Jun
8
¿Cuánta materia vemos?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
La constante de Hubble en función de la Densidad Crítica
La cantidad total de Materia del Universo se da generalmente en términos de una cantidad llamada Densidad Crítica, denotada por Ω. Esta es la densidad de la materia que se necesita para producir un universo plano. Si Densidad efectivamente observada es menor o mayor que ese , en el primer caso el Universo es abierto, en el segundo es cerrado. La Densidad Crítica no es muy grande; corresponde aproximadamente a un protón por metro cúbico de espacio. Puede que no parezca mucho, dado el número inmenso de átomos en un metro cúbico de lodo, pero no debemos olvidar que existe una gran cantidad de espacio “vacío” las galaxias.
Miden la cantidad de materia del Universo
El Universo será cerrado, plano o abierto según la materia que contenga
Algunos números que definen nuestro Universo:
- El de fotones por protón
- La razón densidades de “Materia Oscura” y Luminosa.
- La Anisotropía de la Expansión.
- La falta de homogeneidad del Universo.
- La Constante Cosmológica.
- La desviación de la expansión respecto al valor crítico.
- Fluctuaciones de vacío y sus consecuencias.
- ¿Otras Dimensiones?
En las últimas medidas realizadas, la Densidad crítica que es la densidad necesaria para que la curvatura del universo sea cero, ha dado el resultado siguiente: r0 = 3H02/8pG = 1.879 h2 10-29 g/cm3, que corresponde a una densidad tan baja la de la masa de 2 a 3 átomos de hidrógeno por metro cúbico (siempre, por supuesto obviando la incertidumbre en la constante de Hubble).
Estimar la cantidad de materia luminosa del universo es una cosa muy fácil de hacer. Sabemos el brillo que tiene una estrella media, así que podemos hacer una estimación del de estrellas de una galaxia distante. Podemos contar entonces el número de galaxias en un volumen dado de espacio y sumar las masas que encontramos. Dividiendo la masa por el volumen del espacio obtenemos la densidad media de materia en ese volumen. Cuando llevamos a cabo esta operación, obtenemos que la densidad de la materia luminosa es aproximadamente entre el uno o dos % menor de la densidad crítica; es decir, menos de lo que se necesita para cerrar el universo.
Por otro lado, está lo bastante cerca del valor crítico para hacer una pausa. Después de todo, esta fracción podría haber sido en principio de una billonésima o trillonésima, y también podría haber sucedido que fuese un millón de veces la materia necesaria para el cierre. ¿Por qué, entre todas las masas que podría tener el universo, la masa de materia luminosa medida está cerca del valor crítico?
Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico, simplemente deberse a un accidente cósmico; las cosas simplemente “resultan” de ese modo. Me costaría mucho aceptar una explicación y supongo que a otros también. Es tentador decir que el Universo tiene en realidad la masa crítica, pero que de algún modo no conseguimos verla toda.
Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia densidades observadas y crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito religioso, la fe de creer en lo que no podemos ver ni tocar y, la Ciencia, amigos míos, es otra cosa.
Tendremos que imaginar satélites y sondas que, de alguna manera, puedan detectar grandes halos galácticos que encierren la tan buscada materia oscura y que, al parecer, hace que nuestro Universo sea lo conocemos y, es la responsable del ritmo al que se alejan las galaxias, es decir, la expansión del Universo.
Esos halos, tendrían muchas veces las masas que podemos ver en la Materia luminosa de las estrellas, planetas, galaxias y nosotros mismos. La teoría de la materia oscura y su presencia en cúmulos y supercúmulos ha sido “descubierta” (o inventada tapar nuestra ignorancia) en época relativamente cercana para que prevalezca entre los astrónomos la unanimidad respecto a su contribución a la masa total del universo. El debate continúa, está muy vivo y, es el tema tan candente e importante que, durará bastante tiempo mientras algún equipo de observadores no pueda, de una vez por todas, demostrar que, la “materia oscura” existe, que nos digan donde está, y, de qué está conformada y actúa. Claro que, cuando se haga la suma de materia luminosa y oscura, la densidad de la masa total del universo no será todavía mayor del 30% del valor crítico. A todo esto, ocurren sucesos que no podemos explicar y, nos preguntamos si en ellos, está implicada la Materia oscura.
