martes, 05 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




De lo pequeño a lo grande

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

       Condensado de Bose Einstein: características, aplicaciones, ejemplos          EL PRINCIPIO DE EXCLUSIÓN DE... - Scientific engineer fx | Facebookcondensado de bose-einstein - INFIMIKIMIA

                                             Los fermiones no quieren juntarse, los bosones

Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la super-fluidez. A temperaturas muy bajas (del orden de 2×10-7º K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un super-átomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

                                                                    http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de ésta teoría en vez de las de la mecánica clásica.  En estadística cuantica, los estados de energía se considera que están cuantizados.  La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son los bosones que, tienden a juntarse.

         Los bosones tienen un momento angular n h / 2p, donde n es cero o un entero y h es la constante de Planck.  Para bosones idénticos, la función de ondas es siempre simétrica.  Si solo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n+½) h/2p y cualquier función de ondas de fermiones idénticos es siempre antisimétrica.

http://farm5.static.flickr.com/4140/4745204958_afd02b2486.jpg

La mejor teoría para explicar el mundo subatómico nació en 1928 cuando el teórico Paul Dirac combinó la mecánica cuántica con la relatividad especial para explicar el comportamiento del electrón. El resultado fue la mecánica cuántica relativista, que se transformó en un ingrediente primario en la teoría cuántica de campos. Con unas pocas suposiciones y unos ajustes ad-hoc, la teoría cuántica de campos ha probado ser suficientemente poderosa para formar la base del modelo estándar de las partículas y las fuerzas.

La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística. En un espacio de dos dimensiones es posible que existan partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones.  Estas partículas se conocen con el nombre de aiones; para aniones idénticos la función de ondas no es simétrica (un cambio de fase de+1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1.  Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

                                                    

Resulta  fácil comprender cómo  forma un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).

Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas:

           La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965

¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos. Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más interés.

Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.

Pero…, ¿Hay masas de antimateria en el Universo? ¿Galaxias de antimateria?

Bueno, sabemos que no son las galaxias las que se alejan, sino que es el espacio el que se expande. Lo que no sabemos es encontrar antimateria en el espacio interestelar y, si la hay y está presente… ¡Aún no la hemos podido localizar! Algunos dicen que hay galaxias de antimateria y, yo digo que tengo un pariente en la galaxia Astrinia del cúmulo Ultramón a diez mil millones de años-luz de nuestra región.

         No parece que dichas observaciones, al menos hasta el momento, hayan sido un éxito.

http://upload.wikimedia.org/wikipedia/commons/b/b9/Cosmological_composition.jpg

Según estimaciones recientes, resumidas en este gráfico de la NASA, alrededor del 70% del contenido energético del Universo consiste en energía oscura, cuya presencia se infiere en su efecto sobre la expansión del Universo pero sobre cuya naturaleza última no se sabe casi nada.

         ¿Es posible que el Universo este formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? dado que la materia y la antimateria son equivalentes en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaria la otra, y el Universo debería estar compuesta de iguales cantidades de la una y de la otra.

         Este es el dilema.  La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los causares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros como el único mecanismo conocido para producir la energía requerida.

      Estábamos hablando de mecánica cuántica y me pasé, sin que me diera cuenta, al ámbirto de la antimateria y el espacio del macro universo de las galaxias. Sin embargo, y aunque parezcan temas dispares, lo cierto es que, a medida que profundizamos en estas cuestiones, todas nos llevan, de una u otra manera,  a relacionar el “mundo de lo muy pequeño” con el “mundo” de lo muy grande que, al fín y al cabo, está hecho de lo que existe en el primero, es decir, partículas infinitesimales de materia y… ¡de antimateria! para que todo quede compensado.

emilio silvera

¡Nuestro “Sentido Común”! Que a veces nos engaña

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                      Todos tenemos tendencia a interesarnos por alguna cosa : Blog de Emilio  Silvera V.

                                                                                      emilio silvera

¡Nuestros predecesores! Para ellos, era absolutamente evidente que la Tierra fuera estable y que estaba inmóvil. Éramos el centro del Universo. La ciencia occidental moderna parte de la negación de este axioma derivado del “sentido común”. Tal negación, origen y prototipo de las mayores paradojas de la ciencia, constituiría nuestra invitación a un mundo invisible e infinito. Llegó un día en que el hombre, se dio cuenta de la desnudez de sus sentidos. “El Sentido común”, pilar de la vida cotidiana, ya no servía para gobernar el mundo. En el momento en que el conocimiento “científico”, sofisticado, dio lugar a verdades incuestionables, las cosas dejaron de ser lo que parecían.

