Jun
18
El Futuro ¿Cómo será?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Viaje al centro de la Tierra, en el que julio Verne nos describe un fantástico mundo interior
Lo cierto es que, cada vez que ha salido alguien, que como el precursor de la ciencia ficción, el entrañable Julio Verne, nos hablaba de viajes imposibles y de mundos insólitos, nadie pudo creer, en aquellos momentos, que todas aquellas “fantasías” serían una realidad en el futuro más o menos lejano. Todo lo que él imagino hace tiempo que se hizo realidad y, en algunos casos, aquellas realidades fantásticas, han sido sobrepasadas como podemos contemplar, en nuestras vidas cotidianas. Ingenios espaciales surcan los espacios siderales y, otros, lo hacen por el misterioso fondo oceánico como fue predicho hace ahora más de un siglo.
Una máquina que opera utilizando la mecánica cuántica -las leyes que gobiernan la conducta de objetos pequeñísimos como moléculas y átomos, el láser y otras maravillas
Ahora, los profetas modernos resultan ser Físicos que nos hablan de sucesos cuánticos que no llegamos a comprender y que, son ¡tan extraños! que nos resultan poco familiares y como venidos de “otro mundo”, aunque en realidad, son fenómenos que ocurren en las profundidades del mundo de la materia.
Cada vez van siendo menor los visionarios y más los estudiosos científicos, tanto teóricos como experimentadores que, en todos los campos, nos llevan, sin que nos demos cuenta, hacia el futuro que, ¡puede ser de tantas maneras! Precisamente por eso, será bueno que nuestras mentes, no se resignen a que estemos confinados aquí, en esta nave espacial que llamamos Tierra y que surca el espacio interestelar a muy buena velocidad aunque no todos sean conscientes de ello.
Ascensores espaciales
Los avances que veremos en este mismo siglo, en todos los ámbitos del saber humano, serán sorprendentes y cambiaran nuestras vidas, nuestra Sociedad para el próximo siglo, será ya muy diferentes a ésta que conocemos. Nuestras propias vidas darán un salto cuantitativo y cualitativo en su período de duración y en su calidad de bienestar, podremos vivir un siglo y medio y tendremos menos enfermedades que ahora. las posibles innovaciones tecnológicas en campos tan dispares como la salud, la economía, la demografía, la energía, la robótica, el espacio, las telecomunicaciones y los transportes, darán un vuelco a nuestra forma de vida y entraremos en otra fase del futuro que viene y del pasado que dejamos atrás.
Nano tubos de carbono y fullerenos
Estos serán los materiales con los que se construirá ese ascensor “imposible” que nos llevará 500 Km lejos de la Tierra, hacia las Estaciones Espaciales con las que se podrá acoplar, sin ninguno de los riesgos que conllevan los transbordadores actuales impulsados por Hidrógeno líquido de fácil combustión, es decir, los pasajeros van montados sobre una bomba volante y, al mejor fallo…
Los ascensores espaciales eran hasta hace muy poco materia de ficción pura, pues ningún material conocido podía soportar la enorme tensión producida por su propio peso. Actualmente ciertos materiales comienzan a parecer viables como materia prima: los expertos en nuevos materiales consideran que teóricamente los nanotubos de carbono pueden soportar la tensión presente en un ascensor espacial.3 Debido a este avance en la resistencia de los nuevos materiales, varias agencias están estudiando la viabilidad de un futuro ascensor espacial:
En Estados Unidos, un antiguo ingeniero de la NASA llamado Bradley C. Edwards ha elaborado un proyecto preliminar que también están estudiando científicos de la NASA.3 Edwards afirma que ya existe la tecnología necesaria, que se necesitarían 20 años para construirlo y que su costo sería 10 veces menor que el de la Estación Espacial Internacional. El ascensor espacial de Edwards no se parece a los presentes en las obras de ficción, al ser mucho más modesto y a la vez innovador en lo que concierne a su eventual método de construcción.
Este sería el final del recorrido y estaría preparado para conectar con bases espaciales. Ahora nos parece un suelo pero hace tiempo ya que se está trabajando, de manera muy seria, en su construcción en un futuro próximo y, desde luego, conseguirlo será un buen logro.
Existen algunos tratamientos con células madre, pero la mayoría todavía se encuentran en una etapa experimental. Investigaciones médicas, anticipan que un día con el uso de la tecnología, derivada de investigaciones para las células madre adultas y embrionarias, se podrá tratar el cáncer, diabetes, heridas en la espina dorsal y daño en los músculos, como también se podrán tratar otras enfermedades. Se les presupone un destino lleno de aplicaciones, que van desde patologías neurodegenerativas, como la enfermedad de Alzheimer o de Parkinson, hasta la fabricación de tejidos y órganos destinados al trasplante, pasando por la diabetes y los trastornos cardíacos.
En un futuro se espera utilizar células madre de cordón umbilical en terapia génica: podemos así tratar enfermedades causadas por la deficiencia o defecto de un determinado gen, introduciendo un determinado gen en la proliferación de las células madre In Vitro y trasplantar tales células en el paciente receptor. El uso de otros tipos de células como portadores de genes buenos en pacientes con enfermedades causadas por deficiencias o déficits genéticos, está siendo testeado a nivel clínico. El primer trasplante de órgano bio-artificial en humanos, por su parte, confían en que pueda ver la luz dentro de “unos cinco o diez años”.