La más abarrotada colisión de cúmulos galácticos ha sido identificada al combinar información de tres diferentes telescopios. El resultado brinda a los científicos una posibilidad de aprender lo que ocurre algunos de los más grandes objetos en el universo chocan en una batalla campal cósmica.
Usando del Observatorio de rayos-X Chandra, el Telescopio Espacial Hubble y el Observatorio Keck de Hawaii, los astrónomos fueron capaces de determinar la geometría tridimensional y el movimiento en el sistema MACSJ0717.5+3745 localizado a 5.4 mil millones de luz de la Tierra. Los investigadores encontraron que cuatro distintos cúmulos de galaxias están envueltos en una triple fusión, la primera vez que un fenómeno así es documentado.
La composición de imagen (arriba de todo) muestra el cúmulo de galaxias masivo MACSJ0717.5+3745. El color del gas caliente está codificado con colores mostrar su temperatura. El gas más frío es mostrado como un púrpura rojizo, el gas más caliente en azul y las temperaturas intermedias en púrpura. Las repetidas colisiones en el cúmulo son causadas por una corriente de galaxias, polvo y “materia oscura” -conocida filamento- de 13 millones de años luz.
Se han obtenido Imágenes (MACSJ0717) que muestran cómo cúmulos galácticos gigantes interactúan con su entorno en escalas de millones de años luz. Es un sistema hermoso para estudiar cómo los cúmulos crecen mientras el material cae en ellos a lo largo de filamentos. Simulaciones por ordenador muestran que los cúmulos de galaxias más masivos deben crecer en regiones donde filamentos de gran escala de gas intergaláctico, galaxias, y materia desconocida, pero…
¿Cuál debe ser la Masa del Universo?
Alan Guth y los filamentos o cuerdas cósmicas
claro que la idea de masa perdida se introdujo porque la densidad observada de la materia del universo está cerca del valor crítico. Sin embargo, hasta comienzos de los ochenta, no se tuvo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que entonces se ha conocido como “universo inflacionista”. Desde entonces, la teoría ha sufrido numerosas modificaciones técnicas, pero los puntos centrales no han cambiado.
nuestra conversación de hoy, diremos que el aspecto principal del universo inflacionista es que estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico. Esta predicción viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. los otros muchos procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.
Abell 370 La lente gravitacional distorsiona la Imagen y nos enseña, a la derecha, algo que nos parece una inmensa cuerda cósmica , ¿Que podrá ser en realidad? la materia a lo largo y ancho del universo se reparte de manera que, se ve concentrada en cúmulos de galaxias y supercúmulos que son las estructuras más grandes conocidas y, dentro de ellas, están todos los demás objetos que existen. Claro que, dejndo a un lado esas fluctuaciones de vacío y, la posible materia desconocida.
El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. el agua se convierte en hielo, se expande; una botella de leche explotará si la dejamos en el exterior en una noche de invierno de gélido frío. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.
Cefeidas fulgurantes
La distancia a una galaxia lejana se determina estudiando la luz proveniente de estrellas de tipo Cefeidas Variables. El espectro de la luz estelar revela la velocidad a la que se mueve la galaxia (Efecto Doppler) y la cantidad de expansión que ha sufrido el universo que la luz salió de su fuente.
Lo que es sorprendente es la enorme amplitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1050. Este es tan inmenso que virtualmente no tiene significado para la mayoría de la gente, incluido yo mismo que, no pocas veces me cuesta asimilar esas distancias inconmensurables del Cosmos. Dicho de otra manera, pongamos, por ejemplo, que la altura de los lectores aumentara en un factor tan grande como ese, se extenderían de un extremo al otro del Universo y, seguramente, faltaría sitio. Incluso un sólo protón de un sólo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el mismo universo. En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo como el tamaño de una naranja grande. No es extraño que el inflación esté ligado a este proceso.
Comparación entre un modelo de expansión desacelerada (arriba) y uno en expansión acelerada (abajo). La esfera de referencia es proporcional al factor de escala. El universo observable aumenta proporcionalmente al tiempo. En un universo acelerado el universo observable aumenta más rápidamente que el factor de escala con lo que cada vez podemos ver mayor del universo. En cambio, en un universo en expansión acelerada (abajo), la escala aumenta de manera exponencial mientras el universo observable aumenta de la misma manera que en el caso anterior. La cantidad de objetos que podemos ver disminuye con el tiempo y el observador termina por quedar aislado del resto del universo.
