Abr
30
¿Sin la luz? ¡Sería otro Universo!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Nuestro Universo es de Luz, todo lo que podemos observar es posible gracias a la luz que incide en los objetos y se refleja en nuestras retinas, así podemos contemplar los planetas y las estrellas del cielo y cualquier cosa que, hecha de materia bariónica, es decir, materia radiante, se deja ver por nosotros. Decía Leonard Susskind que, para comprender la realidad en sus niveles más elementales, basta con conocer el comportamiento de dos elementos: el electrón y el fotón.
Todo el argumento de la electrodinámica cuántica (QED) gira en torno a un proceso fundamental: la emisión de un único fotón por un único electrón.
Cuando el movimiento de un electrón es alterado súbitamente, puede responder desprendiendo un fotón. La emisión de un fotón es el suceso básico de la mecánica cuántica:
Toda la luz visible que vemos, así como las ondas de radio, la radiación infrarroja y los rayos X, está compuesta de fotones que han sido emitidos por electrones, ya sea en el Sol, el filamento de una bombilla, una antena de radio o un aparato de rayos.
Los electrones no son las únicas partículas que pueden emitir fotones. Cualquier partícula eléctricamente cargada puede hacerlo, incluido el protón. Esto significa que los fotones pueden saltar entre dos protones o incluso entre un protón y un electrón. Este hecho es de enorme importancia para toda la ciencia y la vida en general. El intercambio continuo de fotones entre el núcleo y los electrones atómicos proporciona la fuerza que mantiene unido al átomo. Sin estos fotones saltarines, el átomo se desharía y toda la materia dejaría de existir.
Mientras que un electrón pertenece al grupo de partículas llamadas fermiones, los fotones pertenecen a la familia de los bosones. Intentemos comprender esta película que es la existencia…
…protagonizada por bosones…
Los fermiones hacen posible la materia “al estilo tradicional”, mientras que los bosones son elementos muy raros desde la forma de pensar a que estamos acostumbrados el común de los mortales. Para no complicarnos, la tabla periódica de elementos existe porque los fermiones no pueden “ser iguales”: no pueden solaparse uno sobre otro y se repelen si los obligamos (Principio de exclusión de Pauli).
Es lo que damos por hecho cuando hablamos de materia, que cada pedazo de ésta ocupa su lugar y tiene sus propias cualidades.
En cambio, los bosones carecen de este sentido de la individualidad, digamos que poseen “alma grupal” y, en su estado más puro, todos forman una misma “súper-simetría”.
Para entenderlo mejor, conviene recordar que las partículas no son bolitas como nos siguen enseñando en la escuela, sino que más allá de esta imagen existen como ondas o, al menos, sus funciones se equiparan al comportamiento de una onda.
En la década de 1920, Albert Einstein y el hindú Satyendra Nath Bose pronosticaron un quinto estado de la materia: el condensado de Bose-Einstein (BEC), el cual fue conseguido en laboratorio en 1995, algo que le valió el premio Nobel de 2001 a los científicos que lo lograron.
Imagínese una taza de té caliente, las partículas que contiene circulan por toda la taza. Sin embargo cuando se enfría y queda en reposo, las partículas tienden a ir en reposo hacia el fondo. Análogamente, las partículas a temperatura ambiente se encuentran a muchos niveles diferentes de energía. Sin embargo, a muy bajas temperaturas, una gran proporción de éstas alcanza a la vez el nivel más bajo de energía, el estado fundamental.
Cuando ciertas formas de materia [bosones] se enfrían hasta casi el cero absoluto, sus átomos se ponen en el estado de energía más baja, de modo que todos sus átomos vibran al unísono y se hacen coherentes. Las funciones de onda de todos los átomos se solapan, de manera que, en cierto sentido, un BEC [condensado de Bose-Einstein] es como un “super-átomo” gigante en donde todos los átomos individuales vibran al unísono.
Al enfriar los átomos, su velocidad disminuye hasta que las longitudes de onda de cada uno de ellos se vuelven casi planas, superponiéndose unas a otras para formar una única onda que los describe a todos.
Así que un BEC se forma cuando los átomos en un gas sufren la transición de comportarse como “bolas de billar” al estilo de la física clásica, a comportarse como una onda gigante de materia al estilo de mecánica cuántica:
Un BEC es un grupo de unos cuantos millones de átomos que se unen para formar una sola onda de materia de aproximadamente un milímetro de diámetro. Si creamos dos BECs y los colocamos juntos, no se mezclan como gases ordinarios ni rebotan como lo harían dos sólidos. Donde los dos BECs se superponen, ellos “interfieren” como las ondas: delgadas capas paralelas de materia son separadas por capas delgadas de espacio vacío. El patrón se forma porque las dos ondas se suman donde sus crestas coinciden, y se cancelan donde una cresta se encuentra con un valle — a lo cual llamamos interferencia “constructiva” y “destructiva” respectivamente. El efecto es similar al de dos ondas que se superponen cuando dos piedras son lanzadas a un lago.
(Fuente: ciencia NASA)
…ambientada en: el vacío…
El hecho de que se puedan intercambiar partículas virtuales modifica el vacío alrededor de los átomos, y esto lleva a una fuerza. De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.
Y ahora, retrocedamos un poco más en este asunto del misterio que nos ocupa. Gracias a la tecnología láser, la física ha podido comprobar el extremo poder de la luz. Los láseres pueden hacer que las partículas virtuales se vuelvan reales. Pero, primero, aclaremos conceptos…
Las “partículas virtuales” son partículas fundamentales que están constantemente surgiendo aparentemente de la nada y permanecen en el espacio-tiempo la friolera de una milésima de trillonésima de segundo –una cantidad que se forma poniendo una veintena de ceros a la derecha de la coma—. A pesar de denominarse “virtuales”, sus efectos son muy reales: la constante agitación de este burbujeo cuántico de partículas hace que el vacío tenga energía. Y esto es algo que afecta a la realidad, pues en ésta las fuerzas de atracción y repulsión dependen de la masa, y la masa no es sino energía expresada en unidades diferentes: E=mc².
En el uso corriente la palabra vacío significa espacio vacío, espacio del que se ha extraído todo el aire, vapor de agua u otro material. Eso es también lo que significa para un físico experimental que trabaja con tubos de vacío y bombas de vacío. Pero para un físico teórico, el término vacío tiene muchas más connotaciones. Significa una especie de fondo en el que tiene lugar el resto de la física. El vacío representa un potencial para todas las cosas que pueden suceder en ese fondo. Significa una lista de todas las partículas elementales tanto como de las constantes de la Naturaleza que se pondrían de manifiesto mediante experimentos en dicho vacío. En resumen, significa un ambiente en el que las leyes de la física toman una forma particular. […] Un vacío diferente significa leyes de la física diferentes; cada punto en el paisaje representa un conjunto de leyes que son, con toda probabilidad, muy diferentes de las nuestras pero que son, en cualquier caso, posibilidades consistentes. El modelo estándar es meramente un punto en el paisaje de posibilidades.
… la energía del vacío es tomada como la base para la constante cosmológica. A nivel experimental, la energía del punto cero genera el efecto Casimir, … Se dice que:
La energía del vacío es, por tanto, la suma total de las energías de todas las partículas posibles. Es la llamada “energía oscura” que hace que el universo se expanda, haciendo frente a la atracción de la gravedad, y que proporciona alrededor del 80% de la materia-energía al universo –un 26% es “materia oscura”, y sólo un 4% es la materia conocida hasta el momento—.
Pero, ¿cómo una partícula virtual se convierte en real? Es decir, ¿Cómo queda “atrapada” en el espacio-tiempo de forma más estable?
La teoría de cuerdas, también llamada de supercuerdas, pues la supersimetría es necesaria para incluir los quarks y otros fermiones, es una teoría …
La teoría de la supersimetría establece que, por cada partícula de materia, nace una gemela de antimateria. La antimateria es igual que la materia, pero con carga opuesta. Por ejemplo, el electrón tiene carga negativa, y su partícula de antimateria, el positrón, positiva. Materia y antimateria se aniquilan mutuamente pero, por algún motivo aún no aclarado, la simetría se rompió en algún momento, surgiendo más materia que antimateria, de ahí que nuestro universo, materia, pueda existir.
Pero hay algo más en todo esto. Y para ello, la luz es la clave.
Si nos movemos en el espectro electromagnético, los fotones con longitud de onda ultravioleta pueden expulsar a los electrones de los átomos. Pero veamos.
