lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Luz! ¿Será el Alma del Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                      Ha solicitud de un Centro Educativo, vuelvo a poner este trabajo antiguo

Se dice que España es uno de los países más fotografiados por los astronautas. Y no es precisamente por su contraste de colores, sino por la cantidad de luz que desprenden las ciudades durante la noche. Es la llamada contaminación lumínica.

Por último, el exceso de luz afecta a la flora y fauna nocturnas, que precisan de oscuridad para desarrollar sus ciclos vitales. Las aves se deslumbran y desorientan, se alteran los períodos de ascenso y descenso del plancton marino, lo que repercute en la alimentación de otras especies; los insectos modifican sus ciclos reproductivos, aumentan el número de plagas en las ciudades… Se rompe, además, el equilibrio poblacional de las especies, porque algunas son ciegas a ciertas longitudes de onda de luz y otras no, con lo cual las depredadoras pueden prosperar mientras se extinguen las depredadas. Respecto a las plantas, se quedan sin insectos que las polinicen. Aunque no hay estudios concretos sobre el tema, se cree que esta falta de polinización podría influir en la productividad de algunos los cultivos. En definitiva, que no sabemos administrar lo que tenemos.

                  iluminacion interior viviendas

                     Todos sabemos lo importante que puede llegar a ser la luz en nuestras viviendas

La luz es importante en nuestras vidas, tan importante que hasta hemos inventado luz artificial para alumbrar nuestras casas y ciudades y escapar de la fea oscuridad. Es una forma de radiación electromagnética a la que el ojo humano es sensible y sobre la cual depende nuestra consciencia visual del universo y sus contenidos.

                                          

        Gracias a la luz podemos contemplar el Universo y todos los objetos que nos rodean

La velocidad finita de la luz fue sospechada por muchos experimentadores en óptica, pero fue establecida en 1.676, cuando O. Roemer (1.644 – 1.710) la midió. Sir Isaac Newton (1.642 – 1.727) investigó el espectro óptico y utilizó los conocimientos existentes para establecer una primera teoría corpuscular de la luz, en la que era considerada como un chorro de partículas que provocaban perturbaciones en el “éter” del espacio.

                                            luz5

                                                 IAR - Artículos de Difusión

Mediante el sentido de la visión, podemos captar los objetos en los que ésta se refleja. La fuente principal de la luz que vemos es el sol y es el resultado de sumar todos los colores, manifestándose pues de color blanco. La luz blanca se separa en los colores que la componen cuando pasa a través de un prisma. La luz visible es sólo una pequeña parte del gran espectro electromagnético. Con lo cual, un haz de luz está compuesto por pequeños paquetes de energía, denominados cuantos de luz o fotones. Al igual que la luz blanca existen otros principios luminosos que a diferencia de éste no son blancos, la explicación de ello radicaría en que dependiendo de la forma en que esta fuente genere luz tendremos un color u otro. Por ejemplo, las lámparas incandescentes (tungsteno) muestran un color rojizo.

La luz artificial es imprescindible cuando la luz natural desaparece. Si en una habitación bien decorada no se han tomado en cuenta los cambios de luz, todo su encanto desaparece cuando la iluminación se torna deficiente.

Thomas Young (1773-1829) | Física para tod@s

Entre los años 1801 y 1803 Young presentó unos artículos ante la Royal Society exaltando la teoría ondulatoria de la luz y añadiendo a ella un nuevo concepto fundamental, el llamado principio de interferencia. Cuando se superponen las ondas provenientes de dos fuentes luminosas puntuales, sobre una pantalla colocada paralela a la línea de unión de los dos orificios, se producen franjas claras y oscuras regularmente espaciadas. Éste es el primer experimento en el que se demuestra que la superposición de luz puede producir oscuridad. Este fenómeno se conoce como interferencia y con este experimento se corroboraron las ideas intuitivas de Huygens respecto al carácter ondulatorio de la luz.

Entendiendo el electromagnetismo | Telecomunicaciones de andar por casa

Después de Newton, sucesores adoptaron los corpúsculos, pero ignoraron las perturbaciones con forma de onda hasta que Thomas Young (1.773 – 1.829) redescubrió la interferencia de la luz en 1.801 y mostró que una teoría ondulatoria era esencial para interpretar este tipo de fenómenos. Este punto de vista fue adoptado durante la mayor parte del siglo XIX y permitió a James Clerk Maxwell (1.831 – 1.879) mostrar que la luz forma parte del espectro electromagnético.