Cuando ( mucho tiempo ya) leí por primera vez acerca del universo inflacionario, experimenté dificultades para poder asimilar el índice de inflación. ¿No violaría un crecimiento tan rápido las reglas impuestas por la relatividad de Einstein que marcaban el límite de la velocidad en el de la luz en el vacío? Si un cuerpo material viajó de un extremo de una naranja a otro en 10-35 segundos, su velocidad excedió a la de la luz en una fracción considerable.
Claro que, con esto pasar como ha pasado hace unos días con los neutrinos que, algunos decían haber comprobado que corrían más rápidos que la luz, y, sin embargo, todo fue un error de cálculo en el que no se tuvieron en algunos parámetros presentes en las mediciones y los aparatos que hacían las mismas. Aquí, podría pasar algo parecido y, la respuesta la podemos encontrar en aquella analogía con la masa de pan. Durante el período de inflación es el espacio mismo -la masa de pan- lo que está expandiéndose. Ningún cuerpo material (acordaos que en aquella masa estaban incrustadas las uvas que hacían de galaxias y, a medida que la masa se inflaba, las uvas -galaxias- se alejaban las unas de las otras pero, en realidad, ninguna de estas uvas se mueven, es la masa lo que lo hace.
El Universo se expande
Las reglas contra los viajes a mayor velocidad que la de la luz sólo se aplican al movimiento del espacio. Así no hay contradicción, aunque a primera vista pueda parecer que sí. Las consecuencias del período de rápida expansión se pueden describir mejor con referencia a la visión einsteniana de la gravitación. de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribución de la materia. A cauda de esa materia, el espacio-tiempo tendrá alguna forma característica. Supongamos que la superficie estaba arrugada antes de que se produjera la inflación. Y, de esa manera, cuando comenzó a estirarse, poco a poco, tomó la forma que podemos detectar de “casi” plana conforme a la materia que contiene.
En todo esto, hay un enigma que persiste, nadie sabe contestar cómo, a pesar de la expansión de Hubble, se pudieron formar las galaxias. La pregunta sería: ¿Qué clase de materia estaba allí presente, que, la materia bariónica no se expandiera sin rumbo fijo por todo el universo y, se quedara el tiempo suficiente para formar las galaxias? Todo ello, a pesar de la inflación de la que hablamos y que habría impedido su formación. Así que, algo tenía que existir allí que generaba la gravedad necesaria para retener la materia bariónica hasta que esta, pudo formar estrellas y galaxias.
No me extrañaría que, eso que llaman materia oscura, pudiera ser como la primera fase de la materia “normal” que, estando en una primera fase, no emite radiaciones ni se deja ver y, sin embargo, sí que genera la fuerza de Gravedad para que nuestro Universo, sea tal como lo podemos observar.
En imagenes como éstas , los “expertos” nos dicen cosas como:
“La materia oscura en la imagen de varias longitudes de onda de arriba se muestra en un falso color azul, y nos enseña detalles de como el cúmulo distorsiona la luz emitida por galaxias más distantes. En de gas muy caliente, la materia normal en falso color rojo, son fruto de los rayos-X detectados por el Observatorio de Rayois X Chandra que orbita alrededor de la Tierra.”
Algunas galaxias individuales dominadas por materia normal aparecen en colores amarillentos o blanquecinos. La sabiduría convencional sostiene que la materia oscura y la materia normal son atraídas lo mismo gravitacionalmente, con lo que deberían distribuirse homogéneamente en Abell 520. Si se inspecciona la imagen superior, sin embargo, se ve un sorprendente vacío de concentración de galaxias visibles a lo largo de la materia oscura. Una respuesta hipotética es que la discrepancia causada por las grandes galaxias experimentan algún de “tirachinas” gravitacional.
Una hipótesis más arriesgada sostiene que la materia oscura está chocando consigo misma de alguna forma no gravitacional que nunca se había visto antes..? (esto está sacado de Observatorio y, en el texto que se ha podido traducir podemos ver que, los astrónomos autores de dichas observaciones, tienen, al , unas grandes lagunas y, tratando de taparlas hacen aseveraciones que nada tienen que ver con la realidad).
Lo cierto es que, en el Universo, son muchas las cosas que se expanden y, pienso yo…¿Por qué no tratamos todos de expandir nuestras Mentes? De esa manera, posiblemente podríamos llegar a comprender esos fenómenos que nos atormentan y a los que no podemos encontrar una explicación que podamos constatar.
