejos de lo que hasta el momento hemos podido viajar con ayuda de los aceleradores de partículas.
Encuentran nueva partícula en el CERN
Los asistentes escuchan la presentación de los resultados del experimento ATLAS, durante el seminario del Centro Europeo de Física de Partículas (CERN) para presentar los resultados de los dos experimentos paralelos que buscan la prueba de la existencia de la “partícula de Higgs, base del modelo estándar de física.
Nos preguntamos que habrá más allá del Modelo Estándar
La pregunta “¿Qué hay más allá del Modelo estándar”? ha estado fascinando a los físicos durante años. Y, desde luego, todos sueñan con llegar a saber, qué es lo que realmente es lo que conforma el “mundo” de la materia, qué partículas, cuerdas o briznas vibrantes. En realidad, lo cierto es que, la Física que conocemos no tiene que ser, necesariamente, la verdadera física que conforma el mundo y, sí, la física que conforma “nuestro mundo”, es decir, el mundo al que hemos podido tener acceso hasta el momento y que no necesariamente tiene que coincidir con el mundo real que no hemos podido alcanzar.
O, como decía aquél: ¡Que mundo más hermoso, parece de verdad!
Siempre hay más de lo que el ojo ve
No todo lo que vemos es, necesariamente, un reflejo de la realidad de la Naturaleza que puede tener escondidos más allá de nuestras percepciones, otros escenarios y otros objetos, a los que, por ahora, no hemos podido acceder, toda vez que, físicamente tenemos carencias, intelectualmente también, y, nuestros conocimientos avanzar despacio para conseguir, nuevas máquinas y tecnologías nuevas que nos posibiliten “ver” lo que ahora nos está “prohibido” y, para ello, como ocurre siempre, necesitamos energías de las que no disponemos.
Hay dos direcciones a lo largo de las cuales se podría extender el Modelo estándar, tal lo conocemos actualmente, que básicamente se caracterizan así:
– Nuevas partículas raras y nuevas fuerzas extremadamente débiles, y
– nuevas partículas pesadas y nuevas estructuras a muy altas energías.
Podrían existir partículas muy difíciles de producir y de detectar y que, por esa razón, hayan pasado desaparecidas hasta. La primera partícula adicional en la que podríamos pensar es un neutrino rotando a derecha. Recordaremos que si se toma el eje de rotación paralelo a la dirección del movimiento los neutrinos sólo rotan a izquierdas, pero… ¡esa sería otra historia!
Los neutrinos siempre me han fascinado. Siempre se han manifestado como si tuvieran masa estrictamente nula. Parece como si se movieran exactamente con la velocidad de la luz. Pero hay un límite para la precisión de nuestras medidas. Si los neutrinos fueran muy ligeros, por ejemplo, una cienmillonésima de la masa del electrón, seríamos incapaces de detectar en el laboratorio la diferencia éstos y los neutrinos de masa estrictamente nula. Pero, para ello, el neutrino tendría que tener una componente de derechas.
En este punto, los astrónomos se unen a la discusión. No es la primera vez, ni será la última, que la astronomía nos proporciona información esencial en relación a las partículas elementales. Por ejemplo, debido a las interacciones de corriente neutra (las interacciones débiles originadas por un intercambio Zº), los neutrinos son un facto crucial en la explosión supernova de una estrella. sabemos que debido a las interacciones por corriente neutra, pueden colisionar con las capas exteriores de la estrella y volarlas con una fuerza tremenda.
En realidad, los neutrinos nos tienen mucho que decir, todavía y, no lo sabemos todo acerca de ellos, sino que, al contrario, son muchos los y fenómenos que están y subyacen en ellos de los que no tenemos ni la menor idea que existan o se puedan producir. Nuestra ignorancia es grande, y, sin embargo, no nos arredra hablar y hablar de cuestiones que, la mayoría de las veces…ni comprendemos.
Aquí lo dejar´ñe por hoy, el tema es largo y de una fascinación que te puede llevar a lugares en los que no habías pensado al comenzar a escribir, lugares maravillosos donde reinan objetos exóticos y de fascinante porte que, por su pequeñez, pueden vivir en “mundos” muy diferentes al nuestro en los que, ocurren cosas que, nos llevan el asombro y también, a ese mundo mágico de lo fascinante y maravilloso.
Parece que el Modelo estándar no admite la cuarta fuerza y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.
emilio silvera