Efecto Fotoeléctrico. Resumen - YouTubeEfecto fotoeléctrico - Wikipedia, la enciclopedia libre

En 1.905, Albert Einstein (1.879 – 1.955) demostró que el efecto fotoeléctrico sólo podía ser explicado con la hipótesis de que la luz consiste en un chorro de fotones de energía electromagnética discretos, esto es, pequeños paquetes de luz que él llamó fotones y que Max Planck llamó cuanto. Este renovado conflicto entre las teorías ondulatoria y corpuscular fue gradualmente resuelto con la evolución de la teoría cuántica y la mecánica ondulatoria. Aunque no es fácil construir un modelo que tenga características ondulatorias y corpusculares, es aceptado, de acuerdo con la teoría de Bohr de la complementariedad, que en algunos experimentos la luz parecerá tener naturaleza ondulatoria, mientras que en otros parecerá tener naturaleza corpuscular. Durante el transcurso de la evolución de la mecánica ondulatoria también ha sido evidente.

      N)- Creación de pares - 1- SÍNTESIS de la TEORÍA TIEMPO-ESPACIOLogran, por primera vez, ralentizar la velocidad de la luz

El fotón es una partícula con masa en reposo nula consistente en un cuanto de radiación electromagnética (cuanto de luz). El fotón también puede ser considerado como una unidad de energía igual a hf, donde h es la constante de Planckf es la frecuencia de radiación en hertzios. Los fotones viajan a la velocidad de la luz, es decir, a 299.792.458 metros por segundo. Son necesarios para explicar (como dijo Einstein) el efecto fotoeléctrico y otros fenómenos que requieren que la luz tenga carácter de partícula unas veces y de onda otras.

                                                        

– Nuevo concepto de la estructura de la luz, es una onda y una partícula.

– Las partículas de luz son “cuantos de luz” o fotones.

– El átomo tiene propiedades cuánticas, el electrón también.

El artículo sobre el efecto foto-eleléctrico fue enviado por Einstein a la revista Annalen der Physik el 17 de marzo, recibido al siguiente día y publicado el 9 de junio de 1905. Más tarde, por esta importante contribución, Einstein sería galardonado con el Premio Nobel de Física de 1921.

El conocimiento de la luz (los fotones), ha permitido a la humanidad avances muy considerables en electrónica que, al sustituir los electrones por fotones (fotónica) se han construido dispositivos de transmisión, modulación, reflexión, refracción, amplificación, detección y guía de la luz. Algunos ejemplos son los láseres y las fibras ópticas. La fotónica es muy utilizada en telecomunicaciones, en operaciones quirúrgicas por láseres, en armas de potentes rayos láser y… en el futuro, en motores fotónicos que, sin contaminación, moverán nuestras naves a velocidades súper-lumínicas.

Cirugía refractiva con láser: qué es, síntomas y tratamiento | Top DoctorsCirugia laser | Auna

    Tanto en medicina, trabajos industriales, o, en armamento, el láser es importante en nuestras vidas.

El electrón, otra partícula elemental importantísima para todos nosotros y para el universo mismo, está clasificado en la familia de los leptones, con una masa en reposo (símbolo me) de notación numérica igual a 9’109 3897 (54) ×10-31 Kg y una carga negativa de notación numérica igual a 1’602 177 33 (49) ×10-19 coulombios. Los electrones están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo; cuando son arrancados del átomo se llaman electrones libres. La antipartícula del electrón es el positrón cuya existencia fue predicha por el físico Paúl Dirac. El positrón es un hermano gemelo del electrón, a excepción de la carga que es positiva.

                                                  Aldo D. Nuñez on Twitter: "Esta es la ecuación de dirac, también llamada la  ecuación del amor https://t.co/xiKZYBtdKz" / Twitter

Atoms Atomos GIF - Atoms Atomos Quantum - Descubre & Comparte GIFs

       La famosa ecuación de Dirac que nos dice tanto… El entrelazamiento cuántico es una de ellas

El electrón fue descubierto en 1.897 por el físico Joseph John Thomson (1.856 – 1.940). El problema de la estructura (si es que la hay) del electrón no está resuelto; nuestras máquinas no tienen la potencia suficiente para poder llegar, en el micro-mundo, a distancias infinitesimales de ese calibre. Si el electrón se considera como una carga puntual su auto energía es infinita y surgen dificultades de la ecuación de Lorentz-Dirac.