La luz estelar es la más abundante del Universo
Ya en los años 30, los físicos predijeron que un campo eléctrico muy fuerte, que no es sino un espacio alterado por la actividad de un montón de fotones coordinados, podría impulsar a las partículas virtuales con carga opuesta en diferentes direcciones, impidiendo que la materia y la antimateria se aniquilen.
Según el efecto de creación de pares, un fotón con energía suficiente, lo que equivale a tener el doble de la energía que posee un electrón en reposo, da lugar a una pareja de electrón y positrón. Aunque esto ya se consiguió en los años 90 a pequeña escala, gracias al desarrollo de la tecnología láser los científicos creen que estarán cerca de conseguir crear materia “en serie” mediante este proceso en unos pocos años. Por otra parte, una vez que existen las partículas, los fotones interactúan sin cesar con ellas, siendo absorbidos y emitidos por las mismas de manera ininterrumpida. Y de ello nace el movimiento gracias al cual todo existe en el espacio-tiempo. Sin movimiento, nuestra realidad desaparecería.
No se diferencia básicamente la obtención de un electrón-positrón, a la obtención de un protón-antiprotón, sino solamente en la energía del fotón, significa que son esencialmente lo mismo.
Así, si el fotón tiene suficiente energía, el par será electrón-positrón, caso contrario será un par virtual (absorción), si la energía del fotón fuere mayor, la diferencia estará dada por la velocidad opuesta de las antipartículas (masa de las antipartículas), correspondiente a la energía “sobrante” de acuerdo a E=mc2. Si la energía del fotón fuere suficiente, como para llegar al umbral mínimo, se creará un protón-antiprotón, y si fuere mayor, se manifestará en velocidad opuesta (masa de las antipartículas). La energía del fotón (cantidad de movimiento, efecto Compton) será la energía correspondiente al total de las dos antipartículas (masa, E=mc2)
La carencia de masa de un fotón está ligada a su movimiento. Para que un cuerpo alcance la velocidad de la luz, su masa ha de ser cero. Y, como Einstein explicó en su día, la luz se mueve siempre a la velocidad de la luz. Si pretendemos que un fotón se pare, en lugar de ralentizarse observaremos que desaparece. Y, como se ha dicho al principio, si estos “fotones saltarines” desaparecieran, toda la materia dejaría de existir.
Su esencia es el movimiento y su misión, según parece, hacer girar la rueda de la existencia.
Ello es así debido al impacto de los fotones sobre las partículas elementales. La energía transmitida por un fotón es inversamente proporcional a su longitud de onda. Cuanto menos longitud de onda, más energía. Así, un fotón de luz visible tiene la energía suficiente para hacer reaccionar a un bastón de la retina. Si nos movemos en el espectro electromagnético, los fotones con longitud de onda ultravioleta pueden expulsar a los electrones de los átomos. Más allá, los rayos gamma pueden romper protones y neutrones…
Cuando la tensión llega a un punto insostenible la corteza de neutrones revienta en un temblor estelar, dejando escapar rayos gamma y rayos X. En una potencia descomunal capaz de destruir otras particulas cuando interaccionan.
Y ahora, vayamos al meollo de la cuestión e indaguemos en la cita con que se iniciaba este artículo: ¿qué hace que los electrones absorban y emitan fotones? Esto, en otros términos, vendría a ser lo mismo que preguntarnos: ¿por qué existe nuestro universo?
…con un misterio: el 137…
¿Qué determina el momento exacto en que un electrón emite un fotón? La física cuántica dice que nada lo hace, pues la Naturaleza es caprichosa en sus niveles más elementales. Aunque no es caótica en extremo, sólo probabilística.
A diferencia de la física newtoniana, la mecánica cuántica nunca predice el futuro en función del pasado. En su lugar, ofrece reglas muy precisas para computar la probabilidad de varios resultados alternativos de un experimento.
La constante de estructura fina fue introducida en la física en 1916 por Arnol Sommerfeld, como una medida relativista de las desviaciones en las líneas espectrales atómicas de las predicciones hechas por el modelo de Bohr.
Históricamente, la primera interpretación física de la constante de estructura fina, , fue el cociente de la velocidad del electrón en la primera órbita circular del átomo de Bohr relativista con la velocidad de la luz en el vacío. De igual forma, era el cociente entre el momento angular mínimo permitido por la relatividad para una órbita cerrada bajo fuerza electromagnética y el momento angular mínimo permitido por la mecánica cuántica. Aparece de forma natural en el análisis de Sommerfeld y determina el tamaño de la separación o estructura fina de las lineas espectrales del hidrógeno.
La QED predice una relación entre el momento magnético sin dimensiones del electrón (o el g-factor de Lande, ) y la constante de estructura fina . Una nueva medida de usando un ciclotrón cuántico de un electrón, junto con un cálculo QED que involucra 891diagrama de Feynman, determina el valor actual más preciso de :
esto es, una medida con una precisión de 0.70 partes por mil millones. Las incertidumbres son 10 veces más pequeñas que aquellas de los métodos rivales más próximos. Las comparaciones de los valores medidos y los calculados de suponen un test muy fuerte de QED, y ponen un límite para cualquier estructura interna del electrón posible.
En 2010, el científico John Webb publicó un estudio en el que revelaba datos que afirmaban que la constante no era igual en todo el universo y que se observaban cambios graduales en torno a un eje concreto de éste.
Algunos científicos sostienen que las constantes de la naturaleza no sean en realidad constantes, y la constante de estructura fina no escapa a estas afirmaciones.
Físicos de la University of New Wales (UNSW) tienen una teoría cuando menos controvertida, y es la de que la constante de estructura fina, α (alpha), en realidad no es constante. Y estudian los alrededores de una enana blanca lejana, con una gravedad más de 30.000 veces mayor que la de la tierra, para comprobar su hipótesis.
Recientemente, la detección de los mapas de enlace-dimensional de la constante de estructura fina
Y la probabilidad de que un electrón emita o absorba un fotón es la constante de estructura fina. El valor de esa constante es 1/137.
En otras palabras, sólo un afortunado electrón de cada 137 emite un fotón. Este es el significado de alfa: es la probabilidad de que un electrón, cuando se mueve a lo largo de su trayectoria, emita caprichosamente un fotón.
El inverso de la constante de estructura fina es 137. Desde su descubrimiento, éste número ha traído de cabeza a los grandes científicos.
Fue Richard Feynman, precisamente, quien sugirió que todos los físicos pusiesen un cartel en sus despachos o en sus casas que les recordara cuánto es lo que no sabemos. En el cartel no pondría nada más que esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina. Este número guarda relación con la probabilidad de que un electrón emita o absorba un fotón. La constante de estructura fina responde también al nombre de alfa, y sale de dividir el cuadrado de la carga del electrón por el producto de la velocidad de la luz y la constante de Planck. Tanta palabra no significa otra cosa sino que ese solo número, 137, encierra los meollos del electromagnetismo (el electrón), la relatividad (la velocidad de la luz) y la teoría cuántica (la constante de Planck). Menos perturbador sería que la relación entre todos estos importantes conceptos hubiera resultado ser un uno o un tres o quizás un múltiplo de pi. Pero ¿137?
“Lo más notable de este notable número es su a-dimensionalidad. La velocidad de la luz es de unos 300.000 kilómetros por segundo. Abraham Lincoln medía 1,98 metros. La mayoría de los números vienen con dimensiones. Pero resulta que cuando uno combina las magnitudes que componen alfa, ¡se borran todas las unidades! El 137 está solo: se exhibe desnudo a donde va. Esto quiere decir que a los científicos de Marte, o a los del decimocuarto planeta de la estrella Sirio, aunque usen Dios sabe qué unidades para la carga y la velocidad y qué versión de la constante de Planck, también les saldrá 137. Es un número puro.”
(Leon Ledderman, La partícula divina)
Uno de los padres de la mecánica cuántica, Wolfgang Pauli, se obsesionó tanto con este número que dijo que, de poder hacerle una pregunta a Dios, sería esta: “¿Por qué 137?”
Gracias a su gran amistad con Carl G. Jung, Pauli conoció el mundo “alternativo” de los estudios sobre la psique y accedió a la tradición esotérica que ha acompañado al hombre desde el principio de los tiempos. Es así como supo que 137 se aproxima al valor correspondiente al ángulo áureo. Esto es, la versión circular del número áureo o φ (phi).
En realidad, el ángulo de oro es, más o menos, 137,5º, y está presente en todo proceso natural donde se dé una combinación de espirales. Así, por ejemplo, las hojas de una planta surgen a lo largo del tallo cada 137,5º, pues así se logra la mayor eficiencia de espacio y de captación de la luz solar, ya que únicamente con éste ángulo es posible evitar que ninguna hoja obstaculice a las demás en la toma de luz sin que existan espacios muertos o vacíos.