La bioinformática o la biotecnología consiste en la aplicación de tecnología informática en el análisis de datos biológicos . Los principales esfuerzos de investigación en estos campos incluyen el alineamiento de secuencias , la predicción de genes , predicción de la expresión génica y modelado de la evolución . Algunos ejemplos son el diseño de organismos para producir antibióticos , el desarrollo de vacunas más seguras y nuevos fármacos, los diagnósticos moleculares, las terapias regenerativas y el desarrollo de la ingeniería genética para curar enfermedades a través de la manipulación génica . Veamos algunas de ellas…
Formas nuevas de comunicarse y de adquirir datos
La fusión, energía limpia y barata y, sobre todo, inagotable
Y mientras el mundo está pendiente de la crisis económica internacional, científicos e ingenieros trabajan intensamente en lo que podría ser la solución a los problemas energéticos del futuro. La palabra clave es “fusión”. Al contrario que la tradicional energía nuclear, la energía de fusión es limpia y no contamina y, sus residuos, es el Helio fácilmente aprovechable. El Proyecto ITER sigue adelante.
La ciencia de la medicina está avanzando a pasos agigantados. Los últimos avances en medicina que se dieron en estos diez o quince años pasados han sido sorprendentes, y podemos esperar un salto muy grande en la medicina dentro de los próximos años.
Algunos descubrimientos todavía no están al alcance de los pacientes, a pesar de que ya se han revelado como grandes avances científicos son necesarios muchos estudios y pruebas antes de que se puedan aplicar. No perdamos de vista en este ámbito del saber humano, ni la genética ni las nuevas nanotecnologías, lo que llaman el ojo biónico, la sangre artificial…
Cambiaran nuestras ciudades y nuestras Sociedades serán diferentes, los nuevos conocimientos llegarán también, a la vida cotidiana del hábitat humano y a su forma de trabajo, de viajar, e, incluso los alimentos del futuro no muy lejano, nos harán recordar con cierta nostalgia, estos que ahora criticamos.
Los modernos celulares irán insertados en el brazo
Cualquier vivienda será controlada por mecanismos informáticos
Hoy es solo un sueño pero… ¿Y mañana?
Este programa va más allá de los avances actuales para revelar la tecnología e inventos que nos permitirán ver a través de las paredes, viajar en el tiempo y en el espacio y colonizar planetas distantes. La tecnología inteligente que llevará ayudantes robóticos a los hogares, ciudades enteras a la Internet, y sistemas de entretenimiento que harán los sueños realidad en forma virtual. Sí, virtual hoy pero… ¿Y mañana?
¡Tantas galaxias y estrellas, tantos mundos, tantas maravillas! Si no podemos en un futuro más o menos lejano, visitarlas, ¿Para qué tanta diversidad y tanta belleza? Si están ahí, por algo será y, nosotros, aunque parezca que somos una ínfima cuestión en tan vasto Universo, seguramente seremos, unos privilegiados llamados a realizar grandes cosas. A pesar de nuestras muchas faltas y carencias…¡Lo estamos logrando!
Cassini en Saturno
Ya hemos dado los primeros pasos y, nuestros ingenios espaciales tecnológicos robotizados, han realizado para nosotros las tareas que, de momento nos están vedadas pero, démosle tiempo al tiempo y, sin duda alguna, en ese futuro soñado, estaremos en las estrellas y en esos otros mundos que presentimos hermanos de la Tierra y que podrán acoger a la Humanidad que, dentro de otros cincuenta años, llegará a la cifra de 8.000 millones de seres y, nuestro planeta, no puede con todo.
El futuro convive ya con nosotros y, al tenerlo tan cercano, no le prestamos atención a esos muchos cambios que con nosotros conviven. Lo cierto es que debe ser así, de otra manera, los cambios tan bruscos que se están produciendo, nos traumatizaría y, sin embargo, lo tomamos -unas veces por comprenderlos y otras por ignorarlos- con toda la normalidad. Esa es la manera en la que se desenvuelve el mundo de nuestra especie.
Como no podemos predecir que le puede pasar a la Tierra en el futuro, mejor será ir “preparando las maletas” que, como decía mi padre, un viejo marinero curtido en mil tempestades: ¡”Más vale un por si acaso, que un yo creí”!
emilio silvera
Jun
17
Las escalas del Universo no son Humanas
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Ciudades Inteligentes
Smart City Nansha, en Guangzhou, China.
Las ciudades modernas, basadas en infraestructuras eficientes y durables de agua, electricidad, telecomunicaciones, gas, transportes, servicios de urgencia y seguridad, equipamientos públicos, edificaciones inteligentes de oficinas y de residencias, etc., deben orientarse a mejorar el confort de los ciudadanos, siendo cada vez más eficaces y brindando nuevos servicios de calidad, mientras que se respetan al máximo los aspectos ambientales y el uso prudente de los recursos naturales no renovables.
La simetría bilateral se mantiene en el interior del cuerpo, en en los músculos y en el esqueleto, pero queda rota por la disposición fuertemente asimétrica de algunos órganos. El corazón, el estómago y el páncreas están desviados hacia la izquierda; el hígado y el apéndice, hacia la derecha. El pulmón derecho es mayor que el izquierdo. Los retorcimientos y vueltas de los intestinos son completamente asimétricos. El cordón umbilical humano, una magnifica hélice triple formada por dos arterias y una vena, puede enrollarse en cualquiera de los dos sentidos.
El pensamiento asombroso: ¡Las ideas!
Ludwig Boltzmann será el protagonista de hoy
Hay ecuaciones que son aparentemente insignificantes por su reducido número de exponentes que, sin embargo, ¡dicen tantas cosas…! En la mente de todos están las sencillas ecuaciones de Einstein y de Planck sobre la energía-masa y la radiación de cuerpo negro. Esa es la belleza de la que hablan los físicos cuando se refieren a “ecuaciones bellas”. ¿Qué decir de la maravillosa fórmula de la entropía de Boltzman?