                         

Como lo queremos saber todo y llegar al fondo de todo, estamos intentando dividir el electrón, y, no creo que eso nos lleve a nada bueno. El electrón con su masa y su carga es esencial para la vida. ¡Dejémoslo estar!

Es posible dar al electrón un tamaño no nulo con un radio r0 llamado el radio clásico del electrón, dado por ro = e2/(mc2) = 2’82×10-13 cm, donde e y m son la carga y la masa, respectivamente, del electrón y c es la velocidad de la luz. Este modelo también tiene problemas como la necesidad de postular las tensiones de Poincaré.

Ahora se cree que los problemas asociados con el electrón deben ser analizados utilizando electrodinámica cuántica en vez de electrodinámica clásica.

                                                      Los tres sabores del neutrino

                                                                  Leptones y neutrinos asociados

Un equipo de físicos de las Universidades de Cambridge y de Birmingham ha demostrado que los electrones, que por separado son indivisibles, pueden dividirse en dos partículas nuevas llamadas espinones y holones, cuando se concentran dentro de un estrecho cable. ¡Qué cosas!

                                                   Fotografían a una partícula cuántica en un "estado extracorporal" •  Tendencias21

Las tres partículas, electrón, muón y tau, son exactas, excepto en sus masas. El muón es 200 veces más masivo que el electrón. La partícula tau es unas 35.600 veces más masiva que el electrón. Los leptones interaccionan por la fuerza electromagnética y la interacción débil. Para cada leptón hay una antipartícula equivalente de carga opuesta (como explicamos antes, el positrón es la antipartícula del leptón electrón). Los antineutrinos, como los neutrinos, no tienen carga.

La interacción electromagnética es la responsable de las fuerzas que controlan las estructuras atómicas, las reacciones químicas y todos los fenómenos electromagnéticos. Puede explicar las fuerzas entre las partículas cargadas pero, al contrario que las interacciones gravitacionales, pueden ser tanto atractivas como repulsivas (probar con imanes como las fuerzas desiguales y contrarias – positiva/negativa – se atraen, mientras que cargas iguales – negativa/negativa o positiva/positiva – se repelen).

Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se puede interpretar tanto como un campo clásico de fuerzas (Ley de Coulomb) como por el intercambio de fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tienen una teoría clásica bien definida dadas por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas se describen (como antes dije) con la electrodinámica cuántica. Esta fuerza tiene una partícula portadora, el fotón.

                    Resultado de imagen de La electrónica

Todos oímos con frecuencia la palabra “electrónica”, pero pocos pensamos que estamos hablando de electrones en diseños de dispositivos de control, comunicación y computación, basándose en el movimiento de los electrones en circuitos que contienen semiconductores, válvulas termoiónicas, resistencias, condensadores y bobinas y en la electrónica cuántica1 aplicada a la óptica, se han conseguido verdaderas maravillas que han facilitado grandes avances tecnológicos de distintas aplicaciones como la investigación o la medicina y la cirugía, entre otros.

Este pequeño comentario sobre la electrónica y la fotónica que antes habéis leído, demuestra cómo el conocimiento y el dominio sobre estos dos pequeñísimos objetos, el fotón y el electrón, nos ha dado unos beneficios increíbles.

Núcleo de un átomo de carbono mostrando la estructura de los quarks

Los Quarks están confinados en el núcleo del átomo formando protones y neutrones. La Fuerza nuclear fuerte los retiene para que no se puedan separar los unos de los otros a más distancia de la que es necesaria para mantener la estabilidad y, se les consiente lo que se denomina libertad asintótica de los Quarks.

Existen otras partículas aún más diminutas que, en realidad, podríamos decir que son los auténticos ladrillos de la materia, los objetos más pequeños que la conforman: los quarks.

En la antigua Grecia, sabios como Demócrito, Empédocles, Thales de Mileto o Aristóteles, ya sospecharon de la existencia de pequeños objetos que se unían para formar materia. Demócrito de Abdera decía que todo estaba formado por pequeños objetos invisibles e indivisibles a los que llamaba a-tomo o átomos (en griego significa “indivisibles”).

Pasaron muchos años de controversia sobre la existencia de los átomos y, en 1.803, el químico y físico británico John Dalton señaló que los compuestos físicos se combinaban para, en ciertas proporciones, formar agrupamiento de átomos para formar unidades llamadas moléculas.