Esta semejanza entre los valores de la constante de estructura fina y el ángulo áureo llevó a la doctora Raji Hervovska a buscar el ángulo áureo en el universo atómico (véase versión en español de su estudio).
Que esto sea así no debería extrañarnos, pues si el número áureo es una constante en toda la Naturaleza, su versión angular es la apropiada para estar presente en el universo cuántico, donde, recordemos, los elementos básicos de la realidad se reducen a funciones de onda.
…y un final místico.
Los fotones no tienen masa ni carga eléctrica. Sin embargo, pueden “extraer” del vacío partículas con masa y carga, tanto negativa como positiva.
La función de onda
- “El punto de partida de la denominada Mecánica Ondulatoria, desarrollada por Schrödinger, es la onda de materia de de Broglie y la consideración del átomo como un sistema de vibraciones continuas.
- Si hay una onda «asociada» a cada partícula material, parece que debiera haber una ecuación de ondas que rija su evolución. Schrödinger la estableció en una serie de trabajos que publicó en 1926, sus famosas «cuatro comunicaciones«, pero no va a ser él mismo el que sea capaz de interpretar correctamente la función solución de su famosa ecuación.”
Más allá de la materia y la energía, del tiempo y del espacio, el concepto de función de onda nos introduce en una realidad abstracta de donde surge todo. Y si, como hemos dicho, a menor longitud de onda mayor energía, también es posible afirmar que, en eso que David Bohm llamaba “orden implicado”, cuanto menor es la longitud de una onda cuántica, mayor es la presencia de masa en el espacio-tiempo.
Para la física, las matemáticas se han mostrado como la realidad que subyace a la materia. Todo se puede reducir a números, entidades que forman y organizan el espacio-tiempo. En este nivel de realidad, ni la materia ni la energía existen como tales, sino que demuestran ser el resultado de la interacción de entidades abstractas.
Fuentes diversas.
Abr
29
Sí, es mucho, ¡lo que no sabemos!
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Como siempre nos pasa cuando no sabemos alguna cosa, nuestra imaginación se desboca y plantea mil y una solución de lo que podría ser. , nos ocurre con el Universo y los secretos que aún no hemos podido desvelar. Construimos modelos que nos den una satisfactoria explicación o menos aceptable, buscamos remedio -no pocas veces poniendo “parches”- para cuestiones que no podemos explicar, y nos inventamos escenarios y situaciones que, tampoco sabemos si alguna vez podremos comprobar: materia oscura, agujeros de gusano, universos paralelos…
Cuando oímos la palabra hiperespacio todos pensamos en un lugar por encima, alto, más allá del “espacio normal” de tres dimensiones en el que nos movemos en nuestra vida cotidiana. Y, las ideas se pueden mezclar para confundirnos más, con espacios vectoriales lineales que pueden tener un infinito de dimensiones, como si fuera un espacio de Hilbert. Es como un túnel situado fuera de este mundo nuestro que nos puede llevar hacia regiones lejanas en la galaxia o, incluso, en otras galaxias y hasta en otro universo, sin tener que recorrer el espacio que de esos lejanos lugares nos separa.
Nuestra fantasía dibuja de mil maneras el Hiperespacio ¿Una puerta a otro lugar?
Michio Kaku, un físico que nos habla de dimensiones extra y de hiperespacio, en una de sus obras comienza diciendo:
“¿Existen dimensiones superiores? ¿Están los mundos invisibles más allá de nuestro alcance, más allá de las leyes corrientes de la física? Aunque las dimensiones superiores hayan sido históricamente cosa de charlatanes, místicos y de escritores de ciencia ficción, muchos físicos teóricos creen ahora, no solo que las dimensiones superiores existen, sino que además pueden llegar a explicar algunos de los más profundos secretos de la Naturaleza. Aunque queremos aclarar que no existen evidencias experimentales de la existencia de dimensiones superiores, en principio, pueden llegar a resolver el problema esencial de la física: la unificación de todo el conocimiento físico a un nivel fundamental.”
Hemos mirado por todo el Universo y, añadiendo el tiempo como otra dimensión, vemos que es tetradimensional, no podemos ver dimensiones que algunas teorías dicen que están compactadas en el límite de Planck.
Michio Kaku, que en sus escritos nos dice que ve el futuro, nos cuenta:
“Mi propia fascinación con las dimensiones superiores comenzó durante mi infancia. En uno de mis felices recuerdos de la infancia permanecía agachado junto al estanque del Jardín del Te Japonés de San Francisco, contemplando hipnotizado las carpas de colores nadando suavemente bajo los nenúfares. En esos momentos de calma, me hacia una tonta que solo un niño podría hacerse: ¿Cómo ven las carpas en aquel estanque el mundo que les rodea ?. Habiendo pasando su vida entera dentro de aquel estanque, las carpas creerían que su universo consiste de agua y de nenúfares; solo vagamente conscientes de la posibilidad que un mundo extraño existiese por encima de la superficie.
Mi mundo escapaba a su comprensión. Me intrigaba que pudiese estar a solo unos centímetros de las carpas y que al mismo tiempo estuviésemos separados por un abismo. Concluí que si hubiese algún científico entre las carpas se mofaría de cualquier pez que propusiese que un mundo paralelo podría existir por encima de los nenúfares. Un mundo invisible allá del estanque no tendría sentido para la ciencia.”
Claro que, esas explicaciones de Michio Kaku, no acaban de despejar las incógnitas de lo que es el Universo hiper-dimensional que sería para las carpas este mismo universo nuestro. El nos lleva a la de que, , al igual que le ocurre a las carpas de su estanque, tengamos a nuestro alrededor “otras dimensiones” que no somos capaces de ver. Pero yo me sigo preguntando:
Miro con atención y no consigo ver esas otras dimensiones
¿Dónde, pues, ha de hallarse el universo hiper-dimensional de la simetría perfecta? Ciertamente, no aquí y ahora; el mundo en que vivimos está lleno de simetrías rotas, y sólo tiene cuatro dimensiones, tres de y una temporal. La imaginación que nunca descansa, nos lleva a una en la cosmología, la cual nos dice que el universo super-simétrico, si existió, pertenece al pasado. Como nos decían los autores de la Teoría Kaluza-Klein, esas otras dimensiones se quedaron compactadas cuando el universo se desarrolló y, aunque son parámetros necesarios para las grandes teorías de cuerdas y supercuerdas… ¡No las vemos por ninguna parte!
Hace tiempo ya que buscamos esas otras dimensiones pero,,, ¿Dónde están?
La implicación de eso es que el universo tuvo que comenzar en un estado de perfección simétrica, desde el que evolucionó a este otro universo menos simétrico que conocemos y en el que vivimos. Si es así, la de la simetría perfecta sería la del secreto del origen del universo, y la atención de sus acólitos puede volverse con buenas razones, como las caras de las flores al alba, hacia la blanca luz de la génesis cósmica. Alguna vez hemos podido comentar aquí de aquella simetría primera, cuando todas las fuerzas de la naturaleza estaban unidas en una sola fuerza y, a medida que el universo se enfrió en los infiernos del big bang, aquella simetría se rompió, y se desgajó en las cuatro fuerzas que ahora conocemos y, algunos dicen que, se formaron las cuatro dimensiones que podemos ver y, otras, quedaron confinadas en el límite Planck. La simetría quedó rota para siempre.
El Planck produce la imagen más detallada del universo primigenio
Así que las teorías se han embarcado a la de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
El Universo está lleno de simetrías
Recordemos que: “En griego, la simetría significa “la misma medida” (syn significa “juntos”, como en sinfonía, una unión de sonidos, y metrón, “medición”); así su etimología nos informa que la simetría supone la repetición de una cantidad medible. Pero la simetría para los griegos, también significaba la “la debida proporción”, lo que implicaba que la repetición involucrada debía ser armoniosa y placentera. Así, la Naturaleza nos está indicando que una relación simétrica debe ser juzgada por un criterio estético .”
De esa manera, como digo más arriba, buscar “la simplicidad primigenia” y, para ello, hacemos cábalas con dimensiones más altas que nos devuelva una simetría superior que nos lo explique todo y donde todo quepa sin que surjan los indeseables infinitos que aparecen cuando tratamos de juntar la Mecánica cuántica con la Relatividad general, es decir, cuando queremos unificar el “universo” de lo infinitesimal con el “universo” de lo muy grande.
