sábado, 26 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Sobre la antimateria

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hasta 1928, en la física ni siquiera como concepto se había desarrollado la idea de antimateria y, mucho menos, la capacidad de producirla. Pero el estadio cambió cuando se empezaron a conocer los estudios del físico británico Paul Dirac.

En la práctica, todo comienza con los trabajos de Dirac que publicó en el año 1929, en una época que coincide con los tiempos que se descubrían los primeros secretos de la materia, se teorizaba sobre el comportamiento de las partículas que comportan la fuerza débil, y se profundizaban los estudios de los componentes de los átomos, especialmente en la teorización de lo que se llama fuerza fuerte. Fueron tiempo en que la audacia tuvo una preeminencia como rol intelectual dentro del mundo de la física, en el cual se plantearon conceptos como el de la mecánica ondulatoria, el principio de incertidumbre o, también, el descubrimiento del espín en los electrones. Se dice que fue una de las épocas más exotérica* de la física, en la cual hubo ejercitantes que concurrieron a simpáticas metáforas para hacer más accesibles sus teorías, como fue el caso del físico austríaco Erwin Schrödinger cuando apeló a la historia de los gatitos para exponer su principio de indeterminación, con el cual describía en síntesis que las partículas más pequeñas tienen un comportamiento que, dentro del razonamiento común, no es el mayormente aceptado por las personas.

La descripción anterior, implica ubicar el escenario en el cual Paul Dirac estaba inserto cuando planteó que donde había materia, también podía haber antimateria. Concretamente señaló, que si el átomo tenía partículas de carga negativas llamadas electrones, debía haber partículas que fueran «electrones antimateria», a los que se les llamó positrones y que debían tener la misma masa del electrón, pero de carga opuesta y que se aniquilarían al entrar en contacto, liberando energía. Este descubrimiento de Dirac fue tan revolucionario que lo hizo merecedor del premio Nobel en el año 1933.

Leer más

Nuevos avance en el saber humano

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Observación directa del efecto de cono muerto en cromodinámica cuántica

Naturaleza volumen 605 , paginas440–446 ( 2022 ) Citar este artículo

Resumen

 

Primera observación en el LHC del 'cono muerto', un fenómeno esencial en  física de partículas

 

En los experimentos con colisionadores de partículas, las interacciones de las partículas elementales con una gran transferencia de cantidad de movimiento producen quarks y gluones (conocidos como partones) cuya evolución se rige por la fuerza fuerte, tal como lo describe la teoría de la cromodinámica cuántica (QCD) 1 . Estos partones posteriormente emiten más partones en un proceso que puede describirse como una lluvia de partones 2 , que culmina en la formación de hadrones detectables. 

Gaston Giribet on Twitter: "La colaboración ALICE del LHC acaba de obtener  la prinera observación directa del llamado "cono muerto", un efecto de la  cromodinámica cuántica (QCD), la teoría que describe la

El estudio del patrón de la lluvia de partos es una de las herramientas experimentales clave para probar QCD. Se espera que este patrón dependa de la masa del partón iniciador, a través de un fenómeno conocido como efecto de cono muerto, que predice una supresión del espectro de gluones emitido por un quark pesado de masa Q y energía E, dentro de un cono de tamaño angular Q/E alrededor del emisor 3 . Anteriormente, no había sido posible una observación directa del efecto de cono muerto en QCD, debido al desafío de reconstruir los quarks y gluones en cascada a partir de los hadrones accesibles experimentalmente. Presentamos la observación directa del cono muerto QCD mediante el uso de nuevas técnicas iterativas de desagrupamiento 4 , 5 para reconstruir la lluvia de partones de quarks charm. Este resultado confirma una característica fundamental de QCD. Además, la medición de un ángulo de cono muerto constituye una observación experimental directa de la masa distinta de cero del quark charm, que es una constante fundamental en el modelo estándar de la física de partículas.

