jueves, 30 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Materia en su estado natural que se convierte en Nuevos materiales

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cosmos Universo GIF - Cosmos Universo Espaço - Descubre & Comparte GIFs

En la inmensidad de todo el Universo, las galaxias se reúnen en grandes cúmulos, y, dentro de ellas, las estrellas también los forman y surgen en las distintas regiones para transmutar elementos sencillos en otros más complejos, y, de ellos, surge la materia constituida por átomos hechos de infinitesimales partículas subatómicas que se juntan para formar moléculas y éstas lo hacen para formar cuerpos.

Imágenes tomadas en observatorio Paranal explican cómo se forma el polvo  interestelar | Lifestyle de AméricaEconomía : Artes, Diseño, Estilo,  Motores, Ocio, Placeres, Salud, Viajes, Aire libre | Lifestyle de  AméricaEconomíaPlanetas del Sistema Solar - Astronomía - Definiciones y conceptos

De esa materia se forman mundos en los que están los distintos elementos que se “fabricaron en las estrellas, y, dichos materiales son utilizados de mil maneras distintas.

Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia? El día que podamos conseguir un conocimiento más profundo de la materia, nos asombraremos de lo que la materia, en realidad, es.

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza.

                     Cienciaes.com: Vida ¿De qué estamos hechos? | Podcasts de CienciaTodo lo que nos rodea es materia

“La materia es todo aquello que tiene masa e inercia y ocupa un lugar en el espacio. Todas las cosas están hechas de materia, las sólidas (como la piedra o el hierro), las líquidas (como el aceite o el mar) y las gaseosas (como el aire que respiramos). Tienen volumen y forma definidos.”

Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Sí, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos, es decir, aquellos artificiales fabricados por la mano del hombre y que tienen números atómicos mayores que el 92.

                    Fusión nuclear: así funciona la tecnología que aspira a resolver nuestras  necesidades energéticasFusión nuclear - Wikipedia, la enciclopedia libre

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

¡Parece que la materia está viva!

Leer más

El Universo. ¿Cómo surgió de verdad?

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

Big Bang - Wikipedia, la enciclopedia libreEn busca de los orígenes del Big Bang

 

¿Big Bang?

 

“Entre 1927 y 1930, el sacerdote belga Georges Lemaître​ obtuvo independientemente las ecuaciones Friedman-Lemaître-Robertson-Walker y propuso, esta teoría del Big Bang que dio lugar al comienzo del Tiempo, del Espacio y de la Materia, lo que tuvo lugar hace 13.800 millones de años.

                                                 El modelo estándar

“El modelo estándar no trata de explicar la causa de este hecho en sí, sino la evolución del universo temprano en un rango temporal que abarca desde un tiempo de Planck (aprox. 10−43 segundos) después del Big Bang hasta entre 300 000 y 400 000 años más tarde, cuando ya se empezaban a formar átomos estables y el universo se hizo transparente.141516​ Una amplia gama de evidencia empírica favorece fuertemente al Big Bang, que ahora es esencial y universalmente aceptado.”

A qué velocidad se expande el Universo? - AmbientumPor qué se expande el Universo?

La expansión hizo que se enfriara y se volviera transparente al quedar libre los fotones

La teoría del Big Bang es el modelo cosmológico predominante para los períodos conocidos más antiguos del universo y su posterior evolución a gran escala.​ El modelo estándar afirma que el universo estaba en un estado de muy alta densidad y temperatura y luego se expandió.

La historia del UniversoAsí fue el primer microsegundo del Big Bang (aseguran científicos)

Se expandió y doscientos millones de años más tarde, nacieron las primeras estrellas

                      Los 8 tipos de partículas subatómicas (y sus características)Átomo - Wikipedia, la enciclopedia libre

Hablaremos ahora del Big Bang, esa teoría aceptada por todos y que nos dice cómo se formó nuestro universo y comenzó su evolución hasta ser como ahora lo conocemos. Se cree que a partir de una singularidad con densidad infinita, se produjo la gran explosión. Después de la expansión inicial, se enfrió para permitir la formación de partículas subatómicas y más tarde “simples” átomos.