Humo simétrico
Muchos de nosotros, la mayoría, conocimos la simetría en sus manifestaciones geométricas de aquellas primeras clases en la Elemental, más tarde en el arte y, finalmente, la pudimos percibir en la Naturaleza, en el Universo y en nosotros mismos que, de alguna manera, somos parte de ese Universo de simetría.
También en nosotros está presente la simetría
Los planetas son esféricos y, por ejemplo, simetría de rotación. Lo que quiere indicar es que poseen una característica -en este caso, su circular- que permanece invariante en la transformación producida cuando la Naturaleza los hace rotar. Las esferas pueden hacerse rotar en cualquier eje y en cualquier grado sin que cambie su “personalidad” , lo cual hace que sea más simétrica.
La simetría está en la Naturaleza que también, en lo simétrico, nos muestra la Belleza
Sí, a nuestro alrededor podemos contemplar la simetría que en el Universo quedó rota. Así las cosas, nuestra imaginación que es libre de “volar” hacia espacios desconocidos y hacia escenarios imposibles, también puede, no sólo escenificar el Hiperespacio, sino que, llevando la fascinación aún más lejos, ¿quién sabe? (como tántas veces hemos comentado), si los teóricos no habrán dado en el y, con su intuición “infinita”, haber podido vislumbrar que toda la materia del universo está formada por cuerdas vibrantes y armónicas que se conjugan de diferentes maneras, produciendo con sus pulsos, nuevas partículas en un “universo hiper-dimensional” que no podemos ver pero que, está ahí.
¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!
Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío. Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. pues, el universo estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.
Lo cierto es que, estemos en el Universo que podamos estar, lo que no podemos negar es que es, ¡bello!
Los físicos, en su incansable de respuestas, nos llevan a “cosas” como la “super-gravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿Qué es la super-gravedad? Meternos en esos berenjenales matemáticos sería algo engorroso y (para muchos) aburrido.
¿Qué pasa entonces con la super-gravedad? Aquí, al principio las cosas parecen mucho mejores e incluso al nivel de tres lazos nada parece ir mal. Los entusiastas afirman que esto no podía ser una coincidencia y que la teoría final de todas las fuerzas podría estar a la . ¿Una teoría de todas las fuerzas? ¿Podemos imaginar una cosa así? ¿Sería posible una formulación exacta de las leyes de la física? ¿Se podría conseguir eso alguna vez?. Claro que, todo esto nos lleva a “universos” insospechados, lugares cada vez más pequeños en un reino donde el espacio y el tiempo dejan de existir, ya no podemos hablar de puntos y, nos vemos obligados a tener que hablar de cuerdas vibrantes.
Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros. Esta masa la conocemos con el de masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que la es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!). Esto significa que tratamos de localizar una partícula con la precisión de una longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, , sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.
En las explosiones de Supernovas está presente la Gravedad
Si la Gravedad llegara a ser una interacción fuerte, sería un verdadero desastre. No se puede ni imaginar lo que haría, en ese caso, la gravedad, tan difícil como “la cromodinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos de estudiar más intensa es esta fuerza, hasta el extremo de que incluso los intentos más burdos para describirla darán lugar a resultados completamente absurdos.
Todo lo que conocemos acerca de la naturaleza será inválido en la escala de Planck, y nosotros que pensábamos que conocíamos todo con gran precisión. La Teoría de Einstein acerca de la naturaleza de la fuerza gravitatoria funciona espléndidamente, parte de un principio muy fundamental, uno que prácticamente tiene que ser correcto: la gravedad es una propiedad del y el tiempo mismos. El y el Tiempo están “curvados” decir exactamente lo que sucede a un trozo de papel cuando se humedece: de deforma y no hay manera de alisarlo ni pasándole la plancha caliente. La fuerza Gravitatoria es la responsable de semejante rugosidad en el espacio-tiempo.
Hasta aquí, al menos sí hemos podido comprender. Sin embargo, cuando nos sumergimos en el océano profundo del hiperespacio y del universo extra-dimensional… ¡las cosas cambian! Estamos perdidos y, nuestras mentes no encuentran esa luz que ilumine el entendimiento para , de una vez por todas, todo eso puede estar ahí o, simplemente, son falsos escenarios que nuestras mentes imaginan para huir de la cruda realidad.
Claro que, por otra parte, como nos pasó con la paradoja del gato de Schrödinger que, al principio era tan extraña que uno podía recordar la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Carroll: “Allí me verás”, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.
¡Lo que no sea capaz de nuestra imaginación! Y, a pesar de su “infinita riqueza, la Naturaleza la supera y contiene y ocurren cosas inimaginables.
Algunos, como Alejandro Jodorowsky piensan que: “Si tenemos un cuerpo imaginario, es también necesario que nos demos cuenta que tenemos una mente imaginaria. Tenemos pensamientos inconscientes, percepciones olfativas, audiciones, tactos, visiones, sabores mucho más desarrollados que los que creemos “reales”. Vemos más de lo que creemos ver, oímos más de lo que creemos oír, gustamos más de lo que creemos gustar, olfateamos más de lo que creemos olfatear, percibimos con el tacto mucho más de lo que creemos percibir, pensamos más de lo que creemos pensar. No sentimos por completo nuestras sensaciones, tenemos pensamientos de los que no nos damos cuenta, vivimos dentro de limites perceptivos, provocados desde que nacemos por nuestra familia y luego por la sociedad. Nos sumergen en prejuicios y concepciones anquilosadas de la realidad y de nosotros mismos. Debemos aprender a pensar con libertad, (no digo con “inteligencia”, digo con “libertad”). El mágico consiste en disolver los límites de nuestra inteligencia y de nuestras percepciones. Estos limites nos encierran en calabozos irreales que nos impiden a la conciencia suprema.”
Si realmente eso es, estaríamos limitados por nuestras propias concepciones del mundo. Sin embargo, ahí están los físicos teóricos que se salen del “régimen” establecido y, sus mentes generan e imagina mundos y universos que, siendo muy dispares de este nuestro que creemos real, podrían ser, los auténticos mundos y los auténticos paisajes que la Naturaleza trata de mostrarnos y que, nosotros, nos empecinamos en no querer ver.
Antes, para conocer el mundo, teníamos que hacer grandes viajes, realizar grandes aventureras de las que nunca sabíamos cómo podríamos salir. El riesgo y la ventura era el pan de cada día para aquellos que querían descubrir otras tierras, otros pueblos y culturas. Hoy día, las cosas han cambiado. No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Y, cualquier joven, sentado tranquilamente en su casa, con un potente , puede realizar “aventuras” que antes, eran imposibles.
Sentado cómodamente ante este sencillo conjunto de inventos tecnológicos, cualquier joven, puede construir e inventar “mundos” de inimaginable belleza. Y, lo que parecía un sueño, podrían recrear el de las galaxias, una colisión entre dos agujeros negros, e incluso, una explosión supernova.
Algunas veces me sorprendo al constatar que, algunas llegan a tu mente sin haberlas llamado en ese preciso momento. Son preguntas que te hiciste hace muchísimo tiempo y que no tuvieron una respuesta adecuada. Sin embargo, la experiencia, el ir acumulando y algún que otro saber, finalmente determina esa llegada del por qué de las cosas. Todo, sin que nos demos , queda registrado en nuestras mentes y, en el momento oportuno… ¡surge como por arte de magia aquello que queríamos saber! Ciertos parámetros mentales retienen esas cuestiones complejas y, finalmente, la mente consigue llegar a la resolución deseada y correcta que aparece ante nuestros ojos y nos producen, a pesar de todo, algo de asombro de que podamos haber llegado tan lejos en la comprensión de la Naturaleza.
Cien mil neuronas, tantas como estrellas tiene nuestra Galaxia. Conexiones sin fin
¿Cuántas veces no habré puesto aquí imágenes como la de arriba que quiere significar las conexiones del cerebro que generan los pensamientos? Y, la cuestión es, que esas conexiones no se limitan a estar ahí en ese ámbito reducido que llamamos cerebro, sino que, utilizando ese otro “ente” inmaterial y que llamamos mente y que también nos mantiene conexionados con el Universo, del que, al fin y al cabo, formamos parte.
Esta sí es una realidad, sin ella, el mundo no sería tal como lo conocemos. Sabemos que si variara la carga del electrón y la masa del protón en una diezmillonésima parte, las cosas serían totalmente diferentes, es decir, nosotros, no estaríamos aquí para comentar todas estas cuestiones.
Sin embargo, y a pesar de todo, no podemos negar nuestras limitaciones tanto de percepción como intelectuales para reconocer “el mundo” tal como es. Es “nuestro mundo” que, cuando sea visitado por “otros” con distintas percepciones y sentidos, pudiera ser un mundo muy distinto al que nosotros percibimos y, “ellos” podrían “ver” cosas que nosotros no vemos.
