viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El colapso del núcleo de las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Higgs-Kibble

Higgs-Kibble II

               La Teoría BCS (De los Superconductores) | Explora | UnivisionNeoFronteras » Superconductor de muy alta temperatura - Portada -

Lo único que no resulta ser lo mismo cuando se mira a través a través del microscópico electrónico (o, en la jerca de la física teórica, cuando se realiza una transformación de escala) es la masa de la partícula. Esto se debe a que el alcance de la fuerza parece mayor a través del microscopio y, por lo tanto, la masa de la partícula parece ser menor. Nótese que esta situación es la opuesta a la que se presenta en vida corriente donde un grano de arena parece mayor -¿más pesado, por lo tanto?- cuando se observa con un microscopio.

Así es como lucen los granos de arena bajo el microscopio aumentado 300  veces – Nation

 

                                                      Granos de arena vistos al microscópico electrónico

Una consecuencia de todo esto es que en una teoría de Yang-Mills el termino de masa parece desaparecer se realiza una transformación de escala, lo que implica que a través del microscopio se recupera la invariancia gauge. Esto es lo que causa la dificultad con la que se enfrentó Veltman. ¿Se observar directamente el potencial vector de Yang-Mills? Parece que puede observa4rse en el mundo de las cosas grandes, no en el mundo de lo pequeño. Esto es una contradicción y es una raz´`on por la que ese esquema nunca ha podido funcionar adecuadamente.

 Gravedad cuántica, pesando lo muy pequeño (Segunda parte) - NaukasGravedad cuántica, pesando lo muy pequeño (Tercera parte) - NaukasLava GIF en GIFER - de Gojind

                              En el mundo cuántico se pueden contemplar cosas más extrañas

 

Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.

 

 Hacia 1.900 se sabía que el átomo no era una partícula simple e indivisible, como predijo Demócrito, pues contenía, al menos, un corpúsculo subatómico: el electrón, cuyo descubridor fue J. J. Thomson, el cual supuso que los electronesse arracimaban como uvas en el cuerpo principal del átomo de carga positiva que era el núcleo descubierto por Rutherford.
Archivo:Atomo litio.gif - Wikipedia, la enciclopedia libreResumen de OLIMPIADAS DE CIENCIAS NATURALES 1-2022

                                                Los electrones orbitan el núcleo atómico

Poco tiempo después resultó evidente que existían otras subpartículas en el interior del átomo. Cuando Becquerel descubrió la radiactividad, identificó como emanaciones constituidas por electrones algunas de las radiaciones emitidas por sustancias radiactivas. Pero también quedaron al descubierto otras emisiones. Los Curie en Francia y Ernest Rutherford en Inglaterra detectaron una emisión bastante menos penetrante que el flujo electrónico. Rutherford la llamó rayos alfa, y denominó rayos beta a la emisión de electrones.

Pero el trabajo de hoy se titula: El colapso del núcleo de las estrellas

En la imagen podemos contemplar  lo que se clasifica NGC 3603,  es un cúmulo abierto de estrellas en una vasta zona estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 años-luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.

NGC 3603 alberga miles de estrellas de todo tipo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas  supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.

Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de la otra una vez cada 3,77 días, es la estrella más masiva conocida hasta en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Hay que decir que la máxima máxima de las estrellas está calculada en 120 masas solares, ya que, a partir de ahí, su propia radiación las destruiría.

http://2.bp.blogspot.com/-fWPPIW7k_fo/T0pqRfSgyHI/AAAAAAAAH4k/hXIelt94QAg/s1600/sn1987a_hst.jpg

En el centro de la imagen podemos contemplar ese “collar de diamantes” que es el resultado evolucionado de aquella tremenda explosión estelar contemplada en 1987, cuando una estrella super-masiva, habiendo agotado todo su combustible nuclear de fusión, se contrae sobre sí misma al quedar sin defensa, en “manos” de la Gravedad que ya no se ve frenada por la inercia explosiva de la fusión que tendía a expandir la estrella.