Principal
El Gran Colisionador de Hadrones del CERN ha vuelto a ponerse en marcha...  y con gran éxito - Salida de Emergencia

En los colisionadores de partículas, los quarks y gluones se producen en interacciones de alta energía a través de procesos con gran transferencia de cantidad de movimiento, que son calculables y bien descritos por la cromodinámica cuántica (QCD). Estos partones se someten a emisiones posteriores, lo que da como resultado la producción de más quarks y gluonesEsta evolución se puede describir en el límite colineal mediante un proceso en cascada conocido como lluvia de partones, que transfiere la energía original de los partones a múltiples partículas de menor energía. Esta lluvia luego evoluciona hacia un estado final de múltiples partículas, con los partones combinándose en un rocío de hadrones detectables experimentalmente conocido como jet 6Se espera que el patrón de la lluvia de partones dependa de la masa del partón emisor, a través de un fenómeno conocido como efecto de cono muerto, por el cual la radiación de un emisor de masa m y energía E se suprime en escalas angulares menores que m / E , relativo a la dirección del emisor. El efecto de cono muerto es una característica fundamental de todas las teorías de campo de calibre (ver ref. 3 para la derivación del cono muerto en QCD).

Científicos hallaron en la "Máquina de Dios" indicios de una nueva  partícula que cuestionan toda la física actual - InfobaeQué es el cono de luz en física? - Quora

Se espera que el efecto de cono muerto tenga implicaciones considerables para los quarks encanto y belleza, que tienen masas de 1,28 ± 0,02 GeV/ 2 y GeV/ 2 (ref. 1 ) en el esquema de sustracción mínima, respectivamente, a energías en la escala GeV. La probabilidad de emisión en la región colineal, que es el límite divergente de QCD en el que la radiación es más intensa, se suprime al aumentar la masa del quarkEsto conduce a una disminución en el número medio de partículas producidas en la lluvia de partones. La colaboración DELPHI en la LEP e + e 4.18−0.02+0.03″ role=”presentation” style=”box-sizing: inherit; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;”>4.180.03− 0,024.18−0.02+0.03colisionador midió la diferencia de multiplicidad entre los eventos que contienen jets iniciados por quarks de belleza pesados ​​y los que contienen quarks ligeros (arriba, abajo o extraño). Descubrieron que las diferencias dependen solo de la masa del quark 7 , que se atribuyó a la supresión de la radiación de gluones colineales del quark pesado debido al efecto de cono muerto. 

El experimento ATLAS: Explorando la materia - YouTubeATLAS El experimento ATLAS

La colaboración ATLAS en el CERN 8 también realizó una medición de la densidad de impulso de los componentes del chorro en función de la distancia desde el eje del chorro , que señaló un agotamiento del impulso cerca del eje del chorro que se atribuyó como consecuencia de la muerte. -efecto cono. La masa del quark belleza también se estimó mediante un ajuste fenomenológico a los datos medidos 9Dado que las emisiones duras (gran momento transversal) se emiten preferentemente en ángulos pequeños y, por lo tanto, se suprimen para los emisores masivos, los quarks pesados ​​​​también retienen una fracción mayor de su momento original en comparación con los quarks más ligeros, lo que lleva a un fenómeno conocido como el efecto de partículas principales. . Esto ha sido bien establecido experimentalmente, con la fracción del momento del chorro transportado por el hadrón principal (momento transversal más alto) que contiene un quark encanto o belleza (hadrón de sabor pesado) en los chorros, alcanzando un máximo de 0,6 a 0,7 y 0,8 a 0,9, respectivamente. , mientras que la fracción correspondiente transportada por el hadrón principal en chorros iniciados por quarks ligeros alcanza su punto máximo en valores más pequeños 10 , 11 , 12 , 13 , 14 .

Qué es el cono de luz en física? - Quora

Hasta ahora, una medición experimental directa del efecto de cono muerto ha estado sujeta a dos desafíos principales. Primero, la región angular del cono muerto puede recibir contribuciones de efectos de hadronización o partículas que no se originan de la radiación de gluones del quark de sabor pesado, como los productos de descomposición de los hadrones de sabor pesado. La segunda dificultad radica en la determinación precisa de la dirección de evolución dinámica del quark de sabor pesado, en relación con la cual se suprime la radiación, a lo largo del proceso de lluvia. El desarrollo de nuevas técnicas experimentales de desagrupamiento 4permite superar estas dificultades mencionadas reconstruyendo la evolución de la lluvia de chorro, dando acceso a las propiedades cinemáticas de cada emisión individual. 