Vivímos en nuestra propia realidad, la que forja nuestra mente a través de los sentidos y la experiencia. Incluso entre nosotros mismos, los seres de la misma especie, no percibimos de la misma manera las mismas cosas. Sí, muchos podemos coincidir en la percepción de , sin embargo, otros muchos diferirán de nuestra percepción y tendrán la suya propia. Esa prueba se ha realizado y la diversidad estuvo presente.
Existen algunas discrepancias que tratamos de solucionar
No, no será nada despejar las incógnitas presentes en esta inmensa complejidad que llamamos Universo. Pero, firmemente creo que las dimensiones extra están en nuestras Mentes, donde todo se traduce a Química y Luz. Energías de velocidades alucinantes que recorren el enmarañado entramado de neuronas y que hace posible todas y cada una de las maravillas que “”mente se producen en nosotros y que no siempre sabemos traducir ni comprender.
¡Qué complicado resulta ser todo!
emilio silvera
Abr
28
Vamos, imparables, hacia la nueva Física
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
En nuestro Universo existen cosas extrañas que, seguramente, cuando sepamos más, sabremos su explicación: ¿Por qué no hay anti-bariones primordiales en el Universo mientras que hay un barión por cada mil millones de fotones, dicho de otra manera, el origen de la materia. Claro que, para explicar este hecho necesitamos comprender como se comportaba nuestro Universo a temperaturas tan altas como un billón de grados.
Las interacciones entre partículas elementales (interacciones electromagnéticas, débiles y fuertes) están clasificadas por su entidad (constantes de acoplamiento) y por las partículas “transportadoras” de las mismas (partículas de spín = 1 0 bosones de gauge). Todas ellas están bellamente descritas por lo que se conoce habitualmente como Modelo Estándar de las interacciones electrodébiles y fuerte. Estamos deliberadamente dejando al margen las interacciones gravitatorias que, al menos a nivel clásico, están perfectamente descritas por la Teoría de la Gravitación o Relatividad General formulada por A. Einstein en 1915 y 1916.
El Modelo Estándar nos dice que las partículas elementales, cuya interacción se detecta en particular en los grandes aceleradores como el LHC que está funcionando el el CERN (Ginebra-Suiza), no son los átomos, ni los núcleos atómicos, ni siquiera los protones y neutrones de los que están constituidos, sino los Quarks, de los que están compuestos neutrones y protones, los leptones cargados eléctricamente (partículas ligeras como los electrones que están en la corteza de los átomos o muones que aparecen en ciertas desintegraciones), los leptones neutros o neutrinos (partículas enigmáticas con una masa pequeñísima comparada con el resto del espectro) y partículas transportadoras de las interacciones como fotones (cuanto de luz) transportadores de las interacciones electromagnéticas, los bosones W+, W– y Z0 que transportan las interacciones electrodébiles y los Gluones que transportan la interacción fuerte.
Partiendo de los Quarks, se conforma el núcleo hecho de protones y neutrones. Los Quarks, confinados dentro de estos nucleones, quedan sujetos por la fuerza fuerte a través de las partículas mediadoras, los Gluones. Para formar el átomo, se necesitan electrones que, rodean el núcleo en número igual al de protones que contiene, y, como el protón está cargado eléctricamente con fuerza positiva, ésta se equilibra mediante la negativa de la misma potencia que aportan los electrones. De esta manera, el átomo queda debidamente estabilizado para poder unirse a otros para formar células que, a su vez se unen para formar moléculas que, a su vez, se juntan para formar materia.
Y pensar que todo lo que ahí podemos ver, está formado por esas partículas
Todas estas partículas de las que podemos hablar ya han sido descubiertas, mientras que la única incógnita del Modelo Estándar reside en el mecanismo por el que los fermiones elementales y ciertas partículas transportadoras de las interacciones como la W y Z adquieren masa. La Teoría de la “ruptura expontánea de simetría electrodébil” implica que tiene que existir una partícula aún no descubierta, el Bosón de Higgs, que es responsable de que las anteriores partículas, incluida ella misma, sean masivas.
¿Cómo será ese Bosón de Higgs y, de qué mecanismo se vale para dar masa a las demás partículas? Será el de arriba ese Bosón que camina por el Campo de Higgs y, el rozamiento con el mismo es el que le proporciona la masa al mismo tiempo que se ve frenado por él.
Todos hemos oído hablar hasta la saciedad de que el Bosón de Higgs debía ser descubierto por el Colisionador LHC y tal descubrimiento añadiría una buena ráfaga de luz sobre algunos enigmas, propiedades no bien conocidas de las interacciones débiles. Pues ya lo descubrieron y lograron más datos sobre el misterio.
El Modelo Estándar es pues la estructura matemática que describe las interacciones entre las partículas elementales conocidas. El Modelo Estándar, como cualquier otra teoría física, tiene que ser capaz de describir de froma correcta los datos experimentales que son los que realmente establece el veredicto último de una teoría. En particular el Modelo Estándar ya ha sido (y está siendo) ampliamente contrastado con los datos experimentales de las colisiones de altas energías, como el Large Electrón Positrón (LEP) que estuvo funcionando en el CERN hasta el año 2000 y el Tevatrón que está en funcionamiento en el Laboratorio Fermilab (En Chicago, Illinois, USA), así como en aceleradores de baja energía.
“Debajo del Anillo Principal del Fermilab en el mismo túnel, hay otro sincrotrón, un anillo magnético superconductor llamado Tevatrón, que aumenta la energía a 1 TeV. Hay un anillo de almacenamiento de antiprotones que logra energías de colisión de aproximadamente 1,8 TeV.”
El Tevatron, que ha sido el acelerador de partículas más potente del mundo hasta que entró en funcionamiento el LHC europeo, cerró el pasado 30 de de septiembre de 2011, de forma definitiva, tras 26 años de operación.
El resultado obtenido es que el acuerdo entre la teoría y los resultados experimentales es concluyente, llevándose el acuerdo hasta niveles de 0,1%. Sin embargo, a pesar de que los resultados experimentales no indiquen apenas fisuras en el Modelo Estándar existen motivaciones acuciantes para ir más allá de éste. Está claro que, el principal objetivo del Modelo está en descubrir los orígenes de la Materia, entendiendo por tal los protones y neutrones de los que estamos hechos nosotros mismos, es decir, la materia bariónica.
En este lugar, el Fermilab, se llevan a cabo proyectos de enorme importancia para conocer lo que la materia es. Y, de la misma manera que en el CERN, se realizan colisiones de haces de partículas que reproducen aquellos momentos de la creación, el Big Bang en miniatura para, a partir del estudio de lo que ahí pasa, poder llegar a comprender aquellos primeros momentos que aún, mantiene, algunas regiones oscuras que no dejan ver lo que allí pasó.
Los dos problemas “experimentales” más acuciantes que presenta en estos momentos el Modelo Estándar está relacionado con los dos tipos de Materia que constituyen el Universo observable. El 17% de la Materia de nuestro Universo es materia “luminosa”, es decir, materia constituida, como nosotros mismos por protones y neutrones. Por otro lado, el 83% de nuestro universo Universo está constituido por Materia Oscura (yo prefiero decir: parece que está constituido por materia invisible que llamamos oscura), es decir, materia que ha sido detectada por el momento sólo indirectamente a través de sus interacciones gravitacionales. De nuevo el Modelo Estándar requiere de una extensión para poder incluir candidatos a Materia Oscura.
Dicen que permea todo el Espacio, nadie la vio nunca, no genera radiación y sí genera Gravedad, no sabemos de qué partículas estará formada… ¡No sabemos nada! Sólo sabemos que, con ella (la materia oscura), las cuentas cuadran y, precisamente por eso, los científicos se agarran a la materia oscura como el ahogado al clavo ardiendo,.
Muchas son las noticias que saltan a los medios y que son emitidas por equipos que quieren llevarse el galardón del hallazgo de la “materia oscura” Veamos por ejemplo uno de ellos:
“24 OCTUBRE 2010. Un teórico del Fermilab y sus colegas de la Universidad de Nueva York podrían haber encontrado pistas sobre algunos de los más jugosos secretos del universo en el centro de la Vía Láctea. La materia oscura. En su análisis de los datos públicos de los rayos gamma del Telescopio Espacial Fermi, Dan Hooper, científico del Fermilab, y Lisa Goodenough, un estudiante graduado en la Universidad de Nueva York, informan que los rayos gamma de muy alta energía procedentes del centro de la Vía Láctea vienen de las colisiones de materia oscura.”