¿Materia Oscura? Sí, entonces… También Unicornios y Gárgolas.
emilio silvera
Jun
8
Caos y complejidad, normalidad y sencillez: Las partes de un todo
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Todos hemos oído hablar, con más o menos frecuencia, de “Sistemas Complejos”, aquí mismo en estas páginas, la palabra sale a relucir con cierta frecuencia y, no me extraña que “la palabreja” cree una barrera, dado que, para muchas personas, “complejo” significa “complicado” y suponen automáticamente que, si un sistema es complicado, será difícil de comprender. La Naturaleza posee una fuerte tendencia a estructurarse en forma de entes discretos excitables que interactúan y que se organizan en niveles jerárquicos de creciente complejidad, por ello, los sistemas complejos no son de ninguna manera casos raros ni curiosidades sino que dominan la estructura y función del universo.
El estudio de los Sistemas Complejos de Syukuro Manabe, Klaus Hasselmann y Giorgio Parisi, le hicieron ganar el Premio Nobel de Física 2021.
La complejidad de la evolución de las estrellas
“Entendemos por sistema complejo aquél compuesto por muchos elementos en interacción en los que emergen fenómenos colectivos que no pueden ser inferidos de las propiedades de sus elementos constituyentes. Emergen fenómenos a gran escala desde las interacciones a pequeña escala.”
Claro que, no siempre ese temor a lo difícil y complicado, está justificado y, tal suposición no es, necesariamente correcta. En realidad, un sistema complejo es tan solo un sistema que está formado por varios componentes más sencillos que ejercen entre sí una interacción mutua que, naturalmente, tiene sus consecuencias. Si miramos la imagen de arriba, vemos una inmensa y hermosa Nebulosa que está formada por una serie de “cosas” sencillas como lo son el gas hidrógeno y el polvo interestelar entre otros y, en presencia de energías, la gravedad y otros parámetros, ahí ocurren cosas tales como, el nacimiento de estrellas y la aparición de mundos…entre otras. En la primera imagen se hace un recorrido de la evolución estelar desde que “nace” hasta que ·muere”.
La manera de comprender los sistemas complejos es, estudiar sus partes por separado
Los grandes triunfos de la Ciencia se han logrado, en gran medida, descomponiendo los sistemas complejos en sus componentes simples, es decir, estudiar por partes lo que allí está presente (en caso necesario, como primera aproximación, dando el paso suplementario de pretender que todos los componentes son más sencillos de lo que son en realidad) para llegar a comprender el todo.
Los componentes del átomo
En el ejemplo clásico del éxito que ha logrado este planteamiento para conocer el mundo que nos rodea, buena parte de la química puede entenderse mediante un modelo en el que los componentes simples son átomos, y para eso importa poco de qué están formados los núcleos.
La huella del Carbono
Ascendiendo un nivel, las leyes que describen el comportamiento del dióxido de Carbono encerrado en una caja pueden entenderse pensando en unas moléculas más o menos esféricas que rebotan unas contra otras y contra las paredes de su contenedor, y poco importa que cada una de estas moléculas esté formada por un átomo de Carbono y dos de Oxígeno unidos entre sí. Ambos sistemas son complejos, en sentido científico, pero fáciles de entender
No siempre sabemos ver el mundo que nos rodea. El que miremos no significa que estemos viendo lo que realmente hay delante de nuestros ojos y, muchas veces, no son los ojos los únicos que pueden “ver” lo que hay más allá de lo que la vista puede alcanzar. Anoche, hasta una hora avanzada, estuve releyendo el Libro “Así de Simple” de John Gribbin, y, pareciéndome interesante os saqué un pequeño resumen del comienzo. Aquí os lo dejo.
El mundo que nos rodea parece ser un lugar complicado. Aunque hay algunas verdades sencillas que parecen eternas (las manzanas caen siempre hacia el suelo y no hacia el cielo; el Sol se levanta por el este, nunca por el oeste), nuestras vidas, a pesar de las modernas tecnologías, están todavía, con demasiada frecuencia, a merced de los complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico tiene todavía más de arte adivinatorio que de ciencia; los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatorias; las fluctuaciones de la economía siguen ocasionando la bancarrota de muchos y la fortuna de unos pocos.