S = k log W
Como cada día desde hace algún tiempo, aquí dejamos hoy otro retazo del “saber del mundo”, de nebulosas creadoras de nuevas estrellas y mundos, de fascinantes galaxias que, ¿Quién sabe lo que puedan contener. También hablamos de Física, esa Ciencia que nos hace ver como es, la realidad del mundo en el que vivimos…
¿La Química? Algo más que Alquimia
Antoine-Laurent Lavoisier (1743-1794) fue un financiero. Estableció un sistema de pesos y medidas que condujo al sistema métrico, vivió los primeros momentos turbulentos de la Revolución Francesa y fue pionero en la agricultura científica. Se casó con una jovencita de catorce años y fue decapitado durante el Terror. Se le ha llamado padre de la química moderna y, a lo largo de su atareada vida, sacó a Europa de las épocas oscuras de esta ciencia.
A nuestro alrededor pasan muchas cosas a las que no prestamos atención
Inmersos en los problemas cotidianos prestamos poca atención a lo que pasa a nuestro alrededor, en la Naturaleza y, sólo cuando son fenómenos muy llamativos, inusuales, o, que nos ponen en peligro, ponemos nuestros cinco sentidos en el acontecimiento. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos estado más atentos, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la Naturaleza que, en definitiva, es la que nos enseña el camino a seguir.
La edad actual del universo visible ≈ 1060 tiempos de Planck
Tamaño actual del Universo visible ≈ 1060 longitudes de Planck
La masa actual del Universo visible ≈ 1060 masas de Planck
Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:
Densidad actual del universo visible ≈10-120 de la densidad de Planck
Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto
Temperatura actual del Universo visible ≈ 10-30 de la T. de Planck
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.
Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.
Pero, pese a la enorme edad del universo en “tics” del Tiempo de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.
¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas.
Un cielo negro y pocas estrellas en unas regiones y, en otras, cielo azul abarrotado de estrellas
Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
La vida (creo), estará presente en muchos mundos que, al igual que la Tierra, ofrece las condiciones adecuadas. El Universo en todas partes está regido por las mismas leyes, no importa lo lejos que sus regiones se puedan encontrar, allí también funcionan las cuatro fuerzas fundamentales y las constantes universales. Y, siendo así (que lo es), allí pasará lo mismo que pasa aquí.
Si por alguna circunstancia, el planeta se sale de la zona habitable de la estrella….
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución que tantos miles de millones de años le costó al Universo para poder plasmarla en una realidad que llamamos vida.
El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.
Parece que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.
Una atmósfera planetaria adecuada dará la opción de que evolucione la vida y se creen sociedades
La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la foto-disociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual. Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.
Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.
A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.
“Las historias de ciencia ficción en las cuales se sugiere la existencia de seres vivos construidos de silicio en vez de carbono han proliferado desde hace varias décadas, por ejemplo, en los argumentos de muchas películas y series de TV. La idea no es nueva, pues esta se originó en 1891 (¡!), cuando Julio Sheiner escribió sobre la posibilidad de vida extraterrestre fundada en el Silicio.”
En otros mundos… ¡Cualquier cosa podría ser posible! Cualquier forma que nos podamos imaginar podría ser posible. Sin embargo, me sospecho que, como aquí en nuestro mundo, em aquellos otros mundos la vida… ¡También estará basada en el Carbono!
Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.
emilio silvera
Jun
16
Abundancia Cósmica de los Elementos
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Se encuentran elementos esenciales para la vida alrededor de una estrella joven. Usando el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array), un grupo de astrónomos detectó moléculas de azúcar presentes en el gas que rodea a una estrella joven, similar al sol. Esta es la primera vez que se ha descubierto azúcar en el espacio alrededor de una estrella de estas características. Tal hallazgo demuestra que los elementos esenciales para la vida se encuentran en el momento y lugar adecuados para poder existir en los planetas que se forman alrededor de la estrella.
La abundancia, distribución y comportamiento de los elementos químicos en el Cosmos es uno de los tópicos clásicos de la astrofísica y la cosmoquímica. En geoquímica es también importante realizar este estudio ya que:
– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.
– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.
– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.
– Las distintas capas de la Tierra presentan abundancias diferentes de elementos. El conocer la abundancia cósmica nos permite tener un punto de referencia común. Así, sabiendo cuales son las concentraciones normales de los elementos en el cosmos las diferencias con las abundancia en la Tierra nos pueden proporcionar hipótesis de los procesos geoquímicos que actuaron sobre la Tierra originando migraciones y acumulaciones de los distintos elementos, que modificaron sus proporciones y abundancias respecto al Cosmos.
La tabla periódica de los elementos es un arreglo sumamente ingenioso que permite presentar de manera lógica y estructurada las más simples sustancias de las que se compone todo: absolutamente todo lo que conocemos. Todos los elementos que conocemos, e incluso con lo que todavía no nos hemos encontrado, tienen un lugar preciso en ella, cuya posición nos permite conocer muchas de sus características. Ese grupo de casi cien ingredientes permite crear cualquier cosa. Pero no siempre fue así.
Me gusta la Gran Nebulosa de Orión. Hay ahí tantas cosas, nos cuenta tantas historias…
FUENTES DE DATOS DE ABUNDANCIAS COSMICAS DE LOS ELEMENTOS. Estos datos deben obtenerse a partir del estudio de la materia cósmica. La materia cósmica comprende: Gas interestelar, de muy baja densidad (10-24 g/cm3) y Nébulas gaseosas o nubes de gas interestelar y polvo.