“Salimos de nuestra manera de considerar todas las causas de los fondos que imitan la señal, y no se encontraron otras fuentes plausibles astrofísica o la mecánica que se puede producir una señal como ésta”, dijo Hooper.
Axiones y WIMPs
Un reciente trabajo, publicado en el servidor repositorio científico arXiv-pre, describe sus hallazgos. Los astrofísicos desde hace mucho tiempo postula una amplia gama de partículas de materia oscura, incluyendo los axiones, las partículas súper pesadas y partículas que se encuentran entre: débilmente partículas masivas de interacción, o WIMPs.
Nos dijeron que el LHC descansaría 2 años para poder buscar la materia oscura
Claro que, la realidad es tozuda, y, nadie puede decirnos qué es la dichosa y teórica “materia oscura” de qué está hecha, cómo se formó, de qué mecanismos se vale para pasar inadvertida sin emitir radiaciones que podamos detectar, y, un sin fin de cuestiones que la hace extraña y muy exótica, hasta el punto de que podamos pensar que está y no está en este mundo. ¿No estará escondida en eso que llamamos vacío y, las partículas portadoras de la Fuerza Gravitatoria, el Gravitón, nos trae a nuestra parte del “mundo” la Gravedad que genera y que es, la que detectan los cosmólogos cuando ven que las galaxias se alejan las unas de las otras a más velocidad de la que tendrían que hacerlo si sólo existiera la materia bariónica que podemos observar?
¿Hasta agujeros negros y neutrinos podrían ser “la materia oscura”?
Hablamos de los posibles candidatos a materia oscura, aquí la situación es incluso más complicada puesto que candidatos a materia oscura no han sido detectados por experimentos de física de partículas con lo que (como antes decía) su misma naturaleza nos es desconocida. Para completar el relato cabe decir que experimentos astrofísicos, en particular detección de supernovas, indican que el total de la materia anteriormente descrita (o sea luminosa y oscura) constituyen tan sólo el 28% de la densidad de energía del universo observable mientras que el resto es una energía no detectable mediante experimentos de Física de Partículas y que se conoce con el nombre de energía Oscura, que puede ser simplemente una Constante Cosmológica.
Einstein se burla de nosotros como si supiera (el muy ladino) que él llevaba razón, y, la Constante Cosmológica está ahí, presente en el Universo. La verdad es que, nos trae de cabeza, el no saber detectar dónde está la verdad para saber el camino a tomar en el futuro.
Así que, finalmente podemos concluir que el 4,6% es la materia bariónica (Supercúmulos de Galaxias, Nebulosas, Mundos, y demás cuerpos observables .-también nosotros-) y, el 17% de la densidad de materia del universo podría ser la llamada “materia oscura”. Aún cuando la proporción sea minoritaria para la Bariónica, para nosotros es prioritaria, de ella estamos hecho nosotros mismos y que, por supuesto, es la única materia que podemos detectar de forma directa, conocemos (las partículas que la conforman) sus secretos, sus parámetros físicos, sus masas y cargas, sus funciones dentro del contexto general y, en definitiva es la materia que está tan cerca de nosotros que, nosotros mismos somos ella.
También los pilares básicos de nuestro propio ser, son Quark y Leptones, es decir, materia bariónica. Así que, si los observadores del Universo (nosotros) somos de materia radiante y luminosa, no creo que esa “materia oscura” tenga más importancia que aquella de la que nosotros estamos formados. Más bien creo que, existe alguna fuerza (llámese constante cosmológica o de cualquier otra forma) desconocida que, se confunde con esa clase de materia. Materia, lo que se dice materia, por mí, sólo existe la que podemos ver y detectar.
Dos son los problemas esenciales que deben ser entendidos en relación con el número bariónico del Universo:
– El primero es que no hay prácticamente evidencia de antimateria en el Universo. De hecho no hay antimateria en nuestro Sistema solar y solamente aparecen antiprotones en los rayos cósmicos. Sin embargo, los antiprotones se pueden producir como producto secundarios en colisiones del tipo pp → 3p + p (en esta última p debería aparecer una rayita horizontal encima (antiprotón) pero, en mi cuadro de caracteres especiales no lo tengo) que proporcionan una abundancia de antiprotones semejante a la observada. Así por ejemplo, resulta que se detecta un antiprotón aproximadamente por cada 3000 protones mientras que se encuentra un átomo de antihelio por cada 10000 átomos de Helio. Todos estos datos experimentales están de acuerdo con la existencia de antimateria primordial en el Universo. De hecho, la no existencia de antimateria resulta esencial para la estabilidad del mismo puesto que la materia y la materia se aniquilan entre sí produciendo radiación.
Satélite WMAP
– Una vez explicado el hecho de que prácticamente no hay antimateria en el Universo, el segundo problema sería entender el origen de la densidad de materia luminosa. De hecho, utilizando los datos de la abundancia primordial de elementos ligeros, de acuerdo con la teoría de la nucleosíntesis, junto con los datos del Satélite WMAP, se deduce que hay en torno a 1 protón por cada mil millones de fotones en el Universo. Siendo nB y n γ las densidades de bariones y fotones respectivamente, se tiene que η = nB/nγ ≈ 0.61 x 10-9. Para ser un poco más preciso podríamos decir que en 5 metros cúbicos hay un sólo barión y mil millones de fotones en promedio.
Para entender mejor cuál puede ser el mecanismo que explique la generación de materia en nuestro Universo, es decir, el parámetro η que acabamos de describir, debemos retrotraernos a la época en que el universo estaba muy caliente, poco después del Big Bang. Es decir, la llamada era denominada de la Radiación. Las partículas cuya masa es (muy) inferior a la temperatura del universo se aniquilan con sus antipartículas por las reacciones inversas a las anteriores. En este momento las partículas se comportan practicamente como si fueran de masa cero y se dice que la partícula en cuestión está en equilibrio térmico con la rqadiación. El Modelo Estándar Cosmológico predice una relación entre la edad del Universo (en segundos) y la temperatura del mismo (en K) que viene dada por:
t ≈ 1/5 (kBT/GeV)-2 10-6
en donde kB es la constante de Boltzmann. La ecuación anterior nos dice que para una temperatura próxima al GeV (equivalente a la masa del protón), que es de unos diez billones de grados, ¡el tiempo transcurrido en el universo después del Big Bang era de unas dos diez millonésimas de segundo!
Para temperaturas inferiores a la masa de la partícula, las partículas y antipartículas siguen aniquilándose en fotones, aunque el proceso inverso no puede tener ya lugar y la densidad de equilibrio térmico de partículas y antipartículas decrece exponencialmente como exp (-m/T) en donde m es la masa de la partícula en cuestión. Este proceso se termina cuando el ritmo de aniquilación de partículas y antipartículas no puede competir con el ritmo de expansión del universo (constante de Hubble H), momento en el que las partículas y antipartículas se salen del equilibrio térmico y su densidad queda “congelada” a los valores de equilibrio correspondientes a la temperatura de “congelación” (temperatura de freezeout). Si aplicamos este proceso a los nucleones (protones y neutrones) y antinucleones de masa ~ 1 GeV se puede ver como la densidad de los mismos empieza a disminuir exponencialmente para temperaturas inferiores al GeV, mientras que se salen de equilibrio térmico para temperaturas del orden de 20 MeV, para la cual la densidad de equilibrio resulta ser: nB/nγ = nB/nγ ≈ 10–18.
Esto nos demuestra que partiendo de un Universo simétrico, como hemos supuesto hasta el momento, hoy en día el Universo seguiría siendo simétrico respecto al número bariónico y, además, ¡el número de bariones sería mil millones más bajo que el que observamos! La solución de este problema sólo puede tener una respuesta: debemos abandonar la hipótesis de que el Universo era inicialmente simétrico respecto al número bariónico. La explicación podría seguir y es larga y algo compleja pero, por mi cuenta, resumo diciendo que, esa simetría no es posible, si tenemos en cuenta que, las partículas creadas después del Big Bang, al ser diferentes, también tenían diferentes masas y, tal hecho cierto, hace imposible que la expansión del Universo fuera isotrópica, así que, al expandirse anisotrópicamente, la asimetría queda servida.
Sí, podríamos decir que, la asimetría del Universo es la responsable de su diversidad. No todo es igual en el Universo. Lo son todos los protones y electrones que existen, y, también, todos los neutrones, es decir, son idénticos y simétricos los objetos de la misma familia a niveles microscópicos pero, cuando nos vamos al mundo macroscópico de las galaxias, las estrellas, los mundos o, nosotros mismos, no encontramos dos iguales.
El Universo, amigos, es una maravilla.