                   Universo ¡34 Gifs extraordinarios! | Gifmaniacos.es | Gifs, Universo,  Imágenes del espacio

Nubes gigantes de los elementos primordiales se unieron debido a la Gravedad, y de esa forma se pudieron formar las primeras estrellas y más tarde las galaxias. La primera ecuación de Friedman describe todas estas épocas hasta el presente y el futuro lejano.

Alexander Friedman halló dichas ecuaciones a partir de las ecuaciones de campo de Einstein para la métrica de Friedman-Lamaitre-Robertson-Walker y un fluido con una densidad de masa \rho  , {\displaystyle ([\rho ]=kg/m^{3})}, y una presión p{\displaystyle ([p]=N/m^{2}=kg/(s^{2}m))}, dadas. Las ecuaciones son:

{\displaystyle H^{2}\equiv \left({\frac {\dot {a}}{a}}\right)^{2}={\frac {8\pi G\rho +\Lambda c^{2}}{3}}-K{\frac {c^{2}}{a^{2}}}}

{\displaystyle 3{\frac {\ddot {a}}{a}}=\Lambda c^{2}-4\pi G\left(\rho +{\frac {3p}{c^{2}}}\right)}

De acuerdo a esta teoría, el universo se originó a partir de un estado inicial de alta temperatura y densidad, y desde entonces ha estado siempre expandiéndose. La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.

                   Futuristic Particle Explosion on Behance

La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.

Unidad 1 - 1ª parteIuliana lungu & Israel SuÁrez - ppt descargar

Con nuestro conocimiento actual de física de partículas de altas energías, podemos hacer avanzar el reloj hacia atrás a través de la teoría leptónica* y la era hadrónica** hasta una millonésima de segundo después del Big Bang, cuando la temperatura era de 1013 K. Utilizando una teoría más especulativa, los cosmólogos han intentado llevar el modelo hasta 1035 s después de la singularidad, cuando la temperatura era de 1028 K. Esa infinitesimal escala de longitud es conocida como límite de Planck,  = 10-35 m, que en la Ley de radiación de Planck, es distribuida la energía radiada por un cuerpo negro mediante pequeños paquetes discretos llamados cuantos, en vez de una emisión continua. A estas distancias, la gravedad está ausente para dejar actuar a la mecánica cuántica.

                                                                 Astrofísica - 6. Era Hadrónica: el plasma de quarks y... | Facebook

La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.

                                                                             La inflación y el fondo de microondas cósmico — Cuaderno de Cultura  Científica

                                                         Se ha medido la inflación y el fondo de microondas cósmico

La radiación de fondo cósmica proporciona la evidencia más directa de que el universo atravesó por una fase caliente y densa. En la teoría del Big Bang, la radiación de fondo es explicada por el hecho de que durante el primer millón de años más o menos (es decir, antes del desacoplo de la materia y la radiación), el universo estaba lleno de plasma que era opaco a la radiación y, por tanto, en equilibrio térmico con ella. Esta fase es habitualmente denominada “bola de fuego primordial”.

La expansión del universo fue recreada en escala atómica

Cuando el universo se expandió y se enfrió a unos 3000 ºK, se volvió transparente a la radiación, que es la que observamos en la actualidad, mucho más fría y diluida, como radiación térmica de microondas. El descubrimiento del fondo de microondas en 1.956 puso fin a una larga batalla entre el Big Bang y su rival, la teoría del universo estacionario de F. Hoyle y otros, que no podía explicar la forma de cuerpo negro del fondo de microondas. Es irónico que el término Big Bang tuvo inicialmente un sentido burlesco y fue acuñado por Hoyle, contrario a la teoría del universo inflacionario y defensor del estacionario.

Cronología del Big Bang

Era

Duración

Temperatura

Era de Planck

de 0 a 10-43 seg.

a 10-34 K

Era de radiación

de 10-43  a 30.000 años

desde 10-34  a 104 K

Era de la materia de 30.000 años al presente (13.500.000.000 años).

desde 104 a 3 K actual

  • Es la era que comenzó cuando el efecto gravitacional de la materia comenzó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, este efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang. Este hecho marcó el comienzo de la era de la materia.