                                                                                    Patrones sin fisuras con gotas de lluvia. puede ser utilizado pinturas para  la pared • cuadros mojado, otoño, lluvia | myloview.es

Estas técnicas reorganizan los constituyentes de partículas de un chorro reconstruido experimentalmente, para acceder a los componentes básicos de la ducha y rastrear el proceso de cascada. Los elementos aislados de la lluvia de partones reconstruidos que probablemente no hayan sido modificados por los procesos de hadronización proporcionan un buen indicador de las emisiones reales de quarks y gluones (desdoblamientos). Estas técnicas de reagrupación se han demostrado en chorros inclusivos (sin marcar el sabor del partón iniciador) para reconstruir con éxito las divisiones que están conectadas o que preservan la memoria de las ramificaciones del partón. Esto se demuestra mediante mediciones tales como el balance de momento preparado15 , 16 , 17 , 18 , que prueba la función de división de Dokshitzer-Gribov-Lipatov-Altarelli-Parisi 19 , y el plano de Lund 20 , que expone el funcionamiento del acoplamiento fuerte con la escala de las divisiones. En la ref. 21 .

A.L.I.C.E.: El comienzo de una nueva era | La Huella DigitalExperimento ALICE - Wikipedia, la enciclopedia libre

Las técnicas de reagrupamiento se extienden en este trabajo a jets que contienen un quark charm basado en la prescripción dada en la ref. 22 . Estos chorros están marcados por la presencia de un mesón0 reconstruido entre sus constituyentes, que tiene una masa de 1,86 GeV/ 2 (ref. 1 ) y está compuesto por un quark pesado charm y un quark ligero anti-up. La medición se realiza en colisiones protón-protón con una energía de centro de masa des=13″ role=”presentation” style=”box-sizing: inherit; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;”>s13s=13 TeV en el Gran Colisionador de Hadrones (LHC), usando el detector ALICE (A Large Ion Collider Experiment). Se pueden encontrar más detalles del aparato detector y los datos medidos en los Métodos. Como el sabor del quark charm se conserva a través del proceso de ducha, esto brinda la oportunidad de aislar y rastrear la historia de emisión del quark charm. De esta forma, al comparar los patrones de emisión de los quarks charm con los de los quarks light y los gluones, se puede revelar directamente el cono muerto QCD.

Figura 1

El artículo sigue y es bastante valioso del objetivo conseguido que había sido perseguido desde hace bastante tiempo. Esperemos que no sea el último y que pronto localicen el Gravitón.

Tenéis todos los resultados en Nature. Todos los resultados en  www.rsef.es

Boletín de Noticias de la Real Sociedad Española de Física

Dejando volar el pensamiento

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Me maravilla la riqueza que atesoramos y la experiencia que la Humanidad ha podido tener a lo largo y a lo ancho de sus milenarias vivencias sobre este planeta, y, sobre todo, siempre me asombró ese don especial que poseemos y al que hemos denominado “imaginación”, el poder crear escenas y mundos en nuestra mente que nos transporta a universos nuevos, desconocidos y maravillosos.

Mi debilidad está en leer y enterarme de las cosas, sin límite de cuestiones a tratar, aunque sí con preferencias. Lo he tocado todo de manera más o menos profunda, y una vez pude leer (no recuerdo ahora dónde) que la mitología y los escritos antiguos nos hacen saber que el último día de la Atlántida se vio marcado por una inmensa catástrofe. Olas tan altas como montañas, huracanes, explosiones volcánicas… sacudieron el planeta entero. La civilización sufrió un retroceso y la Humanidad superviviente quedó reducida a un estado de barbarie.

Las tablas sumerias de Gilgamés hablan de Utnapichtiun, primer antepasado de la Humanidad actual, que fue, con su familia, el único superviviente de un inmenso diluvio. Encontró refugio en un arca para sus parientes, para animales y pájaros. El relato bíblico del Arca de Noé parece ser una versión tardía de esa misma historia.

El Zend-Avesta iranio nos proporciona otro relato de la misma leyenda del diluvio. El dios Ahuramazda ordenó a Yima, patriarca persa, que se preparara para el diluvio. Yima abrió una cueva, donde durante la inundación, fueron encerrados los animales y las plantas necesarias para los hombres. Así fue como pudo renacer la civilización después de las destrucciones ocasionadas por el diluvio.