                                                   No es lo que parece a primera vista

Las cosmologías antiguas utilizaban mitos pintorescos y convincentes para adornar los veredictos del sentido común y para describir los movimientos de los cuerpos celestes. En los muros de las tumbas de los faraones egipcios del valle de los Reyes encontramos vistosas representaciones del dios del aire sosteniendo la cúpula celeste por encima de la tierra.

                                                El Barco Solar de Ra - Mitología Egipcia - Mira la Historia - YouTube

Asimismo, observamos que el dios del Sol, Ra, conduce su barca cada día por el cielo y que, cada noche, en otra barca que surca las aguas por debajo de la tierra, retorna al punto de partida de su viaje diurno, que vuelve a iniciar. Como hemos visto, esta visión mítica no impidió que los egipcios elaboraran el más preciso de los calendarios solares, que fue utilizado durante miles de años. Para los egipcios, tales mitos tenían sentido, no contradecían lo que veían cada día y cada noche con sus ojos.

                                                    Nicolás Copérnico: biografía y resumen de sus aportes a la ciencia

                                                                      Copérnico – Astrónomo polaco.

Con el tiempo, todo aquello cambió, y, la mente humana evolucionó. ¿Por qué se tomó Nicolás Copérnico tantas molestias para desplazar un sistema que era sostenido con firmeza por la experiencia cotidiana, la tradición y la autoridad? Cuánto más nos familiarizamos con la era de Copérnico, vemos con mayor claridad que los que no se dejaban convencer por él simplemente demostraban sensatez.

                                                             EL sistema geocéntrico, el sistema heliocéntrico y la ciencia

Aunque 700 años antes que él, Aristarco de Samos postuló lo mismo u sus coetáneos no le prestaron atención, Copérnico logró que todos mostraran interés en sus postulados y el Sol quedó como centro del Sistema Solar.

Las pruebas de que disponían no exigían una revisión del sistema. Habrían de pasar varias décadas para que los astrónomos y matemáticos reunieran datos nuevos y hallaran nuevos instrumentos, y al menos un siglo para que los legos se convencieran de lo que era contrario al sentido común. Lo cierto es que, pese a todas las modificaciones ideadas por astrónomos y filósofos, el esquema antiguo no incluía todos los datos conocidos. Pero tampoco lo hizo la simplificación de Copérnico. Parece que no era la fuerza de los hechos sino una preocupación estética y metafísica lo que empujaba a Copérnico.

GIFs El sistema solar y su estructura - Todos los planetas

Se le ocurrió que un sistema diferente sería mucho más hermoso. Su mente inquieta y su atrevida imaginación hicieron el resto. Como astrónomo, Copérnico no era más que un aficionado. No se ganaba la vida con la Astronomía ni con ninguna aplicación de esta ciencia. Al menos desde el punto de vista actual, era extraordinariamente polifacético, lo que le sitúa en la línea central del alto Renacimiento. Nació cuando Leonardo da Vinci se encontraba en plena actividad y fue contemporáneo de Miguel Ángel.

Copérnico se daba cuenta de que su sistema parecía transgredir el sentido común. Por esa misma razón, sus amigos habían tenido que “instarlo e incluso apremiarlo hasta el fastidio” para que publicara la obra. “Insistían en que, si bien era posible que al principio mi teoría sobre el movimiento de la Tierra pareciera extraña, resultaría admirable y aceptable una vez que la publicación de mis comentarios aclaratorios disipara las brumas de la paradoja”.

Con todo esto, sólo quiero dejar una pequeña muestra de la dificultad con la que hemos ido avanzando en el camino de la Ciencia. No siempre ha sido un camino de rosas el poder enseñar al mundo la verdadera faz de la Naturaleza, todo vez que, el mundo, la que veía era otra muy distinta y, sus sentidos, se negaban a admitir que las cosas pudieran ser diferentes a como ellos la podían ver.

                                                          Galileo by leoni.jpg

                                                                                 Galileo por Leoni

Galileo que era un científico de vocación, escribió un libro que se trataba de “Dos ciencias nuevas”, una que se ocupaba de la Mecánica y otra de la Resistencia de los materiales. Como era costumbre en la época, también ese libro fue escrito en italiano y adoptó la forma de diálogo sostenido entre los personajes Salvati, Sagredo y Simplicio. Dado que la Inquisición había prohibido todos sus libros, la obra hubo de ser sacada furtivamente del país para que la publicaran los Elzevir en Leyden. Este fue el último libro de Galileo y en él ponía los cimientos sobre los cuales Huygens y Newton construirían la ciencia de la dinámica y, finalmente, una teoría de la gravitación universal.