Las nébulas gaseosas se producen cuando una porción del medio interestelar está sujeta a radiación por una estrella brillante y muy caliente, hasta tal punto se ioniza que se vuelve fluorescente y emite un espectro de línea brillante (que se estudian por métodos espectroscopios). Por ejemplo las nébulas de “Orión” y “Trifidos”. Las ventajas de estas nébulas difusas para el estudio de las abundancias son:
‑ Su uniformidad de composición.
‑ El que todas sus partes sean accesibles a la observación, al contrario de lo que ocurre en las estrellas.
También tiene desventajas:
‑ Solo se observan las líneas de los elementos más abundantes.
‑ Cada elemento se observa solo en uno o pocos estadios de ionización aunque puede existir en muchos.
‑ La mayoría de las nébulas exhiben una estructura filamentosa o estratiforme es decir que ni la D ni la T son uniformes de un punto a otro. A partir del medio interestelar (gas interestelar y nébulas gaseosas) se están formando continuamente nuevas estrellas.
Las estrellas se forman a partir del gas y el polvo de las Nebulosas
En las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético Big Bang donde se formaron los elementos más simples: Hidrógeno, Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno.
Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos simples en el big bang y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.
Estatua dedicada a Fred Hoyle.
No me parece justo hablar de los elementos sin mencionar a Fred Hoyle y su inmensa aportación al conocimiento de cómo se producían en las estrellas. Él era temible y sus críticas de la teoría del big bang hizo época por su mordacidad. Hoyle condenó la teoría por considerarla epistemológicamente estéril, ya que parecía poner una limitación temporal inviolable a la indagación científica: el big bang era una muralla de fuego, más allá de la cual la ciencia de la çepoca no sabía como investigar. Él no concebía y juzgó “sumamente objetable que las leyes de la física nos condujeran a una situación en la que se nos prohíbe calcular que ocurrió en cierto momento del tiempo”. En aquel momento, no estaba falto de razón.
Pero no es ese el motivo de mencionarlo aquí, Hoyle tenía un dominio de la física nuclear nunca superado entre los astrónomos de su generación, había empezado a trabajar en la cuestión de las reacciones de la fusión estelar a mediado de los cuarenta.
Pero había publicado poco, debido a una batalla continua con los “árbitros”, colegas anónimos que leían los artículos y los examinaban para establecer su exactitud, cuya hostilidad a las ideas más innovadoras de Hoyle hizo que éste dejara de presentar sus trabajos a los periódicos. Hoyle tuvo que pagar un precio por su rebeldía, cuando, en 1951, mientras él, permanecía obstinadamente entre bastidores, Ernest Opik y Edwin Sepeter hallaron la síntesis en las estrellas de átomos desde el Berilio hasta el Carbono. Lamentando la oportunidad perdida, Hoyle rompió entonces su silencio y en un artículo de 1954 demostró como las estrellas gigantes rojas podían corvertir Carbono en Oxígeno 16.
El Sol, dentro de 5.000 millones de años, será una Gigante roja primero y una enana blanca después
Pero, sigamos con la historia de Hoyle. Quedaba aún el obstáculo insuperable del hierro. El hierro es el más estable de todos los elementos; fusionar núcleos de hierro para formar nucleos de un elemento más pesado consume energía en vez de liberarla; ¿cómo, pues, podían las estrellas efectuar la fusión del hierro y seguir brillando? Hoyle pensó que las supernovas podían realizar la tarea, que el extraordinario calor de una estrella en explosión podía servir para forjar los elementos más pesados que el hierro, si el de una estrella ordinaria no podía. Pero no lo pudo probar.
Luego, en 1956, el tema de la producción estelar de elementos recibió nuevo ímpetu cuando el astrónomo norteamerciano Paul Merril identificó las reveladoras líneas del Tecnecio 99 en los espectros de las estrellas S. El Tecnecio 99 es más pesado que el hierro. También es un elemento inestable, con una vida media de sólo 200.000 años. Si los átomos de Tecnecio que Merril detectó se hubiesen originado hace miles de millones de años en el big bang, se habrían desintegrado desde entonces y quedarían hoy muy pocos de ellos en las estrellas S o en otras cualesquiera. Sin embargo, allí estaban. Evidentemente, las estrellas sabían como construir elementos más allá del hierro, aunque los astrofísicos no lo supiesen.
Estrella como el sol muy evolucionado que se transforma en Nebulosa planetaria y enana blanca, antes pasa por la fase de gigante roja.
Las estrellas de tecnecio son estrellas cuyo espectro revela la presencia del elemento tecnecio. Las primeras estrellas de este tipo fueron descubiertas en 1952, proporcionando la primera prueba directa de la nucleosíntesis estelar, es decir, la fabricación de elementos más pesados a partir de otros más ligeros en el interior de las estrellas. Como los isótopos más estables de tecnecio tienen una vida media de sólo un millón de años, la única explicación para la presencia de este elemento en el interior de las estrellas es que haya sido creado en un pasado relativamente reciente. Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.
Estimulado por el descubrimiento de Merril, Hoyle reanudó sus investigaciones sobre la nucleosíntesis estelar. Era una tarea que se tomó muy en serio. De niño, mientras se ocultaba en lo alto de una muralla de piedra jugando al escondite, miró hacia lo alto, a las estrellas, y resolvió u descubrió qué eran, y el astrofísico adulto nunca olvidó su compromiso juvenil. Cuando visitó el California Institute Of Technology, Hoyle estuvo en compañía de Willy Fowler, un miembro residente de la facultad con un conocimiento enciclopédico de la física nuclear, y Geoffrey y Margaret Burbidge, un talentoso equipo de marido y mujer que, como Hoyle, eran excépticos ingleses en la relativo al Big Bang.