En 1.905 llegó Einstein para dar una de las evidencias físicas más importante de la existencia de los átomos, al señalar que el fenómeno conocido como movimiento browniano – el movimiento irregular, aleatorio de pequeñas partículas de polvo suspendidas en un líquido – podía ser explicado por el efecto de las colisiones de los átomos del líquido con las partículas de polvo.

Por aquella época ya había sospechas de que los átomos no eran, después de todo, indivisibles. Hacía varios años que J. J. Thomson, de Cambridge, había demostrado la existencia de una partícula material, el electrón, que tenía una masa menor que la milésima parte de la masa del átomo más ligero. Se comprendió que estos electrones debían provenir de los átomos en sí. Y, en 1.911, el físico británico Ernest Rutherford mostró finalmente que los átomos de la materia tienen verdaderamente una estructura interna: están formados por un núcleo extremadamente pequeño y con carga positiva, alrededor del cual gira un cierto número de electrones.

                                            Archivo:Atomo litio.gif - Wikipedia, la enciclopedia libre

En 1.932, un colega de Rutherford, James Chadwick, descubrió también en Cambridge que el núcleo contenía otras partículas, llamadas neutrones, que tenían casi la misma masa del protón que tiene una carga positiva igual en magnitud a la del electrón que es negativa, con lo cual, como todos los núcleos tienen el mismo número de protones que de electrones hay en el átomo, el equilibrio de éste queda así explicado: carga positiva similar a carga negativa = a estabilidad en el átomo.

emilio silvera

 

  1. 1
    emilio silvera
    el 23 de mayo del 2022 a las 19:20

    “La luz es la parte de la radiación electromagnética que puede ser percibida por el ojo humano.​ En física, el término luz se considera como parte del campo de las radiaciones conocido como espectro electromagnético, mientras que la expresión luz visible señala específicamente la radiación en el espectro visible. La luz, como todas las radiaciones electromagnéticas, está formada por partículas elementales desprovistas de masa denominadas fotones,​cuyas propiedades de acuerdo con la dualidad onda-partícula explican las características de su comportamiento físico. Se trata de una onda esférica.

    “Esta es una breve explicación de la luz de las muchas que circulan por ahí. Sin embargo, la luz, amigos míos, es algo tan esencial que, sin ella, posiblemente conoceríamos otras formas de vida en nuestro planeta, y, el Universo,. sería un universo diferente al que conocemos. ¿Cómo podríamos hacernos a la idea de un universo sin luz? Todo negrura y oscuridad, sin el brillo de las estrellas y sin nebulosas ionizadas por la radiación que abarca toda la gama del espectro electromagnético.

    Cuando contemplamos la puesta de Sol, el cielo rojizo, el reflejo dorado en el océano, la tarde que va cayendo hacia la noche… Y, de la misma manera, vemos con disimulado asombro el amanecer que, dependiendo del lugar en el que nos encontremos, puede ser una bella melodía para los sentidos.

    La luz, no podemos negar esa evidencia, es algo que necesitamos y que se nos ha dado desde que, por primera vez abrimos los ojos al mundo y, curiosos, comenzamos a mirar todo aquello que despierta nuestra curiosidad (que no es poco, dicho sea de paso).

    Así, esa partícula sin masa que es la “corredora” más rápida del Universo, la que llamamos fotón y que está encuadrada en la familia de los Bosones, las partículas emisarias de las cuatro fuerzas fundamentales, es algo que, en profundidad de toda su plenitud… ¡No conocemos! 

    La luz es mucho más de lo que nosotros creemos que es, y, para mí, creo que es el Alma del Universo, así de importante la he llegado a catalogar, sin ella… ¿Cómo hubiéramos llegado a conocer lo que conocemos del Universo? Es la luz la que hace posible que los grandes telescopios nos puedan mostrar las imágenes de galaxias que (posiblemente), desaparecieron hace miles de millones de años, y, que al ser captadas por el telescopio, nos la muestra como era entonces, y, de esa manera (aunque sea virtual), hemos viajado en el Tiempo.

    Cuando dejamos de ver la luz… ¡Todo se acabó para nosotros? (excepto en el caso de la ceguera que es otra cuestión). La luz alumbra el camino hacia el destino deseado, la luz espanta a las sombras amenazadoras, la luz deja al descubierto lo que se esconde, la luz nos transmite seguridad, la luz es la radiación electromagnética visible para el ojo humano, y, gracias a eso, podemos ver el mundo que nos rodea, otra cosa distinta es lo que podemos ver con los “ojos de la imaginación”,

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting