Mar
19
Hemos llegado a saber pero…
por Emilio Silvera ~ Clasificado en General ~ Comments (33)
Colisionan protones para poder desvelar otras partículas
En el CERN (Laboratorio Europeo de Física de Partículas), situado cerca de Ginebra, los países europeos han construido un acelerador de partículas, el LHC, y en él se buscará la supersimetría, la partícula de Higgs que proporciona la masa a todas las partículas, y tratará de despejar interrogantes que en los aceleradores actuales no pueden ser contestados.
Pero volviendo al tema principal, tendremos que convenir todos en el hecho innegable de que, en realidad, estas nuevas teorías que pretenden explicarlo todo, en realidad, como digo, están todas basadas en la teoría de la relatividad general de Einstein.
Nos habla del Espacio, del Tiempo, de la Materia
La han ampliado elevándola a más dimensiones que les permite añadir más factores, pero las ecuaciones de campo de Einstein subyacen en la base de todas estas teorías, desde la que expusieron Kaluza-Klein en la 5ª dimensión, hasta estas otras más recientes de 10, 11 y 26 dimensiones.
Mar
19
No conocemos bien ni la Vía Láctea
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Situados en el planeta o con el Hubble, podemos captar imágenes de la Vía Láctea que nunca serán completas, toda vez que, para ello, tendríamos que salir de ella y captar la imagen desde fuera.
De nuestra Vía Láctea conocemos regiones extensas y lugares lejanos, tenemos imágenes de grandes trozos de nuestra Galaxia que los distintos aparatos que tenemos tanto en la Tierra con el el espacio exterior nos envían, y, a través de todo eso, poco a poco, vamos teniendo una idea más cercana y precisa de lo que es nuestra Galaxia.
Sin embargo, no sabemos ni como nuestra Galaxia, la Vía Láctea es en realidad, y, los astrónomos nos dicen que si tiene dos brazos espirales, que si tiene cuatro, que si gira a una velocidad o si marcha a otra, todo lo cual denota sólo una cuestión, la ignorancia que aún nos aplasta sobre el conocimiento de nuestro propio hogar.
¡La Vía Láctea!
Así podría ser nuestra Galaxia
Con cien mil millones de estrellas (otros dicen que doscientas mil), es la segunda Galaxia más grande del Grupo Local, después de Andrómeda que está a 2,3 millones de a.l. de nosotros.
Dentro de una sóla Galaxia, nacen, viven y mueren continuamente una ingente cantidad de estrellas, y, sobre todo en las galaxias espirales como la nuestra, todo se regenera de manera continua: mueren estrellas en explosiones supernovas que crean Nebulosas de las que nacen nuevas estrellas de II generación y de ese material, nacen también, nuevos sistemas solares que, como el nuestro, tiene sus planetas y, seguramente, la vida.
El Universo, amigos, es tan grande que, sólo se me ocurre compararlo con nuestra imaginación.
Después hablaremos de todo esto.
emilio silvera
Mar
19
Sueños que, nos llevan a la realidad
por Emilio Silvera ~ Clasificado en General ~ Comments (13)
¿Viajar en el tiempo? Un sueño que “mañana”… ¿Será realidad?
Me hace “gracia” ver como mucha gente, incluso científicos, se atreven a dar su opinión sobre cuestiones que no conocen.
La mayoría de los científicos que no han estudiado seriamente las ecuaciones de Einstein, desprecian el viaje en el tiempo como una tontería, algo que sólo es aplicable a relatos sensacionalistas e historias fantásticas. Sin embargo, la situación que realmente nos encontramos es bastante compleja.
Para resolver la cuestión debemos abandonar la teoría más sencilla de la relatividad especial, que prohíbe el viaje en el tiempo, y adoptar toda la potencia de la teoría de la relatividad general, que puede permitirlo. La relatividad general tiene una validez mucho más amplia que la relatividad especial. Mientras que la relatividad especial sólo describe objetos que se mueven a velocidad constante muy lejos de cualquier estrella, la teoría de la relatividad general es mucho más potente, capaz de describir cohetes que se aceleran cerca de estrellas super-masivas y agujeros negros.
Dilatación del Tiempo
La teoría general sustituye así algunas de las conclusiones más simples de la teoría especial. Para cualquier físico que haya analizado seriamente las matemáticas del viaje en el tiempo dentro de la teoría de la relatividad general de Einstein, la conclusión final, de forma bastante sorprendente, no está ni mucho menos clara.
Mar
18
La Materia en su estado natural que se convierte en Nuevos materiales
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
En la inmensidad de todo el Universo, las galaxias se reúnen en grandes cúmulos, y, dentro de ellas, las estrellas también los forman y surgen en las distintas regiones para transmutar elementos sencillos en otros más complejos, y, de ellos, surge la materia constituida por átomos hechos de infinitesimales partículas subatómicas que se juntan para formar moléculas y éstas lo hacen para formar cuerpos.