Hubo un cambio cuando Geoffrey Burbidge, examinando datos a los que recientemente se había eximido de las normas de seguridad de una prueba atómica en el atolón Bikini, observó que la vida media de uno de los elementos radiactivos producidos por la explosión, el californio 254, era de 55 días.
Esto sonó familiar: 55 días era justamente el período que tardó en consumirse una supernova que estaba estudiando Walter Baade. El californio es uno de los elementos más pesados; si fuese creado en el intenso calor de estrellas en explosión, entonces, seguramente los elementos situados entre el hierro y el californio -que comprenden, a fin de cuentas, la mayoría de la Tabla Periódica- también podrían formarse allí. Pero ¿cómo?.
Nucleosíntesis estelar
Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio. Son las estrellas masivas que causantes de las explosiones Supernovas y, las estrellas más pequeñas como nuestro Sol, simplemente crean Nebulosas planetarias que tienen una enana blanca en el centro que, con el tiempo se enfría, deja de emitir radiación y se convierte en un cadáver estelar.
Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.
Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caído en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.
Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe.
¿Apreciáis la maravilla?
Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas. Esa era la meta de Hoyle, llegar a comprender el proceso y, a poder demostrarlo.
“El problema de la síntesis de elementos -escribieron- está estrechamente ligado al problema de la evolcuión estelar.” La curva de abundancia cósmica de elementos que mostraba las cantidades relativas de las diversas clases de átomos en el universo a gran escala. Pone ciertos límites a la teoría de cómo se formaron los elementos, y, en ella aparecen por orden creciente:
Como reseñamos antes la lista sería Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que aparecen en los gráficos de los estudios realizados son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Vía Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el ig ang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plomo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia escribió Hoyle, Fwler y los Burbidge_…está oculta en la distribución de la abundancia de elementos”
En el Big Bang: Hidrógeno, Helio, Litio.
En las estrellas de la serie principal: Carbono, Nitrógeno, Oxígeno.
En las estrellas moribundas: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.
Como habéis podido comprobar, nada sucede por que sí, todo tiene una explicación satisfactoria de lo que, algunas veces, decimos que son misterios escondidos de la Naturaleza y, sin embargo, simplemente se trata de que, nuestra ignorancia, no nos deja llegar a esos niveles del saber que son necesarios para poder explicar algunos fenómenos naturales que, exigen años de estudios, observaciones, experimentos y, también, mucha imaginación.
En la imagen de arriba se refleja el proceso Triple Alpha descubierto por Hoyle:
Amigos míos, son las 5,53 h., me siento algo cansado de teclear y me parece que con los datos aquí expuestos podéis tener una idea bastante buena de la formación de elementos en el cosmos y de cómo las estrellas son las máquinas creadoras de la materia cada vez más compleja y, el Universo, nos muestra de qué mecanismos se vale para poder traer elementos que más tarde formarán parte de los planetas, de los objetos en ellos presentes y, de la Vida.
emilio silvera
Jun
16
¡La Vida! ¿Qué será? ¿De dónde vino?
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
En alguno de mis trabajos, alguna vez escribí:
“Si el Universo es un océano,
De materia y pensamientos,
Nuestro mundo es un lago,
de Alegrías y sufrimientos.
Existen seres que saben que son,
Están las cosas que son y no saben,
Pero todos bailan al mismo son,
del ritmo que el Universo impone.
La Materia es Energía,
En el Universo cambiante,
La Vida, como la luz del día,
Es su perla deslumbrante.
¡Si pudiéramos saber, lo que la Vida es!
De lo único que estoy seguro es de que… ¡La perfección no es humana!
Lo cierto es que, no había aquí ningún cronista que pudiera haber tomado nota de aquellos acontecimientos que nos trajeron hasta ser conscientes de Ser. La Vida en nuestro planeta se debe a una gran cantidad de procesos que dieron lugar, con el paso de los miles de millones de años, desde que nació el Universo, a que la Evolución de la materia, al surgir de “algo” animado que, en forma de pequeños “seres”, primero sencillos y más tarde más complejos (procariotas y eucariotas), dieron lugar a que la aventura de la vida comenzara en nuestro planeta.
Está claro (ahora), que la sucesión de acontecimientos, tales como: cambios ambientales, catástrofes, actividad volcánica, movimientos de placas tectónicas, huracanes y terremotos, movimiento de los continentes y otros muchos, han tenido mucho que ver con las formas de vida que actualmente pueblan nuestro planeta.
Ahora sabemos que el Big Bang que dio comienzo al surgir de nuestro Universo, no era apto para la vida. Tuvieron que pasar algunos cientos de millones de años para que se formaran las primeras estrellas, una vez que pasó la época de la radiación y leptónica, los Quarks formaron los primeros átomos y, al juntarse, se formó la materia.
En las estrellas, mediante la fusión nuclear, se fusionaron los elementos sencillos existentes en aquellos primeros momentos (Hidrógeno y Helio) en otros más complejos como Berilio, Carbono, Oxígeno, Nitrógeno… y muchos más hasta el Hierro. Más tarde, en las Supernovas, se fraguaron elementos más pesados como el Uranio.