Sobre la posición de la salida del sol
Desde la época de Galileo (más o menos, a comienzos del siglo XVII) la ciencia ha hecho progresos –enormes-, ignorando en gran medida estas complejidades y centrándose en cuestiones sencillas, intentando explicar por qué las manzanas caen al suelo y por qué el Sol se levanta por el este. Los avances fueron de hecho tan espectaculares que hacia mediados del siglo XX ya se había dado respuesta a todas las cuestiones sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras el descubrimiento de la estructura del ADN y el modo en que éste se copia de una generación a otra hizo que la propia vida, así como la evolución, parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad del mundo a nivel humano –al nivel de la vida-. La cuestión más interesante de todas, la que planteaba cómo la vida pudo haber surgido a partir de la materia inerte, siguió sin respuesta.
Un descubrimiento así no podía dejar al mundo indiferente. En unos años el mundo científico se puso al día y la revolución genética cambió los paradigmas establecidos. Mucha gente aún no está preparada para aceptar el comienzo de una era poderosa en la que el ser humano tiene un control de sí mismo mayor al habitual. Había nacido la Ingeniería genética.
No debe extrañarnos que sea precisamente a escala humana donde se den las características más complejas del Universo. Las que se resisten más a rendirse ante los métodos tradicionales de la investigación científica. Realmente, es posible que seamos lo más complejo que existe en el universo. La razón es que, a escalas más reducidas, entidades tales como los átomos se comportan individualmente de un modo relativamente sencillo en sus interacciones mutuas, y que las cosas complicadas e interesantes surgen, cuando se unen muchos átomos de maneras complicadas e interesantes, para formar organismos tales como los seres humanos.
Pero este proceso no puede continuar indefinidamente, ya que, si se unen cada vez más átomos, su masa total aumenta hasta tal punto que la Gravedad aplasta toda la estructura importante y la aniquila. Un átomo, o incluso una molécula tan simple como la del agua, es algo más sencillo que un ser humano, porque tiene poca estructura interna; una estrella, o el interior de un planeta, es también algo más sencillo que un ser humano porque la gravedad aplasta cualquier estructura hasta aniquilarla. Esta es la razón por la cual la ciencia puede decirnos más sobre el comportamiento de los átomos y el funcionamiento interno de las estrellas o los planetas que sobre el modo en que las personas nos comportamos.
Sí, hemos podido llegar a conocer lo que ocurre en el Sol, y sabemos de sus procesos interiores y exteriores, de las ráfagas de partículas que en sus épocas activas, nos envía continuamente hacía la superficie del planeta y, que no sólo provoca esas bonitas Auroras, sino que, su intensa radiación y magnetismo incide en todos los artilugios que tenemos para leer los datos de… ¡tantas cosas!
Ilya Prigogine e Isabelle Stergers,
Cuando los problemas sencillos se rindieron ante el empuje de la investigación, fue algo natural que los científicos abordaran rompecabezas más complicados que iban asociados con sistemas complejos, para que por fin fuera posible comenzar a comprender el funcionamiento del mundo a una escala más humana compleja y, para ello, hubo que esperar hasta la década de 1960, que fue cuando aparecieron los poderosos y rápidos (para lo que se estilaba en aquella época) ordenadores electrónicos. Estos nuevos inventos empezaron a ser conocidos por un público más amplio entre mediados y finales de la década de 1980, primero con la publicación del libro, ahora convertido en un clásico, Order out of Chaos, de Ilya Prigogine e Isabelle Stergers, y luego, con Chaos, de James Gleick.
Las personas sencillas que, aunque tengan una educación aceptable, no están inmersas en el ámbito de la ciencia, cuando oyen hablar de Complejidad y Caos en esas áreas, sienten, de primeras, una especie de rechazo por aquello que (ellos creen) no van a comprender. Sin embargo, la cuestión no es tan difícil como a primera vista pudiera parecer, todo consiste en tener la posibilidad de que alguien, de manera “sencilla” (dentro de lo posible), nos explique las cosas dejando a un lado las matemáticas que, aunque describen de manera más amplia y pura aquellos conceptos que tratamos, también es verdad que, no siempre, están al alcance de todos. Un conocimiento básico de las cosas más complicadas, es posible. También la relatividad general y la mecánica cuántica, se consideraron, cuando eran nuevas, como unas ideas demasiado difíciles para que cualquiera las entendiera, salvo los expertos –pero ambas se basan en conceptos sencillos que son inteligibles para cualquier persona lega en la materia, siempre que esté dispuesta a aceptar su parte matemática con los ojos cerrados-. E la misma manera, el Caos y la Complejidad, también pueden ser entendidos y, si tenemos la suerte de tener un buen interlocutor que nos sepa explicar, aquellos conceptos básicos sobre los que se asientan tanto el Caos como la Complejidad, veremos maravillados como, de manera natural, la luz se hace en nosotros y podemos entender lo que antes nos parecía inalcanzable.