De esa materia se forman mundos en los que están los distintos elementos que se “fabricaron en las estrellas, y, dichos materiales son utilizados de mil maneras distintas.
Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia? El día que podamos conseguir un conocimiento más profundo de la materia, nos asombraremos de lo que la materia, en realidad, es.
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza.
“La materia es todo aquello que tiene masa e inercia y ocupa un lugar en el espacio. Todas las cosas están hechas de materia, las sólidas (como la piedra o el hierro), las líquidas (como el aceite o el mar) y las gaseosas (como el aire que respiramos). Tienen volumen y forma definidos.”
Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Sí, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos, es decir, aquellos artificiales fabricados por la mano del hombre y que tienen números atómicos mayores que el 92.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.
¡Parece que la materia está viva!
Mar
17
El Universo. ¿Cómo surgió de verdad?
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (2)
¿Big Bang?
“Entre 1927 y 1930, el sacerdote belga Georges Lemaître obtuvo independientemente las ecuaciones Friedman-Lemaître-Robertson-Walker y propuso, esta teoría del Big Bang que dio lugar al comienzo del Tiempo, del Espacio y de la Materia, lo que tuvo lugar hace 13.800 millones de años.
“El modelo estándar no trata de explicar la causa de este hecho en sí, sino la evolución del universo temprano en un rango temporal que abarca desde un tiempo de Planck (aprox. 10−43 segundos) después del Big Bang hasta entre 300 000 y 400 000 años más tarde, cuando ya se empezaban a formar átomos estables y el universo se hizo transparente.141516 Una amplia gama de evidencia empírica favorece fuertemente al Big Bang, que ahora es esencial y universalmente aceptado.”
La expansión hizo que se enfriara y se volviera transparente al quedar libre los fotones
La teoría del Big Bang es el modelo cosmológico predominante para los períodos conocidos más antiguos del universo y su posterior evolución a gran escala. El modelo estándar afirma que el universo estaba en un estado de muy alta densidad y temperatura y luego se expandió.
Se expandió y doscientos millones de años más tarde, nacieron las primeras estrellas
Hablaremos ahora del Big Bang, esa teoría aceptada por todos y que nos dice cómo se formó nuestro universo y comenzó su evolución hasta ser como ahora lo conocemos. Se cree que a partir de una singularidad con densidad infinita, se produjo la gran explosión. Después de la expansión inicial, se enfrió para permitir la formación de partículas subatómicas y más tarde “simples” átomos.
Nubes gigantes de los elementos primordiales se unieron debido a la Gravedad, y de esa forma se pudieron formar las primeras estrellas y más tarde las galaxias. La primera ecuación de Friedman describe todas estas épocas hasta el presente y el futuro lejano.
Alexander Friedman halló dichas ecuaciones a partir de las ecuaciones de campo de Einstein para la métrica de Friedman-Lamaitre-Robertson-Walker y un fluido con una densidad de masa , , y una presión , , dadas. Las ecuaciones son:
De acuerdo a esta teoría, el universo se originó a partir de un estado inicial de alta temperatura y densidad, y desde entonces ha estado siempre expandiéndose. La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.
La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.
Con nuestro conocimiento actual de física de partículas de altas energías, podemos hacer avanzar el reloj hacia atrás a través de la teoría leptónica* y la era hadrónica** hasta una millonésima de segundo después del Big Bang, cuando la temperatura era de 1013 K. Utilizando una teoría más especulativa, los cosmólogos han intentado llevar el modelo hasta 1035 s después de la singularidad, cuando la temperatura era de 1028 K. Esa infinitesimal escala de longitud es conocida como límite de Planck, = 10-35 m, que en la Ley de radiación de Planck, es distribuida la energía radiada por un cuerpo negro mediante pequeños paquetes discretos llamados cuantos, en vez de una emisión continua. A estas distancias, la gravedad está ausente para dejar actuar a la mecánica cuántica.
La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.
Se ha medido la inflación y el fondo de microondas cósmico
La radiación de fondo cósmica proporciona la evidencia más directa de que el universo atravesó por una fase caliente y densa. En la teoría del Big Bang, la radiación de fondo es explicada por el hecho de que durante el primer millón de años más o menos (es decir, antes del desacoplo de la materia y la radiación), el universo estaba lleno de plasma que era opaco a la radiación y, por tanto, en equilibrio térmico con ella. Esta fase es habitualmente denominada “bola de fuego primordial”.