De la radiación

                                                      Podcast de Astronomía - A través del Universo : Fondo cósmico de microondas

Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang. Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación.

La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual los partículas lentas dominaron la expansión del universo.

Era hadrónica

Era Hadrónica.Era Hadrónica.

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras. Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.

Era Leptónica

                                                  Adriana Lorente y Marina Vicente - ppt descargar

Intervalo que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y anti-leptones en gran número en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang. Después, los leptones se unieron a los hadrónes para formar átomos*

Qué es singularidad?, donde las leyes naturales se quiebran | Tec ReviewLa Singularidad Tecnológica by Torre02 Martínez

Así se formó nuestro universo, a partir de una singularidad que explotó expandiendo toda la densidad y energía a unas temperaturas terroríficas, y a partir de ese mismo instante conocido como Big Bang, nacieron, como hermanos gemelos, el tiempo y el espacio junto con la materia que finalmente desembocó en lo que ahora conocemos como universo.

El universo es el conjunto de todo lo que existe, incluyendo (como he dicho) el espacio, el tiempo y la materia.  El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein–de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.

Cosmos Universo GIF - Cosmos Universo Espaço - Descubre & Comparte GIFs

El universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes.

Existe evidencia creciente de que el espacio puede estar lleno de una materia oscura invisible que puede constituir muchas veces la masa total de las galaxias visibles.

Como ya quedó claro antes, el concepto más favorecido de origen del universo es la teoría del Big Bang, de acuerdo con la cual el universo se creó a partir de una densa y caliente concentración enorme de materia (una singularidad) en una bola de fuego que explotó y se expandió para crear el espacio, el tiempo y toda la materia que lo conforme. Todo ello ocurrió, según los datos de que se disponen, hace ahora aproximadamente 15.000 millones de años, o 15 eones (109).

                                                                 El Big Bang y la Expansion del Universo

El universo se formó y apareció el tiempo y el espacio y la materia. Es lo que dice la teoría que antes hemos descrito. Sin embargo, hay muchas cuestiones que, por lo menos a mí, no han quedado claras y me llevan a preguntas tales como:

¿Cuántas partículas hay en el universo?

¿De dónde vino la sustancia del universo?

¿Qué hay más allá del borde del universo?

En realidad, no existen respuestas concretas para estas preguntas, porque para empezar no sabemos como es de grande el universo. Sin embargo, si podemos hacer algunas hipótesis.

El universo en el hombre | ArchivoRevista IdeeleDe dónde vino el universo y qué hay más allá de su borde? Por Isaac Asimov.  – La hora del Cuervo

Nadie sabe de dónde vino la sustancia del universo, no siempre la ciencia puede dar respuesta a todo, es la manera de regular los sistemas para obtener respuestas tras el duro trabajo del estudio, la investigación y el experimento. Hasta el momento nos falta información para contestar la pregunta.

Claro que siempre podemos especular. Isaac Asimov decía que por su parte, “la respuesta podía estar en la existencia de “energía negativa” que igualara la “energía positiva” ordinaria, pero con la particularidad de que cantidades iguales de ambos se unirían para dar nada como resultado” (igual que +1 y -1 sumados dan 0).

Y al revés: lo que antes era nada podría cambiar de pronto y convertirse en una pompa de “energía positiva” y otra pompa igual de “energía negativa”. De ser así, la pompa de energía positiva se convirtió en el universo que conocemos, mientras que en alguna otra parte, existiría el universo contrario, paralelo negativo.

Por mi parte, soy menos complicado y como rige el principio de la física conocida como Navaja de De dónde vino el universo y qué hay más allá de su borde? Por Isaac Asimov.  – La hora del Cuervo,

creo en un camino más simple y sencillo: El universo, en sus comienzos, produjo enormes cantidades de partículas de materia y de antimateria, y el número de una y otra no era igual sino que, no se sabe por qué razón, las partículas positivas eran más que las negativas. Todos sabemos que un protón, cuando se encuentra con un antiprotón (materia con antimateria) ambos se destruyen. Una vez destruidos todos los pares materia antimateria, quedó el sobrante de partículas positivas que es la materia de nuestro universo.