Lo cierto es que, la química de las estrellas presentes en nuestro Mundo (y en otros), hizo posible la presencia de la Vida en el Universo. Aunque sólo tenemos conocimiento de que la Vida habita el planeta Tierra, las probabilidades de que también, esté presente en muchos otros es muy alta. El Universo es el mismo en todas partes y, las mismas leyes y constantes rigen las regiones lejanas a la nuestra, y, siendo así (que lo es)… ¿Por qué sólo habría vida en nuestro planeta?
Los organismos dominantes de la vida en el Arcaico temprano fueron bacterias y arqueas, que coexistieron formando alfombras microbianas y estromatolitos (las llamadas esteras microbianas). Ahí tenemos que buscar la evolución temprana de la Vida en nuestro planeta. Más tarde, llegó la era del oxígeno y todo cambio, aquel “veneno” eliminó a muchos de los seres primarios que, anaeróbicos en su forma de existencia, no pudieron soportar el oxígeno, y, surgieron los “seres” aeróbicos (adaptados al aire) que dieron lugar a las especies que ahora conocemos, incluida la nuestra.
Claro que, para que eso llegara muchas cosas tuvieron que pasar antes, y, el camino, desde la oxigenación de la atmósfera terrestre no ha sido nada fácil, Comenzó hace unos 2.500 millones de años y, allí podemos encontrar la evidencia más temprana eucariota (las células más complejas con sus organelos y mitocondrias), aquello dio lugar a la célula múltiple y más compleja que la evolución llevó hasta nosotros.
Hace unos 450 millones de años que surgieron las primeras plantas en nuestro planeta, a las algas marinas se les atribuye una edad mayor que podría alcanzar los 1400 millones de años. Lo cierto es que, sólo tenemos que contemplar nuestro mundo para comprobar el éxito que han tenido las Plantas en él.
“El período Ediacárico o periodo Ediacarano (en referencia a las montañas Ediacara), una división de la escala temporal geológica, es el tercer y último período geológico de la era Neo-proterozoica. Comienza hace unos 635 millones de años y finaliza hace 542,0 ±1,0 millones de años (es seguido por el Cámbrico).”
Las plantas contribuyeron a la extinción del Devónico tardío. Los animales invertebrados aparecieron durante el período Ediacárico, mientras que los vertebrados se originaron hace ahora alrededor de 500 millones de años durante la explosión Cámbrica.
Durante el período Pérmico, los sinápticos, entre los que se encontraban los ancestros de los mamíferos, dominaron la tierra pero el evento de extinción del Pérmico-Triásico hace 251 millones de años estuvo a punto de aniquilar toda la vida compleja sobre la Tierra.
Esta fue la cuarta extinción a gran escala que padeció la Tierra
No fue fácil que la Tierra se recuperara de tal catástrofe. Sin embargo, los arcosaurios se convirtieron en los vertebrados terrestres más abundantes, desplazando a los trápsidos a mediados del Triásico. Un grupo de arcosaurios, los dinosaurios, dominaron los períodos Jurásico y Cretasico, con los antepasados de los mamíferos que sobrevivieron sólo como pequeños insectívoros.
Después de la extinción masiva del Cretácico-Terciario hace ahora unos 65 millones de años que eliminó a los Dinosaurios (no aviarios), los mamíferos aumentaron de tamaño y diversidad sin aquellos enemigos temibles que antes lo podían devorar.
Tuvieron mala suerte que a nosotros, nos vino de maravilla
Aunque la extinción de los Dinosaurios se adjudica al meteorito caído en el Yucatán (México), algunos postulan que fue el oxígeno el que acabó con ellos. Algunas otras teorías circulan por ahí pero, es la del meteorito la que tiene más credibilidad.
Los océanos se llenaron de fitoplancton y la materia orgánica natural proveniente de organismos que antes estuvieron vivos, sembró la tierra dando lugar a la proliferación tal como de plantas y animales y sus productos y residuos. Las estructuras básicas están formadas de celulosa, tanino, cutina y lignina, junto a otras proteínas, lípidos y azúcares. Todo ello de inmensa importancia en el movimiento de nutrientes en el medio ambiente que juega un importante papel en la retención de agua en la superficie del planeta.
Todas las investigaciones llevadas a cabo nos dicen que las rocas más antiguas de la Tierra datan de hace ahora unos 3800 millones de años, mientras que los meteoritos más antiguos son de hace 4.540 millones de años. En la época en el que la Tierra estaba siendo continuamente bombardeada por los meteoritos, los expertos lo denominan el eón Hádico (nombre que significa infierno), ya que, eso parecía la Tierra por aquel entonces.
Todos los indicios nos indican que relativamente poco tiempo después de su formación, la Tierra ya solidificó su corteza terrestre, se formaron los océanos y la atmósfera que posibilitaron la presencia por evolución de la “materia inerte” de alguna clase de vida primigenia.
Los estromatolitos son estructuras minerales de origen biológico y que están estratificadas con una morfología laminar originadas por partículas carbonatadas por partículas de cianobacterias y otras bacterias.
Encontrar algún tipo de vida de la época sería algo complicado, pues el afloramiento de rocas arcaicas de la Tierra es inusual. Sin embargo, han habido algunos recientemente. El pasado año 2006 ya se identificaron células fósiles en estromatolitos en la costa australiana con 3400 millones de años de edad.
Los primeros organismos fueron identificados en un corto periodo de tiempo y relativamente sin rasgos, sus fósiles parecen pequeñas varillas, que son muy difíciles de distinguir de las estructuras que surgen a través de procesos físicos abióticos. La más antigua evidencia indiscutible de vida en la Tierra, interpretadas como bacterias fosilizadas, datan de hace 3000 millones de años.