                                                                   Diálogos sobre los dos máximos sistemas del mundo - Wikipedia, la  enciclopedia libre

                                                                               Salvati, Sagredo y Simplicio

                                                                     Microscopio y telescopio, el descubrimiento de mundos opuestos - iHA

El microscopio y el telescopio fueron ambos productos de la misma era, pero mientras que Copérnico y Galileo se han convertido en héroes populares, en los profetas de la modernidad, Hooke y Leeuwenhoek, sus equivalentes en el mundo microscópico, han quedado relegados al panteón de las ciencias especializadas. Copérnico y Galileo desempeñaron importantes papeles en la tan conocida batalla entre “ciencia” y “religión”; no sucedió lo mismo con Hooke y Leewwenhoek.

Los microscopios de van Leeuwenhoek | El rincón de Pasteur | SciLogs |  Investigación y Ciencia
Leeuwenhoe, primer cazador de microbiosLa célula. Ampliaciones. A. v. Leeuwenhoek. Atlas de Histología Vegetal y  Animal


Los astrónomos de todo el planeta conmemoran este martes el cuarto centenario del reconocimiento oficial por parte de las autoridades de la República de Venecia del primer telescopio, un invento del científico italiano Galileo Galilei (1564-1642) que cambió para siempre el rumbo de la Astronomía.

No se sabe quién inventó el microscopio. El principal candidato es Zacharias Jansen, humilde fabricante de anteojos de Middelburg. Si sabemos que el microscopio como las gafas y el telescopio, se usaban mucho antes de que se comprendieran los principios de la óptica, y probablemente su invención fue tan accidental como la del telescopio. No podía haber sido inventado por alguien que quisiera echar una mirada al mundo microscópico nunca imaginado hasta entonces.

Poco después de que fueran fabricados los primeros telescopios, la gente los utilizaba para ver ampliados objetos cercanos. En 1614, Galileo le decía a un visitante: “Con este tubo he visto moscas que parecían tan grandes como corderos, y he comprobado que están cubiertas de pelo y tienen unas uñas muy afiladas mediante las cuales se sostienen y andan sobre el cristal, aunque estén patas arriba, insertando la punta de las uñas en los poros del cristal”.

Sus inventos | -fisica-La historia del microscopio | Ciencia y tecnología hacia el siglo XVI

El aparato llamó la atención del ejército para tener más localizado al enemigo lejano. Más tarde, a Galileo se le ocurrió apuntar su telescopio hacia el cielo, y, ya nunca lo apartó de él. Con aquel simple movimiento, él, cambiaría el mundo y, la Tierra, entró a formar parte de un Sistema mayor que ahora llamamos Universo.

Claro que, lo mismo que se descubrió el mundo de lo muy grande, y, paralelamente, también se descubriría el mundo de lo muy pequeño.

                                             Desgarga gratis los mejores gifs animados de bacterias. Imágenes animadas  de bacterias y más gifs animados como buen… | Microbiología, Temas de  biologia, Bioquímica

                                                                          Y se reveló un mundo nuevo

Al igual que el Telescopio había unido la Tierra y los cuerpos celestes más distantes en un solo esquema de pensamiento, las imágenes del microscopio revelaban un mundo minúsculo que se asemejaba de modo sorprendente al que se veía diariamente a gran escala. En Historias Insectorum Generalis, Jan Swammerdam desmostraba que los insectos, como los animales “superiores” poseían una intrincada anatomía y no se reproducían por generación espontánea. En el microscopio vio que los insectos se desarrollaban igual que el hombre, por epigénesis, o desarrollo gradual de un órgano después de otro. Con todo, sobrevivió la creencia en otras formas de generación espontánea, hasta que, en el siglo XIX, Luis Pasteur realizó sus brillantes experimentos.

Helocobacter Pylori Bacteria GIF - Helocobacter Pylori Bacteria Microscopic  - Descubre & Comparte GIFs

      Bacterias.

