lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El micro mundo de los átomos y la información

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando por primera vez se puso este trabajo, dio lugar a comentarios que nos llevan hasta la realidad de hasta donde, resulta para nosotros incomprensible ese micro mundo de la cuántica, ese “universo” infinitesimal donde ocurren cosas que, no llegamos a comprender.

       El Universo Cuántico”, la ciencia del micro mundo

                                       Sí, existe otro mundo que no vemos pero, ¡está en éste!

La mecánica cuántica domina en el micro-mundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua.  Es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

Velocidad GIF | Gfycat

Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza para describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros. Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.

                                                         http://elojocondientes.files.wordpress.com/2011/03/la-tierra-no-es-redonda.png

La Gravedad hace que la Tierra se vea como un mapa. Es una vista altamente exagerada, pero ilustra a las claras cómo la atracción gravitatoria que se manifiesta desde la masa de roca bajo nuestros pies no es la misma en todo lugar. La gravedad es más fuerte en áreas amarillas y más débil en las azules. (Imagen tomada por el satélite Goce)

Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.

¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son.

File:Observable universe logarithmic illustration.png

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33  centímetros, más joven que el Tiempo de Planck, 10-43 segundos y supere la temperatura de Planck de 1032 grados.  Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

En los intentos más recientes de crear una teoría nueva para describir la naturaleza cuántica de la gravedad ha emergido un nuevo significado para las unidades naturales de Planck. Parece que el concepto al que llamamos “información” tiene un profundo significado en el universo. Estamos habituados a vivir en lo que llamamos “la edad de la información”.  La información puede ser empaquetada en formas electrónicas, enviadas rápidamente y recibidas con más facilidad que nunca antes.

Los tiempos cambian y la manera de informar también, lejos nos queda ya aquellos toscos aparatos impresores del pasado, ahora, en espacios muy reducidos, tenemos guardada más información que antes había en una colección de libros.

Nuestra evolución en el proceso rápido y barato de la información se suele mostrar en una forma que nos permite comprobar la predicción de Gordon Moore, el fundador de Intel, llamada ley de Moore, en la que, en 1.965, advirtió que el área de un transistor se dividía por dos aproximadamente cada 12 meses. En 1.975 revisó su tiempo de reducción a la mitad hasta situarlo en 24 meses. Esta es “la ley de Moore” cada 24 meses se obtiene una circuiteria de ordenador aproximadamente el doble, que corre a velocidad doble, por el mismo precio, ya que, el coste integrado del circuito viene a ser el mismo, constante.

                                GRID COMPUTING

“Grid Computing consiste en conectar un grupo de ordenadores de manera descentralizada con el fin de formar un superordenador virtual. La potencia de cálculo distribuida de manera flexible permite realizar tareas complejas con varios recursos simultáneamente y optimizar el uso de la infraestructura.”

 

Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros.  Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2.  Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.

                                                      El número de usuarios de internet en el mundo crece un 4% y roza los 5.000  millones (2022) - Marketing 4 Ecommerce - Tu revista de marketing online  para e-commerce

                                                      La información llega a todos los rincones del Mundo

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias.

                                                 

Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

α = 2πehc ≈ 1/137

αG = (Gmp2)/ hc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.

                                               

Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Resultado de imagen de Números puros adimensionalesResultado de imagen de Números puros adimensionales

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos. Con los adelantos actuales, estudiando la luz lejana de cuásares muy antiguos, se estudia si la constante de estructura fina (α) ha variado con el paso del tiempo.

                Resultado de imagen de La inmensidad del Universo

                          Ninguna imagen podrá nunca reflejar la realidad del Universo, su grandeza

El Universo es muy grande, inmensamente grande y, probablemente, todo lo que nuestras mentes puedan imaginar podrá existir en alguna parte de esas regiones perdidas en las profundidades cósmicas, en los confines del Espacio- Tiempo, en lugares ignotos de extraña belleza en los que otros mundos y otras criaturas tendrán, su propio hábitat que, siendo diferente al nuestro, también, sus criaturas, estarán buscando el significado de las leyes del Universo.

emilio silvera

Colisión de agujeros negros y ondas gravitacionales

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                     La mayor colisión de agujeros negros jamás detectada con ondas  gravitacionales

 

La posibilidad (conseguida muy recientemente) de detectar ondas gravitacionales hace posible estudiar objetos que hasta ahora eran casi invisibles. Aquí, en la presentación, nos dicen: El secreto que guardaron un siglo los agujeros negros.

 

La gigantesca colisión de dos agujeros negros que la ciencia no logra  explicar - BBC News Mundo

                   Recreación de una pareja de agujeros negros a punto de fusionarse
Así colisionan las galaxias

                      Cuando dos objetos masivos colisionan se forman ondas gravitacionales posibles de detectar

Durante la Primera Guerra Mundial, mientras calculaba trayectorias de proyectiles como artillero en el frente ruso, el físico alemán Karl Schwarzschild estudiaba la recién publicada Teoría General de la Relatividad de Albert Einstein. Además de comprobar que las ecuaciones de su compatriota describían el universo con una precisión sin precedentes.

                                                     Sinc

Schwarzschild observó que también implicaban la existencia de objetos cósmicos inesperados. Las curvaturas del tejido del espacio tiempo provocadas por los planetas o las estrellas generaban una especie de pozos gravitatorios que mantienen a los humanos anclados a la Tierra y hace que la Luna gire a nuestro alrededor mientras nosotros viajamos alrededor del Sol. En casos extremos, cuando la concentración de masa fuese máxima, la atracción gravitatoria sería tan intensa que ni siquiera la luz escaparía a su influjo.

Agujeros negros | National GeographicCiencia Canal De La - Foto gratis en Pixabay

La inmensa fuerza de Gravedad que genera la singularidad atrae todo lo que se acerque a su dominio

Aquella fue la primera vez que se planteó la existencia de los agujeros negros, un concepto tan extraño que hasta Einstein dudó de su existencia real. Poco después, mientras seguía rumiando las consecuencias de su idea más revolucionaria, le escribió a Schwarzschild sobre la posibilidad de que algunos objetos supermasivos como aquellos extraños agujeros negros produjesen ondulaciones en el tejido espaciotemporal similares a las que se producen cuando se arroja una piedra a un estanque.

                     BLOG - Flavio Bánterla

Un siglo después, aquellas hipótesis locas han sido confirmadas por pruebas empíricas. En septiembre de 2015, el Observatorio de Interferometría Láser de Ondas Gravitacionales (LIGO), en EE UU, captó las primeras ondas gravitacionales producidas justo en el momento en que dos agujeros negros chocaban un instante antes de fusionarse. Aquellos objetos tenían entre 10 y 30 veces la masa del Sol y su unión liberó en una fracción de segundo más energía que todas las estrellas conocidas juntas. Este tipo de colisiones habían sido predichas, pero era la primera vez que se observaban.

 

Los físicos silencian el susurro cuántico para mejorar la sensibilidad del  detector de ondas gravitacionales

 

         Una hipótesis plantea que los agujeros negros nacieron juntos en forma de pareja de estrellas

Como se anunció entonces, la posibilidad de detectar ondas gravitacionales inauguraba una nueva etapa para la astronomía, que podía estudiar de forma directa fenómenos hasta entonces invisibles. Esta semana, un equipo de investigadores de la Universidad de Birmingham, en Reino Unido, y las universidades de Maryland y Chicago, en EE UU, ha publicado en Nature los resultados de uno de los primeros trabajos de esta nueva astronomía. Su intención era explicar cómo se formaban las parejas de agujeros negros como las que ha detectado LIGO.

Resultado de imagen de Captan dos estrellas masivas

                               Captan dos estrellas masivas que funden con el beso de la muerte

Ilya Mandel, científico de la Universidad de Birmingham y coautor del artículo, explica en The Conversation que los astrónomos se plantean dos hipótesis para la formación de estas parejas. En una de ellas, la pareja habría iniciado su periplo unida desde el inicio, con el nacimiento simultáneo de dos estrellas masivas. Después de una larga existencia, cuando su combustible nuclear se agotase, ambas se colapsarían bajo el peso de su propia gravedad concentrándose hasta formar dos agujeros negros. Si estuviesen a la distancia adecuada, ambos objetos empezarían a perder parte de la energía que los mantenía en sus órbitas en forma de ondas gravitacionales y caerían en una espiral hacia el otro hasta fusionarse. En la segunda opción que se plantea, los monstruos cósmicos se habrían formado por separado, pero lo habrían hecho en una parte del universo con superpoblación de estrellas. Los tirones gravitatorios de esos astros habrían acabado por reunir a los dos agujeros negros.

Por qué hoy es un día histórico para la ciencia?Captar las ondas gravitacionales: Robots de realidad aumentada enseñar  fundamentos de física para niños y adultos - askix.com

         Y finalmente captaron las ondas gravitacionales predichas por la Teoría de la Relatividad

La información proporcionada por LIGO permite saber si estos objetos rotan lentamente o lo hacen rápido y si están alineados entre ellos o no. Por ahora, los datos indican que los agujeros negros giran sobre sí mismos a toda velocidad y que no están alineados. Esto pondría los datos contra la teoría de que se formaron como estrella binaria e indicaría que, al menos en este caso, las dos bestias gravitatorias surgieron por separado en una región con muchas estrellas y se acabaron por unir después.

                                         VAYA GIF Mejores

                           Los agujeros negros atraen la materia circundante y la engullen, ni la luz se escapa de sus garras gravitatorias. Y, en realidad, el fenómeno es digno de ser estudiado, ya que, si la luz no es materia (como tal) ¿Cómo la puede atraer?

Los autores señalan que ese tipo de agujeros negros serían similares a los observados en nuestra galaxia. Calculan que harían falta otras diez observaciones de los efectos de la fusión de otras parejas para confirmar su origen. Sin embargo, también advierten que es posible que esos agujeros lejanos sean distintos de los que vemos en nuestro vecindario y en ese caso harían falta muchas más observaciones para dar sentido a tanta complejidad. Resolver el misterio del todo requerirá tiempo, pero al menos ya se sabe que los protagonistas de la historia son reales. Lo que se sabe ahora, pese a todo lo que se desconoce, habría fascinado a aquel artillero que aprovechaba los descansos entre disparos para reflexionar sobre los enigmas del universo.

Fuente: El País