                                              Antimateria - EcuRed

De esa manera se formaron, con esas partículas positivas y los electrones (hadrones y leptones), se originaron grandes conglomerados de gas y polvo que giraban lentamente, fragmentándose en vórtices turbulentos que se condensaban finalmente en estrellas.

Estos conglomerados de gas y polvo podían tener extensiones de años luz de diámetro y, en algunas regiones donde la formación de estrellas fue muy activa, casi todo el polvo y el gas fue a parar a una estrella u otra. Poco o nada fue lo que quedo en los espacios intermedios. Esto es cierto para los cúmulos globulares, las galaxias elípticas y el núcleo central de las galaxias espirales.

Dicho proceso fue mucho menos eficaz en las afueras de las galaxias espirales. Las estrellas se formaron en números muchos menores y sobró mucho polvo y mucho gas.

De qué está hecho el Universo? ¿Dónde nos encontramos?La vía Láctea podría estar llena de civilizaciones muertas

                         Estamos en el interior del Brazo de Orión, una región tranquila de la Galaxia

Nosotros, los habitantes del planeta Tierra, nos encontramos en los brazos espirales de nuestra galaxia, estamos situados en la periferia a unos 30.000 años luz del centro galáctico y vemos las manchas oscuras que proyectan las nubes de polvo contra el resplandor de la Vía Láctea. El centro de nuestra propia galaxia queda oscurecido por tales nubes.

Estas nubes enormes de polvo cósmico es el material primario del que hacen las estrellas. Este material del que está formado el universo consiste en su mayor parte, como se ha dicho anteriormente, de hidrógeno y helio.  Los átomos de helio no tienen ninguna tendencia a juntarse unos con otros.  Los de hidrógeno sí, pero sólo en parejas, formando moléculas de hidrógeno (H2). Quiere decirse que la mayor parte del material que flota entre las estrellas consiste en pequeños átomos de helio o en pequeños átomos y moléculas de hidrógeno. Todo ello constituye el gas interestelar, que forma la mayor parte de la materia que circula en el universo entre las estrellas.

Imágenes tomadas en observatorio Paranal explican cómo se forma el polvo  interestelar | Lifestyle de AméricaEconomía : Artes, Diseño, Estilo,  Motores, Ocio, Placeres, Salud, Viajes, Aire libre | Lifestyle de  AméricaEconomíaEl Polvo Interestelar Brilla Por La Radiación Ionizante De Las Estrellas  Circundantes, Las Estrellas Azules Son Estrellas Calient Imagen de archivo  - Imagen de colorido, estrellado: 172018431

El polvo interestelar o polvo cósmico, que se halla presente en cantidades mucho más pequeñas, se compone de partículas diminutas, pero mucho más grandes que átomos o moléculas, y por tanto deben contener átomos que no son ni de hidrógeno ni de helio, son átomos de materiales más complejos.

El tipo de átomo más común en el universo, después del hidrógeno y el helio, es el de oxígeno. El oxígeno puede combinarse con hidrógeno para formar grupos oxidrilo (HO) y moléculas de agua (H2O), que tienen una marcada tendencia a unirse a otros grupos y moléculas del mismo tipo que encuentren en el camino, de forma que poco a poco se van constituyendo pequeñísimas partículas compuestas por millones y millones de tales moléculas. Los grupos oxidrilo y las moléculas de agua pueden llegar a constituir una parte importante del polvo cósmico.

Principales grupos funcionales. Todas las biomoléculas orgánicas son… | by  Isabel Becerril Poqui | MediumGrupos hidróxilos

En 1.965 se detectó por primera vez grupos oxidrilo en el espacio  y se comenzó a estudiar su distribución. Desde entonces se ha informado también de la existencia de moléculas más complejas que contienen átomos de carbono, así como de hidrógeno y oxígeno. El polvo cósmico contiene también agrupaciones atómicas formadas por átomos menos comunes y más complejos que los ya mencionados. Los materiales más pesados y complejos se fabrican en los hornos termonucleares, los núcleos de las estrellas, y cuando al final de su existencia como tales estrellas explotan en súper novas, estos materiales son lanzados al espacio a velocidades increíbles y siembra el vacío estelar de materiales complejos que más tarde sirven de material para formar nuevas estrellas de II generación.