Leer más

Pensando con el bolígrafo en la mano

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Alguien que escribió un libro, plasmó esta frase:

El pasado y el futuro son visiones del espíritu.

Bonita frase, pero poco real.

 Cuando haces del pasado un impostor - La Mente es Maravillosa5 formas curiosas de potenciar tu memoria - La Mente es Maravillosa

Está en nuestras Mentes para poderlo recordar, es el Tiempo que no volverá

El pasado es una visión del recuerdo, mientras que el futuro es una visión de nuestra propia imaginación. Claro que el libro contiene muchos y buenos pasajes sobre muy diversas cuestiones, sólo que el autor adopta un plano de superioridad en la forma de contarlo que, al menos a mí, me choca.

Como todo me hace pensar, cuando termino este comentario caigo en la cuenta de que no todos los buenos científicos están siempre en lo cierto al exponer sus teorías.

En el comentario anterior hemos nombrado el pasado y el futuro, y ambos términos de lo que pasó y de lo que pasará, siempre llamaron mi atención y he procurado información diversa sobre el tema.

En escritos míos anteriores, me he referido a la teoría expuesta de manera magistral por el reconocido físico teórico Kip S. Thorne. Él cree firmemente que en el futuro será posible viajar al pasado a través de un agujero de gusano.

Nunca he dudado de tal maravilla. Algún día muy lejos en el futuro, puede ser realidad. Sin embargo, hay que puntualizar algunas cosas.

  • Todos hemos oído contar, hemos leído o hemos visionado alguna película en la que el personaje principal viaja al pasado, se encuentra con su abuelo, se pelea con él y lo mata, y así, ni su padre ni él mismo pudieron nacer.
  • También se podría viajar al pasado, matar a Hitler y evitar aquel episodio funesto.
  • O impedir la crucifixión de Cristo.
  • O…
                                                           Resuelta la paradoja de los viajes al pasado • Tendencias21

¡Pues va a ser que no! Los mecanismos del universo no permitirían tal barbaridad. Debe existir una especie de censura cósmica que lo prohíba, Lo que pasó allí debe quedar y no  tratar de cambiarlo.

Si Thorne tiene razón y alguna vez vamos al pasado, a un mundo que fue y que no es el nuestro, creo que las leyes de la física impedirán que nuestra presencia fuese material y que nuestras acciones pudieran incidir en los hechos para cambiar su curso; eso es imposible. Algunos hablan de que iríamos a un mundo paralelo al nuestro para no atentar contra la cláusula cronológica de la Historia (S.Hawking)

Nuestra presencia allí sólo sería incorpórea; podríamos ver, observar, mirar con fascinación de manera directa lo que allí pasó, ser testigos de hechos históricos (seguramente sería una forma de turismo del futuro), pero no nos estaría permitido intervenir.

PASAJES DE LA HISTORIA versus LA REALIDAD ACTUAL – Asociación por la Región  de Granada

Lo que ya pasó es irreversible. No podemos físicamente retrotraer el tiempo para borrar lo que pasó.

Cuando un astrofísico mira una galaxia que está a 1.000 millones de años-luz de nosotros, está mirando el pasado. La galaxia que ve es la galaxia que fue hace 1.000 millones de años, que es el tiempo que ha tardado su imagen en llegar a nosotros viajando a la velocidad de la luz. No estamos capacitados de ninguna manera para poder observar esa galaxia tal y como es ahora; la distancia que la separa de nosotros tiene que ser recorrida, y el viaje duró mil millones de años, así que cuando lleguemos allí, la galaxia habrá evolucionado y será muy diferente a como era cuando iniciamos el viaje.

                         Esto ocurre cuando un agujero negro ″hambriento″ se come una estrella  cercana | Ciencia y Ecología | DW | 21.09.2021                         Astrónomos creen haber detectado el primer agujero negro flotante - Infobae

                Lo que traspasa el Horizonte de sucesos no vuelve

El rayo de luz que es atraído por un agujero negro y desaparece en la singularidad, no puede volver para que lo podamos ver de nuevo.