Se cree que las galaxias se han formado por la acumulación gravitacional de gas, algún tiempo después de la época de la recombinación. Las nubes de gas podrían haber comenzado a formar estrellas, quizás como resultado de las colisiones mutuas. El tipo de galaxia generado podría depender del ritmo al que el gas era transformado en estrellas, formándose las elípticas cuando el gas se convertía rápidamente en estrellas, y las espirales si la transformación de estrellas era lo suficientemente lenta como para permitir crecer de forma significativa un disco de gas.
Nubes moleculares en Orión que son los materiales primigenios para complejidades futuras
Las galaxias evolucionan al convertir progresivamente su gas remanente en estrellas, si bien no existe probablemente una evolución entre las diferentes tipos de la clasificación del conocido sistema de Hubble. No obstante, algunas galaxias elípticas pudieron haberse creado por la colisión y posterior fusión de dos galaxias espirales.
NGC 5426 y NGC 5427 son dos galaxias espirales de tamaños similares involucradas en una danza espectacular. No es seguro que esta interacción culmine en una colisión y a la larga en la fusión de las dos galaxias, aunque éstas ya han sido ya afectadas. Conocidas ambas con el nombre de Arp 271, su danza perdurará por decenas de millones de años, creando nuevas estrellas como resultado de la mutua atracción gravitacional entre las galaxias, un tirón observable en el borde de las estrellas que ya conectan a ambas. Ubicada a 90 millones de años-luz de distancia hacia la constelación de Virgo (la Virgen), el par Arp 271 tiene unos 130.000 años-luz de extensión. Fue descubierta originalmente en 1785 por William Herschel. Muy posiblemente nuestra Vía Láctea sufrirá una colisión similar en unos cinco mil millones de años más con la galaxia vecina Andrómeda, que ahora está ubicada a cerca de 2,6 millones de años-luz de la Vía Láctea.
Sí, mirando las imágenes nos da la sensación de que está por llegar cierto Caos y Complejidad a la región del universo en la que se sitúan las dos galaxias.
Tenemos que entender que, algunos sistemas (“sistema” no es más que una palabra de la jerga científica para asignar cualquier cosa, como un péndulo que oscila, o el sistema solar, o el agua que gotea de un grifo) son muy sensibles a sus condiciones de partida, de tal modo que una diferencia mínima en el “impulso” inicial que les damos ocasiona una gran diferencia en cómo van a acabar, y existe una retroalimentación, de manera que lo que un sistema hace afecta a su propio comportamiento. Así, a primera vista, parece que la guía es sencilla y, nos puede parecer mentira que así sea. Sin embargo, esa es la premisa que debemos tener en cuenta. Nos podríamos preguntar: ¿Es realmente verdad, que todo este asunto del Caos y de la Complejidad se basaba en dos ideas sencillas –la sensibilidad de un sistema a sus condiciones de partida, y la retroalimentación-¿ La respuesta es que sí.
La mayor parte de los objetos que pueden verse en el cielo nocturno son estrellas, unos pocos centenares son visibles a simple vista. Una estrella es una bola caliente principalmente compuesta por hidrógeno gaseoso. El Sol es un ejemplo de una estrella típica y común. La gravedad impide que el gas se evapore en el espacio y la presión, debida a la alta temperatura de la estrella, y la densidad impiden que la bola encoja. En el corazón de la estrella, la temperatura y la densidad son lo suficientemente altas para sustentar a las reacciones de fusión nuclear, y la energía, producida por estas reacciones, hace su camino a la superficie y la irradia al espacio en forma de calor y luz. Cuando se agota el combustible de las reacciones de fusión, la estructura de la estrella cambia. El proceso de producir elementos, cada vez más pesados, a partir de los más livianos y de ajustar la estructura interna para balancear gravedad y presión, es llamado evolución estelar.