En el espacio estelar se han detectado también átomos de calcio, sodio, potasio e hierro, observando la luz que esos átomos absorben.

Cometas - Concepto, clasificación, partes y característicasUna entrada de cometas hacia el Sistema Solar interior que puede cambiar  las nociones fundamentales de su evolución | Observación de Cometas de la  LIADA

Dentro de nuestro sistema solar hay un material parecido, aportado quizás por los cometas. Es posible que fuera de los límites visibles del sistema solar exista una conglomeración grande de cometas, y que algunos de ellos se precipiten hacia el Sol (atraídos por la gravedad). Los cometas son formaciones de fragmentos sólidos de metal y roca, unidos por una mezcla de hielo, metano y amoníaco congelados y otros materiales parecidos. Cada vez que un cometa se aproxima al Sol, se evapora parte de su materia, liberando diminutas partículas sólidas que se esparcen por el espacio en forma de larga cola. En última instancia, el cometa se desintegra por completo.

Meteoros, los restos de la formación del Sistema Solar | UNAM GlobalPlanetas del Sistema Solar - Astronomía - Definiciones y conceptos

A lo largo de la historia del sistema solar se han desintegrado innumerables cometas y han llenado de polvo el espacio interior del sistema solar.  La Tierra recoge cada día miles de millones de partículas de polvo (“micro-meteoroides”). Los científicos espaciales se interesan por ellas por diversas razones; una de ellas es que los micro-meteoroides de mayor tamaño podrían suponer un peligro para los futuros astronautas y colonizadores de la Luna.

Cuando me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, etc.

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

De los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3.

Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

                                               Descubrimiento del núcleo

Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1.909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original.

De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

             La Energía de las Estrellas: de los núcleos atómicos a los núcleos estelares  by Oscar Moreno DiazNúcleo solar - Wikipedia, la enciclopedia libre

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

What Is a Supernova? | NASA Space Place – NASA Science for Kids

Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

                                           Ciencia Regional: Evolución Estelar | Academias EXPLORA Valparaíso

Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas).

¡Qué barbaridad!

El recorrido que nos ofrece la Ciencia es:

Índice

emilio silvera

 


* Nucleones: partículas que constituyen los principales componentes del núcleo atómico (protones y neutrones).

Lo que surge de eso que llamamos vacío

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Aunque pequemos de reabundancia, en esta sección vamos a volver a tratar algunas descripciones que ya hemos tocado anteriormente, especialmente cuando hablamos del modelo estándar.

EL MODELO ESTÁNDAR DE LA FÍSICA DE PARTÍCULAS, Ciencias Para Todo con Jaume  Campos - YouTube

Cualquier grupo partículas que anden rondando por ahí presentan una o más de las siguientes interacciones o fuerzas fundamentales entre ellas. Por un lado se tiene la gravitación y el electromagnetismo, muy conocidas en nuestra vida cotidiana. Pero hay otras dos fuerzas, que no son tan familiares, que son de tipo nuclear y se conocen como interacciones fuertes y débiles.

Las 4 fuerzas del universo | Astronomía - Aficionados Amino

La gravitación afecta a todas las partículas, es una interacción universal. Todo cuerpo que tiene masa o energía está sometido a esta fuerza. Aunque es la más débil de las interacciones, como las masas son siempre positivas y su alcance es infinito, su efecto es acumulativo. Por ello, la gravitación es la fuerza más importante en cosmología.

Clase 21-Como es el movimiento de una particula cargada dentro de un campo  magnetico - YouTube

La fuerza electromagnética se manifiesta entre partículas con cargas eléctricas. A diferencia de las demás, puede ser de atracción (entre cargas de signos opuestos) o de repulsión (cargas iguales). Esta fuerza es responsable de la cohesión del átomo y las moléculas. Mantiene los objetos cotidianos como entidades con forma propia. Un vaso, una piedra, un auto, el cuerpo humano. Es mucho más fuerte que la gravitación y aunque es de alcance infinito, las cargas de distinto signo se compensan y sus efectos no operan a grandes distancias. Dependiendo de las circunstancias en que actúen, estas interacciones pueden manifestarse como fuerzas eléctricas o magnéticas solamente, o como una mezcla de ambos tipos.