Mientras que esto no pruebe que las estructuras encontradas tengan un origen no biológico, no puede ser tomado como una clara evidencia de la presencia de vida. Marcas geoquímicas en las rocas depositadas hace 3400 millones de años han sido interpretados como evidencia de vidaque, en realidad, están llenas de incertidumbre.
El árbol filogenético mostrando la divergencia de las especies modernas de su ancestro común en el centro. Los tres dominios están coloreados de la siguiente forma; las Bacterias en azul, las Arqueas en verde, y los eucariotas de color rojo.
Según todos los indicios, todos los seres vivos sobre la Tierra tenemos un antepasado común universal. La razón biológica para ello, está determinada por el hecho cierto de que, sería prácticamente imposible que dos o más linajes separados pudieran haber desarrollado de manera independiente los muchos complejos mecanismos bioquímicos comunes a todos los organismos vivos. Todos ellos (dicho sea de paso), están basados en el Carbono.
PANSPERMIA
Nuestra imaginación (casi tan grande como el Universo), cuando no sabe sobre la certeza de alguna cuestión, suele inventar cómo podría haber sido, y, el tema de la Vida en la Tierra, no podía ser una excepción, así que, ya desde el siglo V a.C., corría la idea de que la vida en la Tierra había sido “sembrada” desde el Espacio Exterior.
La idea tomó cuerpo allá por el siglo XX, cuando el físico-químico Svante Arrhenius, propuso que la vida llegó a la Tierra mediante la Panspermia, es decir, del Espacio Exterior. Otros muchos después siguieron sus pasos como los Astrónomos Fred Hoyle, y el biólogo molecular Francis Crick y el Químico Leslie Orgel.
Lo cierto es que, con plena certeza científica, nadie lo sabe. Circulan tres versiones o principales hipótesis sobre las “semillas de otros lugares” a través de choques de fragmentos caídos en la Tierra en su lejano pasado:
“1) En otras partes de nuestro sistema solar a través de choques de fragmentos en el espacio por el impacto de un gran meteorito, en cuyo caso la única fuente creíble es Marte;2) Por visitantes extraterrestres, posiblemente como resultado de una contaminación interplanetaria accidental por microorganismos que trajeron con ellos, 3) Fuera del sistema solar, pero por medios naturales. Los experimentos sugieren que algunos microorganismos pueden sobrevivir al shock de ser catapultados dentro del espacio y también que algunos pueden sobrevivir a la exposición a la radiación durante varios días, pero no hay ninguna prueba de que puedan sobrevivir en el espacio por períodos mucho más largos. Los científicos creen principalmente en dos ideas; sobre la probabilidad de que la vida surgiera de forma independiente en Marte, o en otros planetas en nuestra galaxia.”
Por mi parte, soy poco partidario de la Panspermia, creo que, en nuestro planeta (como en muchos otros), están todos los ingrediente3s necesarios para el surgir de la vida. Siendo muchísimas especies las que se han extinguido (sólo el 1% vive en la actualidad), y, sin embargo, no dejan de aparecer nuevas especies.
La Química de las estrellas estaba en aquella Nebulosa que hace miles de millones de años formó una desconocida explosión Supernova, y, en aquellos materiales en la Nube existentes, estaban todos aquellos necesarios para que, con el paso del Tiempo, en un planeta joven situado a la distancia adecuada de su estrella, pudiera desarrollar los mecanismos necesarios para que la Vida, hiciera acto de presencia.
emilio silvera
Jun
15
¡La curiosidad! que está con nosotros
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Las estrellas cuando agotan su combustible nuclear de fusión, se convierte en otra cosa distinta
Me ha venido a la memoria escenas y hechos que, en la última charla que pude dar en un Centro Educativo, en el apartado de Ciencia, para chavales de 2º de Bachillerato, comencé la sesión ilustrándola con la Imagen de arriba, de la que di una breve explicación antes de entrar en materia que, en realidad era: Nacimiento, Vida y Muerte de las estrellas y, de lo que hacían durante esos largos períodos de tiempo y, en qué se convertían al final de sus vidas como estrellas cuando dejaban la Secuencia Principal al no quedarle combustible nuclear de fusión, ya agotado.
Fuera de lugar y centrados en sus propios mundos
El caso fue que, comencé con las explicaciones y, de entre el auditorio de jóvenes llenos de energía y revoltosos, algunos, no prestaban atención y, además, con sus bromas y risas, no dejaban que los demás, se pudieran interesar en lo que allí se trataba.
Aquella actitud de algunos, me obligó a parar la charla y, mirando seriamente a los alborotadores, les dije: “Chicos, si el tema no os interesa, y queréis salir de aquí siendo un poco más “burros”, sois libres de hacerlo.” Sin embargo, os ruego que, si finalmente decidías seguir con nosotros, y al final ser un poco más “sabios”, dejéis de alborotar.
Como ya son “hombrecitos y mujeres”, la reprimenda tuvo su efecto y, a partir de aquel momento, todos estuvieron atentos a mis palabras con las que fui desgranando, despacio y con palabras sencillas, lo que era una explosión de supernova y cómo dejaba regada una amplia región del espacio interestelar por una hermosa e inmensa nebulosa de cuyos materiales, vuelven a nacer nuevas estrellas y nuevos mundos.
Apoyaba mis palabras con imágenes como la de arriba. La fotografía combina diferentes radiaciones, como rayos X, infrarrojos o luz visible, y genera una amalgama de colores que aportan información importante para entender cómo llega una estrella a ser una estrella. Esta imagen ofrece una interesante mirada hacia el interior de la región activa de estrellas en ciernes llamada NGC 346. Los científicos responsables del telescopio aseguran que revela información nueva sobre cómo se forman las estrellas en el Universo.