Descubre la nebulosa del reloj de arena

Las capas exteriores son eyectadas al Espacio Interestelar con violencia para formar una nebulosa, mientras el grueso de la masa de la estrella se contrae más y más para formar una estrella de neutrones o un agujero negro dependiendo de su masa.

Las estrellas super-masivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios.  Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.

 ALMA encuentra indicios de estrella de neutrones en Supernova 1987A | ALMAX-RAY UNIVERSE :: The Tale of Supernova 1987A

Las observaciones de SN 1987A, hechas en los últimos 20 años por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas. Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estuadinado los remanentes de supernovas muy antiguas no se podían ver.

La supernova SN 1987A y el nacimiento de la astronomía de neutrinos hace 25  años - La Ciencia de la Mula FrancisUNIMAGDALENA DENTRO DE LA ÉLITE MUNDIAL DE LA FÍSICA Y COSMOLOGÍA - Canal  ZOOM

SN 1987A | Astropedia | FandomEl 'Hubble' vuelve a contactar con la supernova 1987A | Público

Las estrellas super-masivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Arriba podemos contemplar observaciones realizadas en distintas fechas que nos muestran la evolución de los anillos de SN 1987 A. ¿Qué pudo causar los extraños anillos de esta Supernova. Hace 28 años se observó en la Gran Nube de Magallanes la supernova más brillante de la historia contemporánea.

Der Emissionsnebel NGC 3603 aufgenommen vom Hubble-Weltraumteleskop (Echtfarben). Sher 25 ist der helle Stern links oberhalb des Sternenhaufens

El clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20,000 . ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A.

Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.

El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene (a veces) con la presión de degeneración del gas de neutrones (Principio de exclusión de Pauli) compensa el empuje  hacia adentro de la Gravedad. El proceso completo hasta que todo ese ingente material se transmuta en la estrella de neutrones dura muy poco tiempo, es un proceso vertiginoso.

                      Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.

Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.

                  Sun Solar Flare GIF - Sun Solar Flare Heat - Descubre & Comparte GIFs

                                                                                    Actividad en el Sol

Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alrededor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.

Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes ahora acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.

 El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencias de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.

                                Estrellas de neutrones: características, formación y curiosidades |  Meteorología en Red

“Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m³ (de 2,6×1014 a 4,1×1014 veces la densidad del Sol),​ comparable con la densidad aproximada de un núcleo atómico de 3×1017 kg/m³.”

La densidad de estas estrellas son increíblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra, el monte . Los púlsares fueron descubiertos en 1970 y hasta solo se conoce unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nuestros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).

                             

 

Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)

 

 Por ahora se conoce que de cada diez supernovas una se convierte en magnetar,  si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.

                     

Cuando una estrella super-masiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.

Las estrellas mueren cuando dejan la secuencia principal, es decir, cuando no tienen material de fusión y quedan a merced de la fuerza de gravedad que hace comprimirse a la estrella más y más, en algunos casos, cuando son super-masivas, llegan a desaparecer de nuestra vista, y, su único destino es convertirse en temibles Agujeros Negros.

Testigos de cómo una estrella colapsa | RTVE.esAgujero negro supermasivo absorbe y destruye una estrella

             Colapso de la estrella super-masiva que finaliza con la creación del Agujero Negro

La explosión de una estrella gigante y super-masiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, nacerán nuevas estrellas y nuevos mundos.

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.

                              El remanente estelar después de la explosión puede ser muy variado

Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!