La entropía del universo es irreversible; el deterioro de los sistemas cerrados es imparable. Todo se transforma para convertir las cosas en otras diferentes. Son las leyes del universo, y a nosotros, simples mortales, sólo nos queda tratar de comprenderlas para obtener de ellas “tal como son” el mayor beneficio posible. Cuando la ambición o la inconsciencia nos lleva a querer cambiar las leyes del universo y de su naturaleza, el resultado no puede ser bueno.

Todas estas razones y muchas más que podrían exponerse aquí son las que impedirán algún día muy lejano de nuestro futuro, cambiar el pasado que, según mi opinión, es inamovible. ¡Ah!, y en contra de lo que dice en su libro Jean Bouchart, creo que todo lo que ocurre está causado por lo que ocurrió. Es lo que los físicos llaman causalidad. Nada ocurre porque sí, todo tiene su causa.

 Instagram: la imagen de un huevo recibe el mayor número de “likes” de la  historia | Lifestyle | Cinco Díasᐈ Como sacar un pollo del huevo (Causas y Soluciones)

  • Si de verdad amas, te amarán.
  • Si estudias, aprenderás.
  • Si eres un vago, te llegará la miseria y la degradación.
  • Si haces lo que te gusta, serás más feliz.

Todo es la consecuencia de lo que hacemos. Igualmente, en nuestro mundo y en nuestro universo, rige la misma ley: si contaminas el planeta, se deteriorará el medio ambiente y morirá la atmósfera que ahora nos da la vida. Si una estrella agota su combustible nuclear, morirá, dejará de brillar y se convertirá en un objeto diferente. Todo es así.

 15 Hábitos de las personas felices que los diferencian del resto

Cicerón decía que la felicidad consiste en la tranquilidad del espíritu

Mi consejo: que nuestro comportamiento no sea nunca causante de males ajenos; que nos conformemos y sepamos valorar lo que tenemos; que tratemos cada día de ser mejores adquiriendo nuevos conocimientos, el verdadero sustento del ser.

Cuanto más sabemos, más podemos ofrecer a los demás.

En mi transcurrir cotidiano, por mi trabajo, veo con mucha pena cómo las personas tratan de engañarse las unas a las otras. Es la forma general, y lo excepcional es el encontrar, muy de tarde en tarde, personas decentes y honradas, mejor o peor preparadas (qué más da) pero nobles de espíritu y limpias de corazón; cuando eso ocurre, es como una ráfaga de aire fresco y perfumado que inunda los sentidos.

 Juicio de Johnny Depp y Amber Heard: ¿Por qué están en la corte? - Los  Angeles Times

           ¡Cuidado! La fealdad puede ser interior

Como lo normal es todo lo contrario, la fealdad interior, el engaño, la falsedad, la ausencia de moralidad y de ética, la traición de los “amigos” o familiares, etc., mi remedio es bien sencillo: me encierro en mi mundo particular de la física, la astronomía y, en definitiva, de cualquier rama del saber que esté presente en ese momento en mis pensamientos, y de esa forma, por unos momentos, me olvido de la fea verdad que nos rodea.

Claro que como antes dije, ¡menos mal!, de vez en cuando nos encontramos con ráfagas de aire puro y perfumado que emiten esos espíritus puros, ¡que los hay!

El mes pasado (enero de 2.007), comenzó y se celebró en la India el 20 International Joint Conference of Artificial Intelligence, un encuentro en el que se pusieron al día todos los avances en inteligencia artificial, y donde fue celebrado el 50 cumpleaños de su creación.

 El número de usuarios de internet en el mundo crece un 4% y roza los 5.000  millones (2022) - Marketing 4 Ecommerce - Tu revista de marketing online  para e-commerceEl fascinante mapa donde puedes ver el recorrido oculto de los cables  marinos que nos conectan a internet - BBC News Mundo

El incremento de los resultados en este campo (ya me referí antes a esta ciencia), ha sido asombroso. Internet es una buena prueba de ello en la búsqueda de información por contenido, comercio electrónico, sistemas de recomendación, web semántica, etc. el futuro de Internet, de la industria y del comercio, de las ciudades futuras, de los viajes espaciales, de la medicina, etc., etc., etc., dependerán de los progresos que se realicen en el ámbito de la inteligencia artificial y en la nanotecnología; ahí parecen estar el progreso del futuro.

La inteligencia artificial, entre otras cosas, podrá llevar y facilitar información a países subdesarrollados que, de esta manera, podrá ofrecer educación a sus habitantes, mejorará la salud de la población, su agricultura, etc. la calidad de vida, en definitiva.

Ya se están desarrollando en Japón los ordenadores inteligentes (los llamados de quinta generación), y el entusiasmo de empresas informáticas japonesas y estadounidenses por la inteligencia artificial aconsejó a Europa no quedarse atrás y acometer sus propios proyectos mediante programas de investigación en estas nuevas tecnologías del futuro.

 La nueva frontera de la inteligencia artificialCómo funciona la inteligencia artificial

El término de inteligencia artificial, si no me falla la memoria, se acuñó en la reunión de Dartmouth en 1.956, que fue un evento único e histórico. Único porque no se volvió a celebrar, es decir, no fue el primero de un serie como ocurro con los congresos internacionales de lo que, como comenté al principio, se llevan celebrando 20; y fue histórico por el hecho de que allí se acuñó el término que ha prevalecido de inteligencia artificial.

En Dart Mouth se presentó un único resultado: un programa llamado Logic Theorist, capaz de demostrar teoremas de lógica proporcional contenidos (según leí) en la famosa obra “Principia Matematica” de Bertrand Russell y Alfred Whitehead (la obra más famosa de Newton lleva el mismo título). El programa lo desarrollaron Herbert Simón (que en 1.978 recibió el premio Nobel de Economía), Alan Newell y Clifford Shaw. Sin embargo, en éste de enero en la India, se presentaron 470 resultados seleccionados entre los casi 1.400 que recibieron.

 Funciones y características de la Inteligencia Artificial - SeguritecniaInteligencia Artificial en las empresas: proyecciones y tendencias hacia el  2025 - Prensario Tila

Desde aquella reunión del 56, los hitos alcanzados en el campo de la IA han sido extraordinarios: desde jugar al ajedrez hasta diagnosticar enfermedades, comprender textos sobre temas concretos que implican conocimientos especializados… No obstante, el objetivo de desarrollar las inteligencias artificiales generales que los pioneros de esta ciencia, reunidos en 1.956, propusieron para ser alcanzados, quedan aún muy lejanos.

Pero todo llegará; todo es cuestión de ¡tiempo!

Esta ciencia le debe mucho a las matemáticas. Alan Turing es un ejemplo. Fue un gran matemático que formalizó conceptos tan básicos para la informática como el concepto de algoritmo y el concepto de calculabilidad mediante la denominada Máquina de Turing, lo que nos lleva a considerar a Turing como a uno de los “padres” de la informática y, más concretamente, de la informática teórica. En 1.950 publicó un ensayo, “Computing Machinery and Intelligence”, donde describió su famoso Test de Turing, según el cual se podría determinar si una máquina es o no inteligente. La IA le debe pues el test que lleva su nombre, pero la informática le debe más.

Está claro que la IA se aliará y formará equipo con la biología y la nanotecnología, y de esta unión surgirán avances que ahora ni podemos imaginar en nuestra actual comprensión (limitada) de la inteligencia artificial.

 Extraterrestres que respiran hidrógeno podrían existir en otros mundos  según expertos | TelemundoPin on Mundos Alienigenas

¿Quién sabe lo que descubriremos mañana?

Como siempre me ocurre, cuando me pongo a escribir estoy hablando conmigo mismo y traslado la conversación al papel. En los garabatos quiero expresar lo que recuerdo, lo que he leído, lo que he estudiado del tema que en ese momento ocupa mi atención, y así ocurre que, no siendo infalible, los errores pueden ser muchos y algunas explicaciones o comentarios poco documentados (consulto muy poco escribiendo y me dejo llevar), por lo que pido disculpas. Sin embargo, mis lectores (que son pocos y buenos amigos), ganan en frescura y espontaneidad; el texto es más natural y en él están ausentes las artificialidades. Creo que salen ganando.