El microscopio abrió las puertas de oscuros continentes en los que nunca se había entrada con anterioridad y que en muchos sentidos eran fáciles de explorar. Las grandes travesías marítimas habían exigido grandes inversiones, en genio organizador, capacidad de liderazgo y el de carisma de personajes como Colón, Magallanes o Vasco de Gama. La exploración astronómica exigía coordinación de las exploraciones realizadas en distintos lugares y con medios cada vez más costosos. Pero un hombre sólo, situado en cualquier parte con un microscopio, podía aventurarse por vez primera por vericuetos a los que no habían llegado los expertos navegantes o los valerosos pilotos.

Antoni van Leeuwenhoek fue con su microscopio el primer promotor de esta nueva ciencia de la exploración de otros mundos que resultaron estar en este. Sería bonito relatar aquí la historia del personaje pero, no tenemos el espacio necesario para ello.

foto

Os contaré que, en una ocasión, disponiendo de un microscópico, comenzó a buscar algo que hace con él. En septiembre de 1674, por pura curiosidad, llenó un frasco de cristal de un agua turbia y verdosa, que la gente de campo llamaba “rocío de miel”, procedente de un lago pantanoso situado a tres kilómetros de Delft, y bajo la mente de aumento descubrió “muchísimos animáculos diminutos”. A continuación dirigió su microscopio hacia una gota de agua de pimienta, infusión a base de pimienta negra utilizada en sus observaciones:

                                                      Bacteria GIF - Buscar en GIFER

“Entonces vi con claridad que se trataba de pequeñas anguilas o lombrices apiñadas y culebreando, igual que si viera en un charco lleno de pequeñas anguilas y agua, todas retorciéndose por encima de otras, y parecía que toda el agua estaba vivía y llena de estos múltiples animáculos. Para mí, ésta fue, entre todas las maravillas que he descubierto en la naturaleza, la más maravillosa de todas; y he de decir, en lo que a mí concierne,  que no se ha presentado ante mis ojos ninguna visión más agradable que esos miles de criaturas vivientes, todas vivas en un diminuta gota de agua, moviéndose unas junto a otras, y cada una de ellas con su propio movimiento…”

Mycobacterium tuberculosis: qué es, características, morfología, cultivo

                            Mycobacterium tuberculosis

                              Infección por E. coli - familydoctor.org

                                                     Escherichia coli

                            Borrelia burgdorferi: imágenes, fotos de stock y vectores | Shutterstock

                                        Borrelia burgdorferi

                            1.807 fotos e imágenes de Cyanobacterium - Getty Images

                                                   Cyanobacterium

        Esa vida que es tan pequeña, que no se veCyanobacterium and green algae, LM - Stock Image - C032/1252 - Science  Photo Library

              sp. (cyanobacterium) and Netrium and Zygnema sp. (green algae)

                                     FISH of several Holospora spp. with two specific oligonucleotide... |  Download Scientific Diagram

                                                                   Holospora undulata

         Microbios de sulfuro púrpura Chromatium viviendo Nomarski DIC Flash  Fotografía de stock - AlamyChromatium - microbewiki

                                                                             Chromatium

          Achromatium - WikipediaThe Family Achromatiaceae | SpringerLink

                                                                            Achromatium

Tras descubrir el mundo de las bacterias, Leeuwenhoek prosiguió la tarea dignificando a estos individuos. Contradiciendo los dogmas aristotélicos relativos a los “animales inferiores”, declaró que cada uno de estos animáculos disponía de la dotación completa de órganos corporales necesarios para el tipo de vida que llevaba.

Con todo este pequeño recorrido, en el que he tomado algunos ejemplos al azar, sólo he querido significar que, la Ciencia, a lo largo de la historia de la Humanidad, ha ido tomando diversos caminos y, unas veces debido a mentes preclaras que tenían el don de “ver” lo que otros no podían, y, otras veces, por hechos del destino y la casualidad o el azar, el hombre, ha podido ir avanzando y conociendo el mundo en el que le ha tocado vivir y, al decir mundo, me refiero no sólo a la Tierra, sino que, me estoy refiriendo al Universo, tanto de lo grande como de lo pequeño. Ahora sabemos que, si nosotros estamos aquí, tal presencia es posible gracias a la existencia de esos minúsculos animáculos que descubriera Leeuwenhoek que, en sus diferentes dominios, hacen lo necesario para que nosotros podamos vivir en simbiosis con ellos y, además, son los verdaderos responsables del clima del planeta que nos permite llevar una vida tranquila gracias a la atmósfera que dichos bichitos fabrican para nosotros.

¡La Ciencia! Son tantas cosas.

emilio silvera