                                                             Imagen de miniatura de un resultado de Lens

 ¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

ÁTOMOS Y MOLÉCULAS. - ppt descargarFÍSICA NUCLEAR. - ppt video online descargar

Qué son los nucleones? - QuoraUNIDAD DIDCTICA FSICA NUCLEAR Y RADIACTIVIDAD Nivel 2

Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.

emilio silvera

Rumores del pasado, el saber del mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  Faraday dando una charla sobre sus trabajos y explicando al público lo que era la luz y la electricidad

En su juventud, Michael Faraday tuvo unos  humildes comienzos como repartidor de periódicos y aprendiz de encuadernador. Sin embargo, su afición al experimento y la investigación le llevó a descubrir algunos de los secretos más guardados de la Naturaleza. De hecho, el concepto de “Campo” que tanto hoy manejan los físicos, es debido a él. Gracias a sus trabajos y los resultados obtenidos en sus miles de experimentos, pudo Maxwell (un gran físico y matemático), crear su teoría de la luz y el electromagnetismo mediante sus famosas ecuaciones vectoriales.

                                   James Clark Maxwell

El trabajo más importante de Maxwell se efectuó entre 1864 y 1873, cuando dio forma matemática a las especulaciones de Faraday respecto a las líneas de fuerza magnéticas. Al hacerlo, Maxwell, pudo conseguir unas cuantas ecuaciones simples que expresaban todos los fenómenos variados de electricidad y magnetismo y las unió de un modo indisoluble. Su teoría demostraba que la electricidad y  el magnetismo no podían existir aisladamente, donde esta una allí estaba el otro, por tanto, se hace referencia a su obra, generalmente, como la teoría del electromagnetismo.

CIMA - Grandes Matemáticos de todos los tiempos:... | FacebookLeonhard Euler, el mayor matemático del Siglo XVIII, nació un 15 de abril –  MatematicasCercanas

La “profesionalización” e “institución” de la ciencia, entendiendo por tal que la práctica de la investigación científica se convirtiese en una profesión cada vez más abierta a personas sin medios económicos propios, que se ganaban la vida a través de la ciencia y que llegasen a atraer la atención de gobiernos e industrias, tuvo su explosión a lo largo de 1.800, y muy especialmente gracias al desarrollo de dos disciplinas, la química orgánica y el electromagnetismo. Estas disciplinas, junto a las matemáticas, la biología y las ciencias naturales (sin las cuales sería una necedad pretender que se entiende la naturaleza, pero con menos repercusiones socio-económicas), experimentaron un gran desarrollo entonces, tanto en nuevas ideas como en el número de científicos importantes: Faraday, Maxwell, Lyell, Darwin y Pasteur, son un ejemplo. Sin olvidar a otros como Mendel, Helmholtz, Koch, Virchow, Lister o Kelvin, o la matemática de Cauchy, de Gauss, Galois, Fourier, Lobachevski, Riemann, Klein, Cantor, Russell, Hilbert o Poincaré. Pero vamos a pararnos un momento en Faraday y Maxwell.

Las ecuaciones de Maxwell

Las ecuaciones de Maxwell, por dar una simple explicación de lo que significan, hace posible que tengamos una información fidedigna de cómo se transmite la información para la televisión, Internet y la telefonía en general, cuánto tarda en llegarnos la luz de las estrellas, cuál es la base del funcionamiento de las neuronas o como funciona cualquier central de electricidad, aparte de otros miles de fenómenos que podemos estar experimentando en nuestras vidas cotidianas que están relacionados con la luz, la electricidad y el magnetismo. Y, todo ello, se explica con esas cuatro “sencillas ecuaciones”.

Para la electricidad, magnetismo y óptica, fenómenos conocidos desde la antigüedad, no hubo mejor época que el siglo XIX. El núcleo principal de los avances que se produjeron en esa rama de la física (de los que tanto se benefició la sociedad -comunicaciones telegráficas, iluminación, tranvías y metros, etc.-) se encuentra en que, frente a lo que se suponía con anterioridad, se descubrió que la electricidad y el magnetismo no eran fenómenos separados.

                                                                      

Estatua de Hans Christian Ørsted en Ørstedsparken,  Copenhague, Dinamarca. Hans Christian Orsted físico y químico danés, que descubrió  en 1819  que la aguja imantada de  una brújula se desviaba cuando se encontraba próxima a un cable conductor por el cual fluía  una corriente eléctrica. Esta desviación implica la existencia de un campo magnético en la región vecina al conductor. Asi se demostraba  la existencia de un campo magnético en torno a todo conductor por el que fluye una corriente eléctrica,  este descubrimiento fue crucial  ya que puso en evidencia la relación existente entre la electricidad y el magnetismo.

                                                

Así que, el  punto de partida para llegar a este resultado crucial fue el descubrimiento realizado en 1.820 por el danés Hans Christian Oersted (1777 – 1851) de que la electricidad produce efectos magnéticos: observó que una corriente eléctrica desvía una aguja imanada. La noticia del hallazgo del profesor danés se difundió rápidamente, y en París André-Marie Ampère (1775 – 1836) demostró experimentalmente que dos hilos paralelos por los que circulan corrientes eléctricas de igual sentido, se atraen, repeliéndose en el caso de que los sentidos sean opuestos.

              

                                                                          La expresión diferencial

                                                                    ∇×H ≡ J (“Ley de Ampère“)

Conocida como “Ley de Ampère“, muestra la relación que existe entre el campo H y la fuente J cuando las corrientes y los campos no cambian el tiempo, pero falla cuando los fenómenos no son estacionarios. La contribución de Maxwell se resume en haber agregado a J, el sumando ∂D/∂t correspondiente a la corriente de desplazamiento en los fenómenos no estacionarios, algo que nadie había medido y que no resultaba intuitivo. La falta de ese término deja fuera los casos dinámicos, muchos casos tan importantes como por ejemplo las Ondas Electromagnéticas !

Con esta formulación, Ampère avanzaba la expresión matemática que representaba aquellas fuerzas. Su propósito era dar una teoría de la electricidad sin más que introducir esa fuerza (para él “a distancia”).

Pero el mundo de la electricidad y el magnetismo resultó ser demasiado complejo como para que se pudiera simplificar en un gráfico sencillo, como se encargó de demostrar uno de los grandes nombres de la historia de la ciencia: Michael Faraday (1791 – 1867), un aprendiz de encuadernador que ascendió de ayudante de Humphry Davy (1778 – 1829) en la Royal Intitution londinense.

                               

                                                   En este humilde rinconcillo trabajaba Faraday

En 1.821, poco después de saber de los trabajos de Oersted, Faraday, que también dejó su impronta en la química, demostró que un hilo por el que pasaba una corriente eléctrica podía girar de manera continua alrededor de un imán, con lo que vio que era posible obtener efectos mecánicos (movimiento) de una corriente que interacciona con un imán. Sin pretenderlo, había sentado el principio del motor eléctrico, cuyo primer prototipo sería construido en 1.831 por el físico estadounidense Joseph Henry (1797 – 1878).

Lo que le interesaba a Faraday no eran necesariamente las aplicaciones prácticas, sino principalmente los principios que gobiernan el comportamiento de la naturaleza, y en particular las relaciones mutuas entre fuerzas, de entrada, diferentes. En este sentido, dio otro paso importante al descubrir, en 1.831, la inducción electromagnética, un fenómeno que liga en general los movimientos mecánicos y el magnetismo con la producción de corriente eléctrica.

      Dinamo de Pacinotti, 1860.
               Dínamo de Pixii.
Dínamo pequeño Gramme, ca. 1878.

Este fenómeno, que llevaría a la dinamo, representaba el efecto recíproco al descubierto por Oersted; ahora el magnetismo producía electricidad , lo que reforzó la idea de que un lugar de hablar de electricidad y magnetismo como entes separados, sería más preciso referirse al electromagnetismo.

La intuición natural y la habilidad experimental de Faraday hicieron avanzar enormemente el estudio de todos los fenómenos electromagnéticos. De él es, precisamente, el concepto de campo que tanto juego ha dado a la física.

Sin embargo, para desarrollar una teoría consistente del electromagnetismo se necesitaba un científico distinto: Faraday era hábil experimentador con enorme intuición, pero no sabía expresar matemáticamente lo que descubría, y se limitaba a contarlo. No hubo que esperar mucho, ni salir de Gran Bretaña para que un científico adecuado, un escocés de nombre James Clerk Maxwell (1831 – 1879), hiciera acto de presencia.

QUÉ SON LAS ECUACIONES DE MAXWELL?... - Lokos por la Física | Facebook

Las ecuaciones de Maxwell tienen más de 150 años. Publicado por Augusto en Divulgación, Historia de la Física. Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones (originalmente 20 ecuaciones) que describen por completo los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros,  introduciendo los conceptos de campo y corriente de desplazamiento, y unificando los campos eléctricos y magnéticos en un solo concepto: El Campo Electromagnético.

Las cuatro ecuaciones de Maxwell describen todos los fenómenos electromagnéticos, aquí se muestra la inducción magnética por medio de una corriente eléctrica en la figura situada en primer lugar. En la segunda se quiere escenificar el Flujo eléctrico de una carga puntual en una superficie cerrada. En la tercera imagen, quedan escenificadas las líneas de campo magnético que comienzan y terminan en el mismo lugar, por lo que no existe un monopolo magnético.

                                             Ecuaciones de Maxwell | Ecuaciones, Infografia, Electromagnetismo

Maxwell desarrolló las matemáticas para expresar una teoría del magnetismo-electricidad (o al revés) que sentó las bases físicas de aquel fenómeno y contestaba a todas las preguntas de los dos aspectos de aquella misma cosa, el electromagnetismo. En sus ecuaciones vectoriales estaban todos los experimentos de Faraday, que le escribió una carta pidiéndole que le explicara, con palabras sencillas, aquellos números y letras que no podía entender.

Pero además, Maxwell también contribuyó a la física estadística y fue el primer director del Laboratorio Cavendish, unido de manera indisoluble a la física de los siglos XIX y XX (y también al de biología molecular) con sede en Cambridge.

         

Su conjunto de ecuaciones de, o en, derivadas parciales rigen el comportamiento de un medio (el campo electromagnético) que él supuso “transportaba” las fuerzas eléctricas y magnéticas; ecuaciones que hoy se denominan “de Maxwell”. Con su teoría de campo electromagnético, o electrodinámica, Maxwell logró, además, unir electricidad, magnetismo y óptica. Las dos primeras, como manifestaciones de un mismo substrato físico, electromagnético, que se comporta como una onda, y la luz, que es ella misma, una onda electromagnética, lo que, en su tiempo, resultó sorprendente.

Más de ciento treinta años después, todavía se podía o se puede apreciar la excitación que sintió Maxwell cuando escribió en el artículo Sobre las líneas físicas de la fuerza, 1861 – 62, en el que presentó esta idea: “Difícilmente podemos evitar la inferencia de que la luz consiste de ondulaciones transversales del mismo medio que es la causa de los fenómenos eléctricos y magnéticos.”

Michael Faraday - Wikipedia, la enciclopedia libreMichael faraday: imágenes, fotos de stock y vectores | Shutterstock

Todo aquello fue posible gracias a las bases sentadas por otros y a los trabajos de Faraday como experimentador infatigable, que publicaba sus resultados en artículos y los divulgaba en conferencias en la sede de la Royal Institution londinense. Todos estos artículos y conferencias fueron finalmente publicados en el libro que llamaron Philosophical transactions de la Royal Society, y Experimental researches in chemistry and physics (Richard Taylor y William Francis, Londres, 1859; dos grandes científicos unidos por la historia de la ciencia que nos abrieron puertas cerradas que nos dejaron entrar al futuro).

                                          MAGNETISMO Y ELECTROMAGNETISMO : ECUACIONES DE MAXWELL

                                                 Magnetismo y electromagnetismo, ecuaciones

Claro que, si miramos hacia atrás en el tiempo, ¿Cuántas historias como ésta podemos encontrar? Para cualquiera de las cosas que ahora sabemos, casi siempre, ha sido necesario aunar los pensamientos dispersos de muchos que, aunados en un sólo y completo pensamiento, ha podido formar la teoría final que nos explicaron el funcionamiento de la Naturaleza. Así ha ocurrido siempre y seguirá pasando. Einstein se tuvo que vales de ideas dispersas de Mach, Maxwell, Riemann, Lorentz y algunos otros para poder formular su bella Teoría de la Relatividad.

Explicando la Ley de Faraday o de Inducción Magnética de forma sencilla -  NeCLO - Ciencia y Cultura al MáximoLey de Faraday | Inducción Electromagnética - EspacioCiencia.com

                   Faraday fue  el prototipo de experimentador de los fenómenos físicos

A finales del siglo XIX, poca gente sabía con exactitud a qué se dedicaban los “físicos”.  El término mismo era relativamente nuevo.  En Cambridge, la física se enseñaba como del grado de matemáticas. En este sistema no había espacio la investigación: se consideraba que la física era una rama de las matemáticas y lo que se le enseñaba a los estudiantes era como resolver problemas.

En la década de 1.870, la competencia económica que mantenían Alemania, Francia, Estados Unidos, y Gran Bretaña se intensificó.  Las Universidades se ampliaron y se construyó un Laboratorio de física experimental en Berlín.

Cambridge sufrió una reorganización. William Cavendish, el séptimo duque de Devonshire, un terrateniente y un industrial, cuyo antepasado Henry Cavendish había sido una temprana autoridad en teoría de la gravitación, accedió a financiar un Laboratorio si la Universidad prometía fundar una cátedra de física experimental.  Cuando el laboratorio abrió, el duque recibió una carta en la que se le informaba (en un elegante latín) que el Laboratorio llevaría su .

                

                                 Primer profesor J. J. Thomson director del laboratorio


Tras intentar conseguir sin éxito atraer primero a William Thomson, más tarde a lord Kelvin (quien otras cosas, concibió la idea del cero absoluto y contribuyó a la segunda ley de la termodinámica) y después a Hermann von Helmohltz, de Alemania (entre cuyas decenas de ideas y descubrimientos destaca una noción pionera del cuanto), finalmente se ofreció la dirección del centro a James Clerk Maxwell, un escocés graduado en Cambridge. Este fue un hecho fortuito, pero Maxwell terminaría convirtiéndose en lo que por lo general se considera el físico más destacado entre Newton y   Einstein.  Su principal aportación fue, por encima de todo, las ecuaciones matemáticas que permiten entender perfectamente la electricidad y el magnetismo.  Estas explicaban la naturaleza de la luz, pero también condujeron al físico alemán Heinrich Hertz a identificar en 1.887, en Karlsruhe, las ondas electromagnéticas que hoy conocemos ondas de radio.

                              

En el Laboratorio Cavendish de la Universidad de Cambridge, Cockcroft y Walton construyeron este acelerador de 500 kilovolts en 1932. Si lo comparamos con el LHC del CERN nos podemos dar de cómo la Ciencia ha ido avanzando en relativamente tan poco tiempo y, desde entonces hemos alcanzado un nivel que nos permite trabajar con 14 TeV, una energía de todo punto imposible e impensable en aquellos primeros tiempos.

Maxwell también creó un programa de investigación en Cavendish con el propósito de idear un estándar preciso de medición eléctrica, en particular la unidad de resistencia eléctrica, el ohmio.  Esta era una cuestión de importancia internacional debido a la enorme expansión que había experimentado la telegrafía en la década de 1.850 y 1.860, y la iniciativa de Maxwell no solo puso a Gran Bretaña a la vanguardia de este campo, sino que también consolidó la reputación del Laboratorio Cavendish como un centro en el que se trataban problemas prácticos y se ideaban nuevos instrumentos.

