domingo, 26 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Las partículas! ese universo infinitesimal II

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En 1930, cuando Dirac expuso su teoría, no llamó demasiado la atención en el mundo de la ciencia. Pero, fiel a la cita, dos años después apareció el antielectrón. Por entonces, el físico americano Carl David Anderson trabajaba con Millikan en un intento por averiguar si los rayos cósmicos eran radiación electromagnética o partículas. Por aquellas fechas, casi todo el mundo estaba dispuesto a aceptar las pruebas presentadas por Compton, según las cuales, se trataría de partículas cargadas; pero Millikan no acababa de darse por satisfecho con tal solución.

                                                     Imagen de miniatura de un resultado de Lens

Anderson se propuso averiguar si los rayos cósmicos que penetraban en una cámara de ionización se curvaban bajo la acción de un potente campo magnético. Al objeto de frenar dichos rayos lo suficiente como para detectar la curvatura, si la había, puso en la cámara una barrera de plomo de 6’35 mm de espesor. Descubrió que, cuando cruzaba el plomo, la radiación cósmica trazaba una estela curva a través de la cámara; y descubrió algo más. A su paso por el plomo, los rayos cósmicos energéticos arrancaban partículas de los átomos de plomo. Una de esas partículas dejó una estela similar a la del electrón. ¡Allí estaba, pues, el antielectrón de Dirac! Anderson le dio el nombre de positrón. Tenemos aquí un ejemplo de radiación secundaria producida por rayos cósmicos. Pero aún había más, pues en 1963 se descubrió que los positrones figuraban también entre las radiaciones primarias.

Descubrimiento de los rayos cósmicos - Saberes y Ciencias | Saberes y  CienciasLeptonsChina's bid for a circular electron–positron collider – CERN CourierComputer art of a positron-electron collision - Stock Image - A130/0030 -  Science Photo Library

Abandonado a sus propios medios, el positrón es tan estable como el electrón (¿y por qué no habría de serlo si el idéntico al electrón, excepto en su carga eléctrica?). Además, su existencia puede ser indefinida. Ahora bien, en realidad no queda abandonado nunca a sus propios medios, ya que se mueve en un universo repleto de electrones. Apenas inicia su veloz carrera (cuya duración ronda la millonésima de segundo), se encuentra ya con uno.

Así, durante un momento relampagueante quedaron asociados el electrón y el positrón; ambas partículas girarán en torno a un centro de fuerza común. En 1945, el físico americano Arthur Edwed Ruark sugirió que se diera el nombre de positronio a este sistema de dos partículas, y en 1951, el físico americano de origen austriaco  Martin Deutsch consiguió detectarlo guiándose por los rayos gamma característicos del conjunto.

SVS: Positron-electron AnnihilationElectrón - Aniquilación De Positrones Fotos, Retratos, Imágenes Y  Fotografía De Archivo Libres De Derecho. Image 24660575.

Pero no nos confundamos, aunque se forme un sistema positronio, su existencia durará, como máximo, una diezmillonésima de segundo. El encuentro del electrón-positrón provoca un aniquilamiento mutuo; sólo queda energía en forma de radiación gamma. Ocurre pues, tal como había sugerido Einstein: la materia puede convertirse en energía y viceversa. Por cierto, que Anderson consiguió detectar muy pronto el fenómeno inverso: desaparición súbita de rayos gamma para dar origen a una pareja electrón-positrón. Este fenómeno se llama producción en pareja. Anderson compartió con Hess el premio Nobel de Física de 1936.

Irène y Frédéric Joliot-Curie: radiactividad a la carta - Mujeres con  ciencia

           Irène y Frédéric Joliot-Curie

Poco después, los Joliot-Curie detectaron el positrón por otros medios, y al hacerlo así realizaron, de paso, un importante descubrimiento. Al bombardear los átomos de aluminio con partículas alfa, descubrieron que con tal sistema no sólo se obtenían protones, sino también positrones. Cuando suspendieron el bombardeo, el aluminio siguió emitiendo positrones, emisión que sólo con el tiempo se debilitó. Aparentemente habían creado, sin proponérselo, una nueva sustancia radiactiva. He aquí la interpretación de lo ocurrido según los Joliot-Curie: cuando un núcleo de aluminio absorbe una partícula alfa, la adición de los dos protones transforma el aluminio (número atómico 13) en fósforo (número atómico 15). Puesto que las partículas alfa contienen cuatro nucleones en total, el número masivo se eleva 4 unidades, es decir, del aluminio 27 al fósforo 31. Ahora bien, si al reaccionar se expulsa un protón de ese núcleo, la reducción en una unidad de sus números atómicos y masivos hará surgir otro elemento, o sea, el silicio 30.