Cuando el universo se expandió y se enfrió a unos 3000 ºK, se volvió transparente a la radiación, que es la que observamos en la actualidad, mucho más fría y diluida, como radiación térmica de microondas. El descubrimiento del fondo de microondas en 1.956 puso fin a una larga batalla entre el Big Bang y su rival, la teoría del universo estacionario de F. Hoyle y otros, que no podía explicar la forma de cuerpo negro del fondo de microondas. Es irónico que el término Big Bang tuvo inicialmente un sentido burlesco y fue acuñado por Hoyle, contrario a la teoría del universo inflacionario y defensor del estacionario.
Cronología del Big Bang |
||
Era |
Duración |
Temperatura |
Era de Planck |
de 0 a 10-43 seg. |
a 10-34 K |
Era de radiación |
de 10-43 a 30.000 años |
desde 10-34 a 104 K |
Era de la materia | de 30.000 años al presente (13.500.000.000 años). |
desde 104 a 3 K actual |
- Es la era que comenzó cuando el efecto gravitacional de la materia comenzó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, este efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang. Este hecho marcó el comienzo de la era de la materia.
De la radiación
Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang. Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación.
La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual los partículas lentas dominaron la expansión del universo.
Era hadrónica
Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras. Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.
Era Leptónica
Intervalo que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y anti-leptones en gran número en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang. Después, los leptones se unieron a los hadrónes para formar átomos*
Así se formó nuestro universo, a partir de una singularidad que explotó expandiendo toda la densidad y energía a unas temperaturas terroríficas, y a partir de ese mismo instante conocido como Big Bang, nacieron, como hermanos gemelos, el tiempo y el espacio junto con la materia que finalmente desembocó en lo que ahora conocemos como universo.
El universo es el conjunto de todo lo que existe, incluyendo (como he dicho) el espacio, el tiempo y la materia. El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein–de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.
El universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes.
Existe evidencia creciente de que el espacio puede estar lleno de una materia oscura invisible que puede constituir muchas veces la masa total de las galaxias visibles.
Como ya quedó claro antes, el concepto más favorecido de origen del universo es la teoría del Big Bang, de acuerdo con la cual el universo se creó a partir de una densa y caliente concentración enorme de materia (una singularidad) en una bola de fuego que explotó y se expandió para crear el espacio, el tiempo y toda la materia que lo conforme. Todo ello ocurrió, según los datos de que se disponen, hace ahora aproximadamente 15.000 millones de años, o 15 eones (109).
El universo se formó y apareció el tiempo y el espacio y la materia. Es lo que dice la teoría que antes hemos descrito. Sin embargo, hay muchas cuestiones que, por lo menos a mí, no han quedado claras y me llevan a preguntas tales como:
¿Cuántas partículas hay en el universo?
¿De dónde vino la sustancia del universo?
¿Qué hay más allá del borde del universo?
En realidad, no existen respuestas concretas para estas preguntas, porque para empezar no sabemos como es de grande el universo. Sin embargo, si podemos hacer algunas hipótesis.
Nadie sabe de dónde vino la sustancia del universo, no siempre la ciencia puede dar respuesta a todo, es la manera de regular los sistemas para obtener respuestas tras el duro trabajo del estudio, la investigación y el experimento. Hasta el momento nos falta información para contestar la pregunta.
Claro que siempre podemos especular. Isaac Asimov decía que por su parte, “la respuesta podía estar en la existencia de “energía negativa” que igualara la “energía positiva” ordinaria, pero con la particularidad de que cantidades iguales de ambos se unirían para dar nada como resultado” (igual que +1 y -1 sumados dan 0).
Y al revés: lo que antes era nada podría cambiar de pronto y convertirse en una pompa de “energía positiva” y otra pompa igual de “energía negativa”. De ser así, la pompa de energía positiva se convirtió en el universo que conocemos, mientras que en alguna otra parte, existiría el universo contrario, paralelo negativo.
Por mi parte, soy menos complicado y como rige el principio de la física conocida como Navaja de ,
creo en un camino más simple y sencillo: El universo, en sus comienzos, produjo enormes cantidades de partículas de materia y de antimateria, y el número de una y otra no era igual sino que, no se sabe por qué razón, las partículas positivas eran más que las negativas. Todos sabemos que un protón, cuando se encuentra con un antiprotón (materia con antimateria) ambos se destruyen. Una vez destruidos todos los pares materia antimateria, quedó el sobrante de partículas positivas que es la materia de nuestro universo.
De esa manera se formaron, con esas partículas positivas y los electrones (hadrones y leptones), se originaron grandes conglomerados de gas y polvo que giraban lentamente, fragmentándose en vórtices turbulentos que se condensaban finalmente en estrellas.
Estos conglomerados de gas y polvo podían tener extensiones de años luz de diámetro y, en algunas regiones donde la formación de estrellas fue muy activa, casi todo el polvo y el gas fue a parar a una estrella u otra. Poco o nada fue lo que quedo en los espacios intermedios. Esto es cierto para los cúmulos globulares, las galaxias elípticas y el núcleo central de las galaxias espirales.