                                               

Tubo de vacío usado por JJ Thomson en uno de los experimentos realizados para el electrón. Expuesto en el museo del laboratorio Cavendish. Aquellos físicos primeros que abrieron el camino a lo que más tarde sería la física moderna, tuvieron un gran mérito al poder avanzar hacia el conocimientos de las cosas, de la Naturaleza, con pocas herramientas y mucha imaginación.

A este hecho es posible atribuir del crucial papel que el laboratorio iba a desempeñar en la edad dorada de la Física, entre 1.897 y 1.933.  Los científicos de Cavendish, se decía, tenían “sus cerebros en la punta de los dedos.”

Maxwell murió en 1.879 y le sucedió lord Rayleigh, quien continuó su labor, pero se retiró después de cinco años y, de manera inesperada, la dirección pasó a un joven de veintiocho años, Joseph John Thomson, que a pesar de su juventud ya se había labrado una reputación en Cambridge como un estupendo físico-matemático.  Conocido universalmente como J.J., puede decirse que Thomson fue quien dio comienzo a la segunda revolución científica que creó el mundo que conocemos.

Rutherford y Soddy, los verdaderos alquimistas | OpenMindLas radiaciones alfa, beta y gamma - Escuelapedia - Recursos Educativos

     Ernest Rutherford otro experimentador

Se dedicó al estudio de las partículas radioactivas y logró clasificarlas en alfaa (α), beta  (β) y gamma (γ). Halló que la radiactividad iba acompañada por una desintegración de los elementos, lo que le valió ganar el Premio Nobel de Química de 1908.

El Experimento de Ernest Rutherford : El Protón y el Núcleo – TP –  Laboratorio QuímicoModelo atómico de Rutherford. Todo lo que debes saber | Meteorología en Red

Se le debe un modelo atómico con el que probó la existencia de núcleo en los átomos, en el que se reúne toda la carga positiva y casi toda la masa del átomo.  Consiguió la primera transmutación artificial con la colaboración de su discípulo Frederick Soddy.

                          Nicolás Copérnico y la revolución del cosmosIsaac Newton: biografía y principales aportes a la ciencia

La primera revolución científica comenzó con los descubrimientos de Copérnico, divulgados en 1.543, y los de Isaac Newton en 1.687 con su Gravedad y su obra de incomparable valor Principia Matemática, a todo esto siguió los nuevos hallazgos en la Física, la biología y la psicología.

Pero fue la Física la que abrió el camino.  Disciplina en permanente cambio, debido principalmente a la de entender el átomo (esa sustancia elemental, invisible, indivisible que Demócrito expuso en la Grecia antigua).

               John Dalton

En estos primeras décadas del siglo XIX, químicos como John Dalton se habían visto forzados a aceptar la teoría de los átomos como las unidades mínimas de los elementos, con miras a explicar lo que ocurría en las reacciones químicas (por ejemplo, el hecho de que dos líquidos incoloros produjeran, al mezclarse, un precipitado blanco).  De similar, fueron estas propiedades químicas y el hecho de que variaran de forma sistemática, combinada con sus pesos atómicos, lo que sugirió al ruso Dimitri Mendeleyev la organización de la Tabla Periódica de los elementos, que concibió jugando, con “paciencia química”, con sesenta y tres cartas en su finca de Tver, a unos trescientos kilómetros de Moscú.

Pero además, la Tabla Periódica, a la que se ha llamado “el alfabeto del Universo” (el lenguaje del Universo), insinuaba que existían todavía elementos por .