Partícula alfa - Wikipedia, la enciclopedia libreDescomposición Alfa Con Liberación De Partícula Alfa Ilustración del Vector  - Ilustración de geiger, alfa: 192045139

Puesto que la partícula alfa es el núcleo del helio, y un protón es el núcleo del hidrógeno, podemos escribir la siguiente ecuación de esta reacción nuclear:

aluminio 27 + helio 4 = silicio 30 + hidrógeno 1

Nótese que los números másicos se equilibran:

27 + 4 = 30 + 1

Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico.

El letal cuaderno de Marie Curie que puede matarte con el mero contacto  incluso 100 años despuésEl letal cuaderno de Marie Curie que casi 100 años después aún puede matarte

                   El letal cuaderno de Marie Curie 

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio.

Isotopos De Hidrogeno : discover, dream, dream , Én, én, en, explore, qp,  template, templatesgedu | Glogster EDU - Interactive multimedia posters

                     Isótopos del Hidrógeno

Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

Hidrógeno Pesado Fotos e Imágenes de stock - AlamyHidrógeno Pesado Contenedor De Almacenamiento Fotos, Retratos, Imágenes Y  Fotografía De Archivo Libres De Derecho. Image 48929913.Nuclear Notation

El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.

Rosetta mide un elevado contenido de deuterio en el cometa 67P | Meteoritos  y ciencias planetarias | SciLogs | Investigación y CienciaNuclear Fusion

El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:

hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1

Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión  a 20’5º K.

Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre, las matemáticas, la única que finalmente lo podrá explicar todo.

emilio silvera

¡Las particulas! ese universo infinitesimal

Autor por Emilio Silvera    ~    Archivo Clasificado en Sin categoría    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Qué son, cómo son y cómo se originan las partículasQué son, cómo son y cómo se originan las partículasQué son, cómo son y cómo se originan las partículasCaracterización de las partículas de la atmósfera de - ppt descargar

El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.

Qué son y de donde proceden los rayos cósmicos

                                           Los rayos cósmicos que forman partículas secundarias

El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.

        Radiación cósmica - Wikipedia, la enciclopedia libreDe dónde proceden los rayos cósmicos? - Foro Nuclear

Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto; si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cera del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.

            Confirman que los rayos cósmicos vienen de más allá de nuestra galaxiaQué son los rayos cósmicos y cómo nos afectan?

Las partículas cósmicas primarias, cuando entran en nuestra atmósfera, llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez; en 1968, otros núcleos como el del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.

                      Daniel Manzano on Twitter: "La ecuación de Dirac no dice eso,  principalmente porque "eso" es falso. Sólo las partículas entrelazadas se  comportan como un solo sistema. El entrelazamiento ni siquiera afecta a

Ahora bien, la siguiente partícula inédita (después del neutrón) se descubrió en los rayos cósmicos. A decir verdad, cierto físico teórico había predicho ya este descubrimiento. Paul Adrien Dirac había aducido, fundándose en un análisis matemático de las propiedades inherentes a las partículas subatómicas, que cada partícula debería tener su antipartícula (los científicos desean no sólo que la naturaleza sea simple, sino también simétrica). Así pues, debería haber un antielectrón, salvo por su carga que sería positiva y no negativa, idéntico al electrón; y un antiprotón, con carga negativa en vez de positiva.

Leer más

Las cosas que creemos que sabemos

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La teoria del big bang the big bang theory GIF - Encontrar en GIFER

Me hace gracia ver y escuchar como “doctos” licenciados dicen que ellos conocen lo que es el Universo, por ejemplo, o lo que pasó en los primeros tres minutos a partir de lo que llamamos Big Bang. En realidad, se están refiriendo a que tienen un modelo del Universo temprano, y que este mo0delo encaja con los resultados que hasta el momento hemos obtenido mediante experimentos y observaciones.

El átomo by Joaquín Valverde on Genially

No siempre este modelo científico es una fiel imagen de la realidad. Los átomos y las moléculas que componen el aire que respiramos, por ejemplo,  se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica, con todas las pequeñas esferas rebotando unas contra otras y contra las paredes del recipiente que las contiene.

Esa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, éstas son esencialmente las leyes del movimiento descubiertas por Newton hace más de trescientos años. Utilizando estas leyes matemáticas es posible predecir, por ejemplo, que le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, y, el resultado que se obtiene encaja con la predicción del modelo, este será un buen modelo.