Observar una estrella a través del telescopio permite conocer muchas de sus importantes propiedades. El color de una estrella es un indicador de su temperatura y ésta, a su vez, depende de una combinación entre la masa de la estrella y su fase evolutiva. Usualmente, las observaciones también permiten encontrar la luminosidad de la estrella o la tasa con la cual ella irradia energía, en forma de calor y luz.
Todas las estrellas visibles a simple vista forman parte de nuestra galaxia, la Vía Láctea. La Vía Láctea es un sistema compuesto por unos cien mil millones de estrellas, junto con una considerable cantidad de material interestelar. La galaxia tiene forma de un disco chato sumergido en un halo débil y esférico. La gravedad impide que las estrellas se escapen y, sus movimientos, hacen que el sistema no colapse. La Vía Láctea no posee un límite definido, la distribución de las estrellas decrece gradualmente con distancias crecientes del centro. El SDSS detecta estrellas más de un millón de veces más débiles que las que podemos ver a simple vista, lo suficientemente lejos para ver la estructura de la Vía Láctea.
De algún modo, esto es como decir que “todo lo que hay” sobre la teoría especial de la relatividad es que la velocidad de la luz es la misma para todos los observadores. Sin embargo, la complejidad de la estructura que se levanta sobre este hecho sencillo resulta asombrosa y requiere algunos conocimientos matemáticos para poder apreciarla plenamente. Claro que, eso no quita para que, un buen comunicador le pueda transmitir a otras personas mediante explicaciones sencillas lo esencial de la relatividad especial y general y también, sobre la esencia de la mecánica cuántica, y, de la misma manera, podríamos hablar del Caos y de la Complejidad. Debemos ser conscientes de que, el Caos, puede surgir a partir del Orden y que, la Complejidad, siempre llega a través de la sencillez de un comienzo. Podemos estar al borde del Caos y, de manera milagrosa ver que también a partir de él surge la normalidad y lo nuevo que no en pocas ocasiones pueden ser nuevas formas de vida.
De la misma manera, las transformaciones de los elementos sencillos, bajo ciertas condiciones, llegan a adquirir una complejidad inusitada que, de alguna manera, es necesaria para que en este mundo que nos rodea, existan seres que como nosotros, sean el ejemplo más real y de más alto nivel que está presente en el Universo. Y, de la misma manera que nosotros estamos aquí, en un minúsculo sistema solar habitando un pequeño planeta que reúne todas las condiciones necesarias para la vida, de la misma forma digo, estarán poblados otros muchos planetas de otros muchos sistemas solares repartidos por nuestra Galaxia y por las otras que, a cientos de miles pululan por el Universo, y, todos esos seres “racionales”, se preguntaran las mismas cosas que nosotros y estarán interesados en descubrir los mismos misterios, los mismos secretos de la Naturaleza que, presintiendo que existen, tienen la intuición de que serán las respuestas esperadas para solucionar muchos de los problemas e inseguridades que ahora, en nuestro tiempo, nos aquejan.
Claro que, la mente nunca descansa. Acordaos de Aristarco de Samos que, en el siglo III a. C., ya anunció que la Tierra orbitaba alrededor del Sol y, Copérnico, que se llevó el premio, no lo dijo hasta el año 1543. Esto nos viene a demostrar que, a pesar de la complejidad del mundo, lo realmente complejo está en nosotros, en nuestras mentes que, presienten lo que pueda ser, intuyen el por qué de las cosas, fabrican pensamientos que, mucho más rápidos que la luz, llegan a las galaxias lejanas y, con los ojos de la mente pueden, atisbar aquellas cosas de las que, en silencio, ha oído hablar a su intuición dentro de su mente siempre atenta a todo aquello que puede ser una novedad, una explicación, un descubrimiento.
Vista de la Tierra y el Sol de la órbita (la imagen de la tierra tomada de http://visibleearth.nasa.gov)
Ahora estamos centrados en el futuro aquí en la Tierra pero, sin dejar de la mano ese futuro que nos espera en el espacio exterior. Es pronto aún para que el hombre vaya a las estrellas pero, algún día, ese será su destino y, desde ya, debe ir preparándose para esa aventura que sólo está a la espera de tener los medios tecnológicos necesarios para hacerla posible. Mientras tanto, jugamos con las sondas espaciales que enviamos a planetas vecinos para que, nos vayan informando de lo que están hechos aquellos mundos –grandes y pequeños- que, en relativamente poco tiempo, serán visitados por nuestra especie para preparar el salto mayor.
emilio silvera