DIMendeleevCab.jpgDmitri Mendeléyev, el hombre que ordenó los elementos

          Dimitri Mendeléiev en 1897

La tabla de Mendeleyev encajaba a la perfección con los hallazgos de la Física de partículas, con lo que vinculaba física y química de racional: era el primer paso hacia la unificación de las ciencias que caracterizaría el siglo XX.

En Cavendish, en 1.873, Maxwell refinaría la idea de átomo al introducir la idea de campo electromagnético (idea que tomó prestada de Faraday), y sostuvo que éste campo “impregnaba el vacío” y la energía eléctrica y magnética se propagaba a través de él a la velocidad de la luz.  Sin embargo, Maxwell aún pensaba en el átomo como algo sólido y duro y que, básicamente, obedecían a las leyes de la mecánica.

El problema estaba en el hecho de que, los átomos, si existían, eran demasiado pequeños ser observados con la tecnología entonces disponible.

Esa situación empezaría a cambiar con Max Planck, el físico alemán que, como de su investigación de doctorado, había estudiado los conductores de calor y la segunda ley termodinámica, establecida originalmente por Rudolf  Clausius, un físico alemán nacido en Polonia, aunque lord Kelvin también había hecho algún aporte.

              El joven Max Planck

Clausius había presentado su ley por primera vez en 1.850, y esta estipulaba algo que cualquiera podía observar, a saber, que cuando se realiza un la energía se disipaba convertida en calor y que ese calor no puede reorganizarse en una forma útil.  Esta idea, que por lo demás parecería una anotación de sentido común, tenía consecuencias importantísimas.

Dado que el calor (energía) no podía recuperarse, reorganizarse y reutilizarse, el Universo estaba dirigiéndose gradualmente un desorden completo:

                                                                          cántaro roto…

Una casa que se desmorona nunca se reconstruye así misma, una botella rota nunca se recompone por decisión propia.  La palabra que Clausius empleó designar este fenómeno o desorden irreversible y creciente fue “entropía”: su conclusión era que, llegado el , el Universo moriría.

En su doctorado, Planck advirtió la relevancia de esta idea.  La segunda ley de la termodinámica evidenciaba que el tiempo era en verdad una fundamental del Universo, de la física.  Sea lo que sea, el tiempo es un componente básico del mundo que nos rodea y se relaciona con la materia de formas que todavía no entendemos.

La noción de tiempo implica que el Universo solo funciona en un sentido, hacia delante, nunca se está quieto ni funciona hacia atrás, la entropía lo impide, su discurrir no tiene marcha atrás. ¿No será nuestro discurrir lo que siempre marcha hacia delante, y, lo que tenemos por tiempo se limita a estar ahí?

En el Laboratorio Cavendish, me viene a la memoria que fue allí, donde Thomson, en 1.897, realizó el descubrimiento que vino a coronar anteriores ideas y trabajos de Benjamín Franklin, Eugen Goldstein, Wilhelm Röntgen, Henri Becquerel y otros.  El descubrimiento del electrón convirtió a la física moderna en una de las aventuras intelectuales más fascinantes e importantes del mundo contemporáneo.

Jj-thomson3.jpg

           Joseph John Thomson

Los “corpúsculos”, como Thomson denominó inicialmente a estas partículas, hoy conocidas como electrones, condujo de directa al trascendental avance realizado una década después por Ernest  Rutherford, quien concibió el átomo como una especie de “sistema solar” en miniatura, con los electrones diminutos orbitando alrededor de un núcleo masivo como hacen los planetas alrededor del Sol.  Rutherford demostró experimentalmente lo que Einstein  había descubierto en su cabeza y revelado en su famosa ecuación, E = mc2 (1905), esto es que la materia y la energía eran esencialmente lo mismo.

Todo aquello fue un gran paso en la búsqueda del conocimiento de la materia.  El genio, la intuición y la experimentación han sido esenciales en la lucha del ser humano con los secretos, bien guardados, de la Naturaleza.

emilio silvera