emilio silvera

Todo lo grande está hecho de “pequeñas” cosas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                 PROTON - CETIS 21 Química 1Un paseo por el Cosmos: El protón (p)
  • Protón que una partícula elemental estable que tiene una carga positiva igual en magnitud a la del electrón  y posee una masa de 1,672614×10-27 kg, que es 1836,12 veces la del electrón.  El protón aparece en los núcleos atómicos, por eso es un nucleón que está formado por partículas más simples, los quarks.
                           Neutrón | Química | FandomUn paseo por el Cosmos: El neutrón (n)
              Partícula hecha de tres Quarks y es uno de los nucleones del átono, como el protón
  • Neutrón que es un hadrón como el protón pero con carga neutra y también permanece en el núcleo, pero que se desintegra en un protón, un electrón y un antineutrino con una vida media de 12 minutos fuera del núcleo.  Su masa es ligeramente mayor que la del protón (símbolo mn), siendo de 1,6749286(10)x10-27 kg.  Los neutrones aparecen en todos los núcleos atómicos excepto en el del hidrógeno normal que está formado por un solo protón.  Su existencia fue descubierta y anunciada por primera vez en 1.932 por James Chadwick (1891-1974).
Neutrinos: La 'partícula fantasma' detectada en la Antártida proviene de un  objeto invisible - El Independiente
Los neutrinos se comportan como partículas fantasmas
  • Neutrino, que es un leptón que existe en tres formas exactas pero con distintas masas.  Tenemos el ve (neutrino electrónico) que acompaña al electrón, vu (neutrino múónico) que acompaña al muón, y, vT (neutrino tau) que acompaña a la partícula tau, la más pesada de las tres.  Cada forma de neutrino tiene su propia antipartícula.
  • El neutrino fue postulado en 1.931 para explicar la “energía perdida” en la desintegración beta, fue identificado de forma tentativa en 1.953 y, definitivamente, en 1.956.  Los neutrinos no tienen carga y se piensa que tienen masa en reposo nula y viajan a la velocidad de la luz, como el fotón.  Hay teorías de gran unificación que predicen neutrinos con masa no nula, pero no hay evidencia concluyente.
            PARTÍCULAS ELEMENTALES Quarks, leptones y la antimateria. - ppt descargarPartículas elementales Grupo 1J: El modelo estándar
  • Electrón, que es una partícula elemental clasificada como leptón, con una carga de 9, 109 3897 (54)x10-31 Kg y una carga negativa de 1, 602 177 33 (49)x10-19 culombios.  Los electrones están presentes en todos los átomos en agrupamientos llamados capas alrededor están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo; cuando son arrancados del átomo se llaman electrones libres.  Su antipartícula es el positrón, predicha por Paul Dirac.
    El electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856-1940).  El problema de la estructura (si la hay) del electrón no está resuelto.  Si el electrón se considera como una carga puntual, su auto-energía es infinita y surgen dificultades en la ecuación conocida como de Lorente-Dirac.
  • Es posible dar al electrón un tamaño no nulo con un radio p°=e2/(mc2)=2,82×10-13 cm., donde e y m son la carga y la masa, respectivamente, del electrón y c es la velocidad de la luz.  Este modelo también tiene problemas, como la necesidad de postular las tensiones de Poincaré.
    Ahora se cree que los problemas asociados con el electrón deben ser analizados utilizando electrodinámica cuántica en vez de electrodinámica clásica.
Clasificación de partículas subatómicas - Quimica | Quimica Inorganica
  • Pión, que es una partícula elemental clasificada como mesón de la familia de los Hadrones al igual que el protón y el neutron que siendo hadrones están clasificados como bariones.
    El pión existe entre formas diferentes: neutro, con carga positiva y, con carga negativa.
    Los piones cargados se desintegran en muones y neutrinos (leptones); el pión neutro se desintegra en dos fotones de rayos gamma.
    Los piones como los kaones y otros mesones, como hemos dicho son una subclase de los hadrones; están constituidos por pares quark-antiquark y se cree que participan en las fuerzas que mantienen a los nucleones juntos en el núcleo.  Al principio se pensó que el muón era un mesón, pero ahora se incluye entre los leptones como la variedad intermedia entre el electrón y la partícula tau.