                                                Vibración molecular - Wikipedia, la enciclopedia libre

                                                                       Moléculas que vibran

De hecho, todos los modelos científicos tienen aplicabilidad limitada. Ninguno de ellos es “la verdad “. Cuando un científico afirma, por ejemplo, que el núcleo de un átomo está compuesto por partículas denominadas protones y neutrones, lo que en realidad debería decir es que el núcleo de un átomo se comporta, bajo determinadas circunstancias, como si estuviera formado de protones y neutrones. Los mejores científicos toman el “como sí “, pero entienden que sus modelos son, efectivamente, sólo modelos; científicos menores a menudo olvidan esta diferencia crucial.

Teoría de erroresTeoría de Errores

                                                                                    Teoría de errores

Los científicos menores, y muchos no-científicos, tienen otra idea equivocada. A menudo piensan que el papel de los científicos hoy en día es llevar a cabo experimentos que probarán la exactitud de sus modelos con una precisión cada vez mayor (hacia posiciones con más y más decimales). ¡En absoluto! La razón para llevar a cabo experimentos que demuestren predicciones previas no comprobadas es descubrir dónde fallan los modelos. Encontrar defectos en sus modelos es la esperanza abrigada por los mejores científicos, porque esos defectos destacarán los lugares donde necesitamos una nueva comprensión, con modelos mejores, para progresar.

Leer más

De la ciencia y de la vida misma

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El siglo XIX fue vital para la ciencia. Aunque la ciencia ya había mostrado para entonces su capacidad única para estudiar qué sucede en la naturaleza y qué principio (o leyes) la gobiernan, y contaba por entonces con una larga lista de teorías, datos y héroes científicos, no se había convertido todavía en una gran empresa, en la “profesión” que terminaría siendo.

PROFESIONES RELACIONADAS CON CIENCIAS SOCIALES by Lizeth ArevaloLos científicos piensan que su profesión es desconocida para la sociedad

La “profesionalización” e “institución” de la ciencia, entendiendo por tal que la práctica de la investigación científica se convirtiese en una profesión cada vez más abierta a personas sin medios económicos propios, que se ganaban la vida a través de la ciencia y que llegasen a atraer la atención de gobiernos e industrias, tuvo su explosión a lo largo de 1.800, y muy especialmente gracias al desarrollo de dos disciplinas, la química orgánica y el electromagnetismo. Estas disciplinas, junto a las matemáticas, la biología y las ciencias naturales (sin las cuales sería una necedad pretender que se entiende la naturaleza, pero con menos repercusiones socio-económicas), experimentaron un gran desarrollo entonces, tanto en nuevas ideas como en el número de científicos importantes: Faraday, Maxwell, Lyell, Darwin y Pasteur, son un ejemplo. Sin olvidar a otros como Mendel, Helmholtz, Koch, Virchow, Lister o Kelvin, o la matemática de Cauchy, de Gauss, Galois, Fourier, Lobachevski, Riemann, Klein, Cantor, Russell, Hilbert o Poincaré. Pero vamos a pararnos un momento en Faraday y Maxwell.

                               Palabras Electricidad, Magnetismo, óptica. Fondos Abstractos, Matriz  Abstracta Como Fondo. Campo Estelar En El Espacio Profundo A Muchos Años  Luz De La Tierra. Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres  De

Para la electricidad, magnetismo y óptica, fenómenos conocidos desde la antigüedad, no hubo mejor época que el siglo XIX. El núcleo principal de los avances que se produjeron en esa rama de la física (de los que tanto se benefició la sociedad -comunicaciones telegráficas, iluminación, tranvías y metros, etc.-) se encuentra en que, frente a lo que se suponía con anterioridad, se descubrió que la electricidad y el magnetismo no eran fenómenos separados.

Leer más

¡Litio! La energía del futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hay noticias que te alegra el Alma, y, cuando un Pais pobre, encuentra en las entrañas de su territorio, una riqueza que podría solucionar muchas necesidades, en verdad, es para alegrarse.

“Bolivia tiene la mayor reserva de litio de laTierra

 

 

Así es, Bolivia, el pequeño país sudamericano, tiene la mayor reserva delitio de la tierra, fuente de energía que será crucial dentro de unos años.

Morales

Pero para que esta gran fuente de energía pueda ser adquirida por los demás países y empresas del mundo, primero se deberá negociar con el Presidente Evo Morales (Hoy fuera de juego), un paso que no será del todo sencillo, ya que de ante mano, el mismo no tiene unas buenas relaciones con Estados Unidos(país con más necesidad de esta energía).

Leer más