Dicho proceso fue mucho menos eficaz en las afueras de las galaxias espirales. Las estrellas se formaron en números muchos menores y sobró mucho polvo y mucho gas.
Estamos en el interior del Brazo de Orión, una región tranquila de la Galaxia
Nosotros, los habitantes del planeta Tierra, nos encontramos en los brazos espirales de nuestra galaxia, estamos situados en la periferia a unos 30.000 años luz del centro galáctico y vemos las manchas oscuras que proyectan las nubes de polvo contra el resplandor de la Vía Láctea. El centro de nuestra propia galaxia queda oscurecido por tales nubes.
Estas nubes enormes de polvo cósmico es el material primario del que hacen las estrellas. Este material del que está formado el universo consiste en su mayor parte, como se ha dicho anteriormente, de hidrógeno y helio. Los átomos de helio no tienen ninguna tendencia a juntarse unos con otros. Los de hidrógeno sí, pero sólo en parejas, formando moléculas de hidrógeno (H2). Quiere decirse que la mayor parte del material que flota entre las estrellas consiste en pequeños átomos de helio o en pequeños átomos y moléculas de hidrógeno. Todo ello constituye el gas interestelar, que forma la mayor parte de la materia que circula en el universo entre las estrellas.
El polvo interestelar o polvo cósmico, que se halla presente en cantidades mucho más pequeñas, se compone de partículas diminutas, pero mucho más grandes que átomos o moléculas, y por tanto deben contener átomos que no son ni de hidrógeno ni de helio, son átomos de materiales más complejos.
El tipo de átomo más común en el universo, después del hidrógeno y el helio, es el de oxígeno. El oxígeno puede combinarse con hidrógeno para formar grupos oxidrilo (HO) y moléculas de agua (H2O), que tienen una marcada tendencia a unirse a otros grupos y moléculas del mismo tipo que encuentren en el camino, de forma que poco a poco se van constituyendo pequeñísimas partículas compuestas por millones y millones de tales moléculas. Los grupos oxidrilo y las moléculas de agua pueden llegar a constituir una parte importante del polvo cósmico.
En 1.965 se detectó por primera vez grupos oxidrilo en el espacio y se comenzó a estudiar su distribución. Desde entonces se ha informado también de la existencia de moléculas más complejas que contienen átomos de carbono, así como de hidrógeno y oxígeno. El polvo cósmico contiene también agrupaciones atómicas formadas por átomos menos comunes y más complejos que los ya mencionados. Los materiales más pesados y complejos se fabrican en los hornos termonucleares, los núcleos de las estrellas, y cuando al final de su existencia como tales estrellas explotan en súper novas, estos materiales son lanzados al espacio a velocidades increíbles y siembra el vacío estelar de materiales complejos que más tarde sirven de material para formar nuevas estrellas de II generación.
En el espacio estelar se han detectado también átomos de calcio, sodio, potasio e hierro, observando la luz que esos átomos absorben.
Dentro de nuestro sistema solar hay un material parecido, aportado quizás por los cometas. Es posible que fuera de los límites visibles del sistema solar exista una conglomeración grande de cometas, y que algunos de ellos se precipiten hacia el Sol (atraídos por la gravedad). Los cometas son formaciones de fragmentos sólidos de metal y roca, unidos por una mezcla de hielo, metano y amoníaco congelados y otros materiales parecidos. Cada vez que un cometa se aproxima al Sol, se evapora parte de su materia, liberando diminutas partículas sólidas que se esparcen por el espacio en forma de larga cola. En última instancia, el cometa se desintegra por completo.
A lo largo de la historia del sistema solar se han desintegrado innumerables cometas y han llenado de polvo el espacio interior del sistema solar. La Tierra recoge cada día miles de millones de partículas de polvo (“micro-meteoroides”). Los científicos espaciales se interesan por ellas por diversas razones; una de ellas es que los micro-meteoroides de mayor tamaño podrían suponer un peligro para los futuros astronautas y colonizadores de la Luna.
Cuando me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, etc.
Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.
De los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3.
Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.
Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1.909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.
El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original.
De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.
El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas. Hay estrellas que se componen casi por entero de tales átomos destrozados. La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.
Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.
Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.
Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.
La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas).
¡Qué barbaridad!
El recorrido que nos ofrece la Ciencia es:
Índice
- 1El universo muy primigenio
- 2El universo primigenio
- 3Formación de estructuras
- 4Destino final del universo
- 4.1Muerte térmica, 1-100 billones de años
emilio silvera
* Nucleones: partículas que constituyen los principales componentes del núcleo atómico (protones y neutrones).