Leer más

Si las constantes fueran variables en el teimpo y en el espacio…mala...

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

constante de Estructura Fina:

Constante universal que está relacionada con el desplazamiento de los niveles de energía de un átomo que presenta estructura fina. Su valor es α = 2π e2 /hc, donde e es la carga del electrón, h la constante de Planck, y c la velocidad de la luz en el vacío.

               Constante Estructura FinaCiencias Planetarias y Astrobiología : La constante de estructura fina en  nuestro Universo

Hemos podido leer por ahí, artículos diversos que nos dicen: “Estudios realizados con el Telescopio…en…, han venido a confirmar que, la constante de estructura fina fue más pequeña en el pasado, cuando el universo era más joven. Otros, sin embargo, nos han dicho lo contrario y dicen que la constante de estructura fina era mayor en el pasado. Tales discrepancias, al parecer, son debidas a que, cada grupo investigador lo hicieron de una parte distinta del Universo. Sin embargo, hay otros muchos que no creen en una constante de estructura fina variable (me cuento entre ellos), ya que, como decía Einstein, si el Universo no es igual en todas partes y en todo tiempo… Sino ¡qué chapuza de universo!

La Mecánica Cuántica: La estructura fina del hidrógenoESPRESSO pone a prueba las constantes de la Física | Instituto de  Astrofísica de Canarias • IAC

                         No son pocas las veces que se han puesto a prueba las constantes de la física

Algunos grupos de científicos sugieren que las variaciones en la constante de estructura fina nos dicen que las leyes de la física no son iguales en todas partes y, cuando leo algo así, me pregunto qué clase de físicos son estos que ponen en duda cuestiones que, como la constante α, han sido más que estudiadas a lo largo de la historia de la Física y, el resultado, es bien conocido.

De todas las maneras, una cosa está muy clara y no deja margen para las dudas: Si las constantes universales variaran con el paso del Tiempo, el Universo también lo haría, y, que sepamos, el Universo se manteiene constante con sus leyes para que nada varíe.

El descubrimiento de los cuásares - NaukasDescubren el primer cuásar del Universo

 

 

Los primeros quásares, descubiertos a finales de 1950, fueron identificados como fuentes de una intensa radioemisión. En 1960 los astrónomos observaron objetos cuyos espectros mostraban unas líneas de emisión que no se podían identificar. En 1963, el astrónomo estadounidense de origen holandés Maarten Schmidt descubrió que estas líneas de emisión no identificadas en el espectro del quásar 3C 273 eran líneas ya conocidas pero que mostraban un desplazamiento hacia el rojo mucho más fuerte que en cualquier otro objeto conocido.

Una de las cuestiones más controvertidas en la cosmología es porque las constantes fundamentales de la naturaleza parecen finamente ajustadas para la vida. Una de estas constantes fundamentales es la constante de estructura fina o alfa, que es la constante de acoplamiento de la fuerza electromagnética (usualmente denotada α, es un número que determina la fuerza de una interacción) y equivale a 1/137,03599911.

                                                             

 Los quásares son los objetos más lejanos del universo y en ellos se producen los sucesos más espectaculares del universo antiguo, debido a inmensos agujeros negros que habitan en su interior. Allí, se pidrían buscar muchas respuestas a preguntas que aún, no han sido contestadas.

Era una cuestión más o menos de rutina para John Webb, de la Universidad de Nueva Gales del Sur, y sus colegas. Se trataba de estudiar el comportamiento de una oscura constante de la naturaleza nada fotogénica, la constante alfa, fundamental para comprender la propagación de ondas electromagnéticas, como lo son las ondas de luz. Se le llama “la constante de estructura fina”, y en el trabajo usaron dos telescopios, uno en el norte, el telescopio Keck en Mauna Kea, Hawai, y otro en el sur, el Very Large Telescope (VLT) en Paranal, Chile. Las observaciones se referían a objetos extremadamente luminosos del pasado distante del cosmos, llamados quásares.
                                                  Telescopio de Keck imagen de archivo. Imagen de estrella - 49390231