Fuente: Agradecer aquí la mayor aportación de D. Mariano Quirós de cuyo artículo en el Volumen 25, número 4 de la Revista de Física, encontré el Origen de la materia: Bariogénesis, del que pude obtener la mayor parte del texto que aquí habéis podido leer.
Abr
28
Todo está relacionado… De una u otra manera
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
“Una representación de los modelos de espuma cuántica, en los que el espacio-tiempo se vuelve turbulento a distancias muy pequeñas debido a que empieza a manifestar su carácter cuántico.”
“La longitud de Planck (ℓP) u hodón (término acuñado en 1926 por Robert Lévi) es la distancia o escala de longitud por debajo de la cual se espera que el espacio deje de tener una geometría clásica.”
Gustav Mie
Ese ha sido uno de las grandes esfuerzos realizados por desarrollar una teoría que diera cuenta del equilibrio de la electricidad que constituye el electrón y, los trabajos de Mie, han sido apoyados por toda la comunidad de los físicos teóricos, él se basa principalmente en la introducción de un tensor- energía de términos suplementarios que dependen de las componentes del potencial electromagnético, además de los términos de energía de la teoría de Maxwell-Lorentz. Estos nuevos términos que en el espacio exterior no son importantes, son sin embargo efectivos en el interior de los electrones al mantener el equilibrio frente a la repulsión eléctrica.
A pesar de la belleza de la estructura formal de esta teoría, erigida por Mie, Hilbert y Weyl, sus resultados físicos hasta ahora han sido insatisfactorios. Por una parte, la multiplicidad de posibilidades es desalentadora, y por otra parte dichos términos adicionales no han podido ser formulados de una manera tan simple que la solución pudiera ser satisfactoria,
“Esa es la Teoría General de la Relatividad y la fórmula es una cúspide del intelecto humano. Con ella se relacionan conceptos que viven en diferentes mundos. Un lado de la expresión, la G, está en el mundo de la matemática, la geometría. El otro lado, la T, está en la naturaleza, representando la materia. Esos dos mundos han sido unidos de forma sublime por esa ecuación, interpretándose así: la materia le dice al espacio cómo curvarse y el espacio le dice a la materia cómo moverse.”
Hasta ahora la Teoría de la Relatividad General no ha realizado ningún cambio en este estado de la cuestión. Si por el momento no consideramos el término cosmológico
Gμν = ½δμν G = KT μν
Donde G denota el Tensor de curvatura de Riemann contraído, G es el escalar de curvatura formado por contracción repetida, y Tμν el Tensor de energía de “materia”. En fin, explicar toda la ecuación puede llegar a ser engorroso y es toda una larga historia que no siempre entretiene al personal. Así que, lo dejamos.
Muchos son los conceptos que tendríamos que explicar aquí para dilucidar todas estas cuestiones que, implicadas en estas teorías, nos llevan a la cinemática, la simultaneidad, transformaciones de coordenadas, relatividad de longitudes y tiempos, adición de velocidades, lo que nos dijo Maxwell y Lorentz. transformación de energía en rayos luminosos, la gravedad y la propagación de la luz, la naturaleza física de los campos gravitatorios… y un sin fin de cuestiones que, hacen necesario un gran volumen y, también, un amplio dominio de conocimientos de los que carezco.
Lo cierto es que, la Teoría de la Gravedad, nos lleva a imaginar situaciones que podrían ser y, en alguna ocasión, se nos puede presentar como posibles caminos para solucionar cuestiones que, en el mundo físico que conocemos, nos parecen irresolubles pero… En física, amigos míos, lo imposible parece posible.
¡Encontrar la solución para burlar la velocidad de la luz, y, atravesando portales mágicos, ir a otras galaxias! Es cierto que la mente está muy delante de los hechos pero… Cuando se piensa en algo, ahí queda la posibilidad de plasmarlo en una realidad.
Al menos por el momento, no podemos saber si nuestro Universo es único. Sin embargo, hemos pensado en la posibilidad de que pudiera ser uno de tantos. Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, realizamos conjeturas y comparaciones con otros que podrían ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimensiones espacio-temporales, no contamos con las condiciones físicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado en ese “vacío” que no hemos llegado a comprender. Sin embargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para ello.
emilio silvera
Abr
27
Sí ¡Tenemos que saber!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Las leyes de la naturaleza son las mismas en cualquier lugar de nuestro universo; todo está formado por partículas elementales que se unen para formar núcleos, átomos, células y materia que, unas veces conforman estrellas brillantes, otras mundos habitados y también, grandes estructuras como galaxias y cúmulos de ellas.
“Por extraño que parezca, la velocidad de la luz (o de cualquier onda electromagnética) siempre tiene el mismo valor, c, sin importar la velocidad relativa de la fuente y el observador.”
Einstein se inspiró en la invariancia de la velocidad de la luz para regalarnos su teoría de la relatividad especial con su sencilla y asombrosa fórmula E = mc2, que nos dice la igualdad entre masa y energía. Nos dejó cómo se ralentizaba el tiempo al viajar más rápido y, con su teoría de la relatividad general, nos dejó una profunda lección de cómo se formula una teoría de la máxima eficacia mediante unas ecuaciones de bella factura y, sobre todo, de un extenso e inmenso mensaje.
Los grandes números de Eddington y Dirac, y trabajos de otros muchos personajes, han quedado aquí reflejados para facilitar al lector datos que no conocía y aspectos interesantes de las ciencias físicas.
El espacio “vacio” del universo, las fuerzas que lo rigen, la simetría original en el Big Bang, las familias de las partículas con sus quarks, leptones y hadrones (bariones y mesones), y las partículas mediadoras de las fuerzas, gluones, fotones, partículas W y Z y el esquivo gravitón.
“Esto no es una mera conjetura; se ha probado en laboratorios y experimentos. Por todo el cosmos, a nivel subatómico, existe una incesante y burbujeante actividad en lo que creemos “vacío”.”
El espacio vacío no existe
La física cuántica establece que, en contra de las apariencias, el espacio vacío es un campo burbujeante de partículas subatómicas “virtuales” que se crean y se destruyen constantemente. Estas fugaces partículas dotan a cada centímetro cúbico de espacio de una cierta energía que, de acuerdo a la relatividad general, produce una fuerza anti-gravitatoria que hace que el espacio se expanda. No obstante, lo cierto es que nadie sabe en realidad qué está provocando la expansión acelerada del universo.
El Modelo Estándar con sus parámetros discrecionales y sus muchos beneficios con su eficacia como herramienta de trabajo.
Bueno, parece que quedan algunas “cuerdas” sueltas por ahí
Las nuevas teorías de supercuerdas, la teoría M, sus autores y el final que pretenden unificar todas las fuerzas del Universo, la materia, la luz y la gravedad (la teoría cuántica de Max Planck con la Relatividad de Einstein), la explicación de todo…¡Un sueño! ¿Alcanzable?
Heisenberg y Schrödinger
También de pasada hemos comentado sobre el principio de incertidumbre de Heisenberg, la función de onda de Schrödinger, el cuanto de Planck, el positrón de Dirac, la nueva teoría de Witten, el radio de Schwarzschild que, a partir de las ecuaciones de Einstein dedujo la existencia de agujeros negros con su singularidad y el horizonte de sucesos, punto sin retorno de lo que pueda traspasar sus límites.
Se han incluido, en algunos casos, diagramas explicativos que tratan de hacer comprender mejor lo que digo. De pasada, he mencionado y explicado algo de lo que encierra el número 137, con sus secretos que nos recuerda lo poco que sabemos, número puro y adimensional.
He dedicado algunas líneas a explicar la teoría de los viajes en el tiempo, permitidos por las ecuaciones de Einstein a través de los agujeros de gusano que nos llevarían desde este universo hasta otros lugares muy lejanos y en otros tiempos distintos.
La materia exótica, lo que piensan Kip S. Thorne y el físico Stephen Hawking sobre estos viajes que, hoy al menos, son pura teoría; no tenemos los medios ni las energías necesarias para poder realizarlos (tampoco la tecnología ni el conocimiento).
Ahora van en busca del conocimiento de las M-Branas
Hemos llegado a teorías avanzadas como todas las modalidades de supercuerdas que han desembocado en la última teoría M de Ed Witten. Esta nueva aspirante a la teoría del todo, tiene su base en las ecuaciones de Einstein, fueron ampliadas por el matemático Theodor Kaluza y perfeccionadas por Oskar Klein; siguió el camino señalado por Veneziano, David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohm (el cuarteto de cuerda) y, finalmente, Witten.