La NASA publicó un video (1/09/2011) donde se aprecia el proceso de nacimiento estelar. Con grandes chorros de gas incandescente nacen las estrellas a millones de años luz, algo que ahora está al alcance del ojo humano a través de un vídeo reconstruido con imágenes fijas tomadas por el telescopio Hubble. El vídeo, publicado en la página web de la agencia espacial estadounidense (NASA), ofrecía nuevos detalles sobre el proceso de nacimiento estelar, en el que se pueden apreciar los chorros de gas que expulsan las estrellas jóvenes con un detalle hasta ahora nunca visto.
A medida que las explicaciones avanzaban, pude notar como el interés de los chicos crecía. Ya no bromeaba nadie, la sala estaba en silencio y todos, sin excepción, se veían interesados e incluso, algunos, tenían la boca abierta por asombro. Allí, lo que al principio era una simple charla para alumnos, se fue convirtiendo en un auditorio donde, profesores y alumnos de otras clases llegaban y se unían a los ya presentes.
Les pude explicar con todo detalle y de la manera más sencilla posible, como se formaban los elementos en las estrellas a partir del Hidrogeno, el elemento más sencillo de la Naturaleza.
Les expliqué el proceso protón–protón que convertía Hidrógeno en Helio y el proceso triple Alfa que convertía Helio en Carbono, el material químicamente más idóneo para la vida -al menos aquí en la Tierra- y, se hizo un largo recorrido por la transmutación que se producía en todos los elementos, a medida que transcurría el tiempo y la estrella evolucionaba.
Pude darles una buena noción de las clases de estrellas que existen y de que, no todas tienen las mismas masas y que, como consecuencia de ello, cada una de esas estrellas, viven más o menos tiempo y que, cuando al final mueren, lo hacen de muy diferentes maneras. Ya que, estrellas medianas como nuestro Sol, terminan creando una Nebulosa planetaria al convertirse en Gigante roja y, terminan sus días como enanas blancas de una gran densidad. Les expliqué el proceso que hacían hasta llegar a tal estado y los parámetros que, como el principio de exclusión de Pauli, estaban allí presentes. De la misma manera, les expliqué que, estrellas más masivas terminaban como estrellas de neutrones y más masivas aún, como agujeros negros.
El recorrido fue algo largo (más de lo esperado), ya que, vista la gran atención que todos ponían en las explicaciones y en las imágenes que se iban poniendo en cada fase del proceso explicativo, procuraba que el tema tratado lo fuera en profundidad y amplitud y, de esa manera, la cosa resultó, además de más amena, mucho más completa y, sobre todo, comprensible.
Cuando al final di la charla por finalizada, pregunté si alguien quería alguna explicación sobre algún aspecto de lo que habíamos tratado, y, las manos que se levantaban presagiaban un largo, muy largo debate. Y, así fue. Los jóvenes se interesaban por todo y, de entre todo lo explicado, las cosas que más llamaron su atención fueron, por ejemplo:
Que nuestro Sol, cada segundo, pueda fusionar 4.654000 toneladas de Hidrógeno en 4.650.000 toneladas de Helio. Y, un observador inquisitivo, me preguntaba: ¿Dónde están las 4.000 Tn que se han perdido? Bueno, le expliqué que habían sido lanzadas al espacio interestelar en forma de luz y de calor y, una pequeña fracción, llegaba a la Tierra para permitir la fotosíntesis y la vida.
Otra de las cuestiones que les llamó más la atención fue, cómo era posible que estrellas supergigantes, pudieran tener una vida más corta cuando tenían a su disposición mucho más material. Y, cuando les expliqué que, esas estrellas, no consumen sino que devoran literalmente el material nuclear de fusión, comprendieron el por qué de sus cortas vidas.
Y, preguntaban cómo no todas las estrellas tenían el mismo color, amarillas como nuestro Sol. La eslicación, como sabemos, está en el hecho de que no todas están formadas por el mismo material: Hay estrellas de Carbono, otras son de Oxígeno, Litio, manganeso…, la diversidad es enorme.
Mostraron mucha curiosidad y más interés aún, al saber -no todos conocían tal hecho- que, los elementos para hacer posible, la bio-química de la vida, se fabrica en las estrellas, es allí, en sus hornos nucleares donde se producen los elementos que conforma la materia del Universo, su diversidad que, bajo ciertas condiciones y, en los mundos adecuados situados en las zonas habitables de sus estrellas, pueden hacer surgir formas de vida que, a veces, llegan incluso a ser conscientes, como ha pasado aquí, en la Tierra.
G292.0+1.8 remanente de supernova
Los remanentes de supernovas y de cómo en esas inmensas explosiones se producían oro y platino, también fue uno de los temas que llamó la atención del personal. Todos querían hablar al mismo tiempo y todos -era un auténtico gozo- tenían preguntas que plantear. Al final, el tiempo pasaba sin sentir y tuve que dar por finalizado el evento que, al contrario de lo que parecía al principio, fue todo un exito, sobre todo, al comprobar que aquellos jóvenes al terminar la charla y el coloquio, eran un poco “más sabios” que antes de empezar.
Claro que, no siempre las cosas salen tan bien paradas. Recuerdo aquel Asilo de Ancianos al que hace tiempo fui a dar una charla de astronomía y, antes de terminar, estaban todos, prácticamente dormidos. La curiosidad y el interés, les había abandonado y, ese fue un día triste para mí.
emilio silvera