                                                          Telescopio Keck, en Hawaii

 

                                              

                                                    Very Large Telescope, en Chile

 

Entonces, la sorpresa sobrevino. De acuerdo a los datos, hace 10 mil millones de años alfa parecería haber sido mayor en la dirección sur de nuestro planeta, y más pequeña en la dirección norte. Esto consolidaba lo que por más de 20 años han hallado algunos investigadores: que la estructura fina  del universo varía con el tiempo.
Una constante que varía es un oximoron. (Un oxímoron es una figura retórica en la que aparece una contradicción, combinándose dos palabras o expresiones de significado opuesto y que dan lugar a un sentido nuevo.).
                                                       El truco de un Premio Nobel para poder estudiar cualquier cosa de manera  sencilla

ES un secreto bien guardado, pero sabemos la respuesta a la vida, el universo y todo. El nº  es 1/137.

Este número inmutable determina cómo se queman las estrellas, cómo ocurre la química e incluso si existen átomos. El físico Richard Feynman , que sabía un par de cosas al respecto, lo llamó “uno de los mayores misterios de la física: un número mágico que nos llega sin comprenderlo”.

El hecho de que una “constante” universal varíe de este modo crea un nuevo escenario para nuestro conocimiento de la ciencia. No por nada Richard Feynman se refirió a ella como “one of the greatest damn mysteries of physics.”
                                               Estrella - Wikipedia, la enciclopedia libre
La variación encontrada en el análisis de Webb fue de una en cien mil partes. Si la constante de estructura fina fuera sólo un 4% mayor o menor, las estrellas no podrían crear reacciones nucleares creando en sus interiores los átomos de carbón y oxígeno, los elementos sobre los cuales se basa la vida como la conocemos

No será la constante más famosa del mundo, pero sin su valor actual ni siquiera estaríamos aquí. Ahora descubrimos que podría ni siquiera ser constante.

                                                   Constante de Estructura Fina | Stargazer

Estas son las cosas que se comentan de la constante de estructura fina que, como se ha dicho otras veces aquí, es la que guarda los secretos de ¡tantas cosas!, es el 137, es la h de Planc, la c de Einstein y la e de Dirac, es decir, ahí están implicadas el cuanto de acción de Planck, la mecánica cuántica, la velocidad de la luz en el vacío, la relatividad especial de Einstein, y, también el electrón de Dirac. Venir a estas alturas a decirnos que dicha constante es variable en el tiempo y el espacio…da que pensar. Pero sigamos.

Divulgación de la Ciencia: La constante de estructura fina

La constante de estructura fina o constante de estructura fina de Sommerfeld, normalmente representada por el símbolo α, es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado.

La expresión que la define  es

 \alpha = \frac{e^2}{\hbar c \ 4 \pi \epsilon_0} = 7,297 352 568 \times 10^{-3} = \frac{1}{137,035 999 11} .

donde e es la carga elemental,  \hbar = h/(2 \pi) es la es la constante reducida de Planck,  c es la velocidad de la luz  en el vacío, y ε0 es la permitividad del vacío.

¿Brillarían las estrellas de la misma manera si la constante de estructura fina fuese variable? Y, nosotros, ¿estaríamos aquí? El resultado de las dos respuestas sería que NO.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, no se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

                                           Ciencias Planetarias y Astrobiología : La constante de estructura fina en  nuestro Universo

         Existen algunas más pero, todas son intocables, si ellas varían las consecuencias serían funestas

Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del universo es hoy de poco más que 1 átomo por m3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La Nebulosa del Capullo desde CFHT

                                                ¿Qué provoca los colores de la Nebulosa del Capullo?

La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo.

                                                         Todos tenemos tendencia a interesarnos por alguna cosa : Blog de Emilio  Silvera V.

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad, ni en ellas está el poder de ahondar en el porqué de las cosas. Nosotros sí podemos hacer todo eso y más.

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, α, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. La constante de estructura fina están por todas partes.

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de α versión β, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de α, entonces, a menos que  αF > 0,3 α½, los elementos como el carbono no existirían.