Claro que llegar a estas teorías que exigen matemáticas topológicas de una profundidad y complejidad inusitadas, ha sido posible a que antes que todos ellos, estuvieron ahí Galileo y Newton, Faraday y Maxwell, Lorentz, Planck, Einstein y Riemann, y estoy seguro que también Ramanujan que, probablemente, tendrá aún algo que decir en todo esto con sus funciones modulares.
Muchos más también han hecho posible llegar al punto en que nos encontramos. Sería imposible mencionarlos a todos, sin embargo, aunque sin mencionar sus nombres, dejemos aquí un homenaje a todos ellos junto con nuestro agradecimiento; sin sus contribuciones todos nosotros estaríamos peor.
Independientemente de que sepamos lo que ocurre en el mundo macroscópico, también es preciso que no dejemos de mirar hacia ese otro mundo de lo infinitesimal. No lo olvides: ¡Todo lo grande está hecho de cosas pequeñas!
Es bueno para el ser humano que sepa el por qué de las cosas, que se interese por lo que ocurre a su alrededor, por su planeta que le acoge, por el lugar que ocupamos en el universo, por cómo empezó todo, cómo terminará y qué será del futuro de nuestra civilización y de la Humanidad en este universo que, como todo, algún día lejano del futuro terminará.
El fin del Universo es irreversible, de ello hemos dejado amplio testimonio a lo largo de este trabajo, su final estará determinado por la Densidad Crítica, la cantidad de materia que contenga nuestro universo que será la que lo clasifique como universo plano, universo abierto, o universo cerrado. En cada uno de estos modelos de universos, el final será distinto…, claro que para nosotros, la Humanidad, será indiferente el modelo que pueda resultar; en ninguno de ellos podríamos sobrevivir cuando llegara ese momento límite del fin. La congelación y el frío del cero absoluto o la calcinación del fuego final a miles de millones de grados del Big Crunch, acabarán con nosotros.
Para evitar eso se está trabajando desde hace décadas. Se buscan formas de superar dificultades que nos hacen presas fáciles de los elementos. La naturaleza indomable, sus leyes y sus fuerzas, hoy por hoy son barreras insuperables, para poder hacerlo, necesitamos saber.
Algunas teorías proponen que nuestro universo surgió del rebote de uno previo que colapsaba por gravedad. ¡Es tanto lo que no sabemos!
El saber nos dará soluciones para conseguir más energías, viajar más rápido y con menos riesgos, vivir mejor y más tiempo, superar barreras hoy impensables como las del límite de Planck, la barrera de la luz (para poder viajar a las estrellas) y el saber también posibilitará, algún día, que nuestras generaciones futuras puedan colonizar otros mundos en sistemas solares de estrellas lejanas, viajar a otras galaxias, viajar a otro tiempo y, finalmente, viajar para escapar de nuestro destino, a otros universos.
Sí, lo sé, algunos de los que esto puedan leer pensarán que estoy fantaseando, pero la verdad es que no he hablado con más seriedad en mi vida, ya que, si no fuera como estoy diciendo, entonces, ¿para qué tantas calamidades, desvelos y sufrimientos?
Creo que la Humanidad tiene que cumplir su destino, primero en las estrellas lejanas, en otros mundos dentro y fuera de nuestra galaxia, y después…, ¿Quién sabe?
El paso del tiempo lo cambia todo; los sistemas se transforman, viven y mueren para dar paso a otros nuevos sistemas. Estrellas que brillan durante miles de millones de años y con el paso del tiempo consumen su material-combustible nuclear y mueren explotando en novas o supernovas para, con su material complejo, contribuir a la formación de nuevas estrellas y planetas e incluso formas de vida.
Todo envejece, se deteriora por la acción de la entropía, del paso del tiempo. Sin embargo, él no cambia, es invariante, continúa su camino mientras que, a su alrededor, las mutaciones son continuas y lo único que permanece inalterable es: el Tiempo.
Me encantaría tener sabiduría para poder exponer de manera más amplia y precisa lo que es el tiempo. Lo que aquí dejo escrito (después de documentarme), es corto y no me deja satisfecho. Cualquier persona mejor preparada lo habría hecho mejor pero, de todas formas, la voluntad que he puesto en este trabajo compensa sus posibles deficiencias y el lector sabrá disculpar las mismas.
De todas las maneras posibles en los que me he detenido a pensar sobre lo que es y supone el tiempo, la que más me impresiona es aquella que me hacer ver claramente que no podemos impedir su transcurrir, que su paso nos llevará hacia la eternidad convertidos en polvo, dejando atrás a los seres queridos que nos gustaría seguir protegiendo, sin llevarnos la certeza de lo que el destino les tiene reservado a sus vidas. Esa incertidumbre me causa una aguda impotencia, casi infinita que, en no pocas ocasiones, llego a sentir como un dolor físico y real causado por un pensamiento profundo del significado y las implicaciones irreversibles que el paso del tiempo nos trae a todos.
Lo explicamos de muchas maneras pero, ninguna nos dice lo que realmente es.
Individualmente hablando, el tiempo está bien mientras nos acompaña en nuestro recorrido a lo largo de nuestras vidas; después él continúa su camino mientras nosotros desaparecemos. Colectivamente, el tiempo es muy importante. Cada uno de nosotros hacemos un trabajo y desarrollamos una actividad que se va sumando a la de los demás. Con el tiempo, el trabajo, ese conocimiento adquirido, continúa aumentando y ese tiempo “infinito” es el que necesitamos nosotros y los que vendrán detrás para resolver problemas muy graves que se presentarán en el futuro y que, de poder o no poder resolverlos, dependerá que la humanidad perdure.
El tiempo será la mejor herramienta con la que podemos contar para resolver todos los problemas. Así lo dijo Hilbert:
David Hilbert
“Por muy inabordables que parezcan estos problemas, y por muy desamparados que nos encontremos frente a ellos hoy, tenemos la íntima convicción de que debe ser posible resolverlos mediante un número finito de deducciones lógicas. Y para ello, la mejor herramienta es el tiempo; él nos dará todas las respuestas a preguntas que hoy no podemos ni sabemos contestar”.
En la tumba de David Hilbert (1862-1943), en el cementerio de Gotinga (Alemania), dice:
“Debemos saber. Sabremos”.
Hilbert nos hacía su planteamiento que era obtener la respuesta a tres importantes preguntas:
- ¿Son las matemáticas completas, es decir cualquier proposición puede ser probada o rechazada?
- ¿Son las matemáticas consistentes, es decir no es posible demostrar algo falso?
- ¿Son las matemáticas determinantes, es decir cualquier proposición se puede demostrar como cierta o falsa tras una secuencia finita de pasos?”
Al plantearlo, la idea previa de Hilbert era que la respuesta sería afirmativa para estas tres cuestiones. No es para menos, teniendo en cuenta las palabras que ordenó grabar sobre su tumba en Gotinga:
“Wir müssen wissen. Wir werden wissen“, ”Debemos saber y sabremos’,’ que muestran su rechazo categórico al entonces vigente “Ignoramus et ignorabimus”
La curiosidad nos hace saber
Estoy totalmente de acuerdo con ello. El ser humano está dotado de un resorte interior, algo en su mente que llamamos curiosidad y que nos empuja (sin que en muchas ocasiones pensemos en el enorme esfuerzo y en el alto precio que pagamos) a buscar respuestas, a querer saber el por qué de las cosas, a saber por qué la naturaleza se comporta de una u otra manera y, sobre todo, siempre nos llamó la atención aquellos problemas que nos llevan a buscar nuestro origen en el origen mismo del universo y, como nuestra ambición de saber no tiene límites, antes de saber de dónde venimos, ya nos estamos preguntando hacia dónde vamos. Nuestra osadía no tiene barreras y, desde luego, nuestro pensamiento tampoco las tiene, gracias a lo cual, estamos en un estadio de conocimiento que a principios del siglo XXI, se podría calificar de bastante aceptable para dar el salto hacia objetivos más valiosos.
Es mucho lo que hemos avanzado en los últimos ciento cincuenta años. El adelanto en todos los campos del saber es enorme. Las matemáticas, la física, la astronomía, la química, la biología genética, y otras muchas disciplinas científicas que, en el último siglo, han dado un cambio radical a nuestras vidas.
Si no somos nosotros mismos los que, por una mezquina y desmedida ambición lo estropeamos, si sabemos ver donde está lo importante y damos de lado al brillo engañoso de lo que los hombres persiguen sin darse cuenta de su terrible error, si eso es así, podremos cumplir el destino que para nosotros está ahí, esperando que lleguemos a ese punto en el cual, podamos ver con claridad.
emilio silvera