No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

http://apod.nasa.gov/apod/image/1003/m78_torregrosa.jpg

Tampoco las Nubes moleculares en Orión, lugar cercano a nuestra casa, serían iguales si α fuese variable

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.

En fin, que nuestro Universo es como es porque las constantes fundamentales son las que son.

emilio silvera

Las Noticias del Universo: Una avalancha

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica, General    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Blog de Emilio Silvera V.El Universo? ¡Tenemos que conocerlo mejor! : Blog de Emilio Silvera V.Formación de elementos : Blog de Emilio Silvera V.Estrellas de neutrones y Púlsares : Blog de Emilio Silvera V.La perfección! ¿No serán simples rumores? : Blog de Emilio Silvera V.Siempre imaginando, sin dejar de avanzar! : Blog de Emilio Silvera V.Blog de Emilio Silvera V.Pin en universo

Llega el futuro y las cosas nuevas : Blog de Emilio Silvera V.2014 junio 04 : Blog de Emilio Silvera V. | Astronomy, Hubble, Dark matter

Hablar del Universo es hacerlo de lo más grande de lo que tenemos referencia. La inmensidad conocida y, dentro de esa “infinitud”, está todo aquello que como la Materia y el Espacio-Tiempo, regidos por leyes bien definidas y unas constantes universales que le dan su carácter, conforman el Cosmos conocido y en el cual, aparecimos nosotros para observar lo que estaba pasando y, sobre todo, para plantear muchas preguntas. La relatividad General nos trajo una nueva cosmología.

                  Resultado de imagen de Artículo de ocho páginas de Max Planck que puso la semilla de la mecánica cuántica

“Un día de 1.900, se publicó un artículo de ocho páginas que sentaron las bases de la Mecánica Cuántica. Su autor, Max Planck, cambió conceptos clásicos para traernos una nueva visión del universo infinitesimal (10 con exponente -35 m.)a una distancia conocida como límite de Planck donde los Quarks están confinados en tripletes formando protones y neutrones y la fuerza nuclear fuerte tiene su dominio y se deja sentir a través de los bosones portadores, los Gluones.”

Imagen y leyenda de este mismo Blog

A su vuelta, tendrá el récord de vuelo espacial continuo más largo de un astronauta estadounidense.

 

Rusia dice que no abandonará en el espacio al astronauta estadounidense Mark Vande Hei

El rover es capaz de transportar a dos astronautas a la vez.

 

Prueban en el desierto de California el rover que podrá transportar a dos astronautas y soportar las noches lunares

Ahora, hay pocas aeronaves alrededor de la Luna, pero se espera que esto cambie en un futuro reciente.

 

La Fuerza Aérea de Estados Unidos quiere patrullar el espacio desde la Luna

 

El 11 de junio volverá a pasar cerca de la Tierra.

Un ingeniero trabaja en la nave Clipper.
 

 

No pasa ni un sólo día sin que tengamos una buena cantidad de noticias nuevas sobre descubrimientos y fenómenos ocurridos en nuestro Universo que nos hablan de los temas más diversos:

                                                           Descubren la estrella más fría del Universo - EcoDiario.es

Un equipo internacional de astrónomos acaba de descubrir el astro más frío detectado hasta ahora fuera del sistema solar, a unos 75 años luz de la Tierra, informó hoy en un comunicado el Centro Nacional Francés de Investigación Científica (CNRS).

Se trata de una estrella enana marrón que forma parte de un sistema binario bautizado CFBDSIR 1458+10 y que tiene una temperatura de unos 100 grados centígrados, la misma a la que hierve el agua y parecida a la de una sauna.

A escala humana, 100ºC puede parecer una temperatura elevada, pero para una estrella, es ínfima, pensemos en que, la superficie de nuestro Sol está a unos 5.500ºC.

Si dos estrellas enanas marrones tienen temperaturas tan reducidas, es posible que tengan también propiedades diferentes a la de enanas marrones descubiertas previamente pero con mayores temperaturas.

Las estrellas marrones son en realidad, estrellas fallidas: No poseen la masa suficiente para que la Gravedad active active las reacciones nucleares que hacen brillar a las estrellas fusionando Hidrógeno en Helio (la Secuencia Principal).

Leer más