Adriana Lorente y Marina Vicente - ppt descargarERA HADRÓNICA.. - ppt descargar

Con nuestro conocimiento actual de física de partículas de altas energías, podemos hacer avanzar el reloj hacia atrás a través de la teoría leptónica y la era hadrónica hasta una millonésima de segundo después del Big Bang, cuando la temperatura era de 1013 K. Utilizando una teoría más especulativa, los cosmólogos han intentado llevar el modelo hasta 1035 s  después de la singularidad, cuando la temperatura era de 1028 K.  Esa infinitesimal escala de longitud es conocida como límite de Planck: Lp=Ö¯(Gђ/c3) =1035m que en la Ley de radiación de Planck, es distribuida la energía radiada por un cuerpo negro mediante pequeños paquetes discretos llamados cuantos, en vez de una emisión continua.  A éstas distancias, la Gravedad está ausente para dejar actuar a la mecánica cuántica.

La teoría del Big Bang es capaz de explicar la expansión del Universo; la existencia de una radiación de fondo cósmica, y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 .K.

                      Radiación de fondo cósmico - Wikipedia, la enciclopedia libreLa inflación y el fondo de microondas cósmico — Cuaderno de Cultura  Científica

La radiación de fondo cósmica proporciona la evidencia más directa de que el Universo atravesó por una fase caliente y densa.  En la teoría del Big Bang, la radiación de fondo es explicada por el hecho de que, durante el primer millón de años más o menos (es decir, antes del desacoplo de la materia y la radiación y, por tanto, en equilibrio término con ella.  Esta fase es habitualmente denominada “bola de fuego primordial”.

Cuando el Universo se expandió y se enfrió a unos 3000 K se volvió transparente a la radiación, que es la que observamos en la actualidad, mucho más fría y diluida, como radiación térmica de microondas.  El descubrimiento del fondo de microondas en 1.956 puso fin a una larga batalla entre el Big Bang y su rival la teoría del Universo estacionario de Hoyle y otros, que no podía explicar la forma de cuerpo negro del fondo de microondas.  Es irónico que, el termino Big Bang, tuvo inicialmente un sentido burlesco y fue acuñado por Hoyle, contrario a la teoría del Universo inflacionario y defensor del estacionario.

Para fijar más claramente los hechos se debe extender la explicación evolutiva del Universo en las fases principales que son:

Era: de la materia, hadrónica y leptónica.

‾‾‾‾‾‾‾‾   ERAS EN EL PROCESO DEL BIG BANG   ‾‾‾‾‾‾‾‾‾

De la radiación

          Podcast de Astronomía - A través del Universo : Fondo cósmico de microondasLA ERA DE LOS ÁTOMOS Y DE LA RADIACIÓN - ppt video online descargar

Período entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang.  Durante este periodo, la expansión del Universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación).  De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación.

La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual los partículas lentas dominaron la expansión del Universo.

Era Hadrónica

Era Hadrónica.Astrofísica: Materia extraña - Ciencia y educación

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras.  Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres.  El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón.  Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones.  Inmediatamente después de esto el Universo entró en la era leptónica.

Era Leptónica

El Universo! Y nosotros…, que lo queremos comprender. : Blog de Emilio  Silvera V.

Intervalo, que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del Universo.  Se crearon pares de leptones y antileptones en gran número en el Universo primitivo, pero, a medida que el Universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas.  La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación.  El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang.  Después, los leptones se unieron a los hadrónes para formar átomos.

            Ateismo para Cristianos.: Singularidad Espacio-Tiempo. El inicio del  Universo.Singularidad gravitacional - Wikipedia, la enciclopedia libre

Así se formó nuestro Universo, a partir de una singularidad que explotó expandiendo toda la densidad y energía a unas temperaturas terroríficas y, a partir de ese mismo instante nació el tiempo y el espacio junto con la materia que, finalmente desembocó en lo que ahora conocemos como Universo.

El Universo es el conjunto de todo lo que existe, incluyendo (como he dicho) el espacio, el tiempo y la materia.  El estudio del Universo se conoce como cosmología.  Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el Universo de Einstein-de  Sitter.  El Universo real está constituido en su mayoría de espacios que aparentemente están “vacíos”, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.

Print Quiz: EL UNIVERSO (geografía)

El Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes.

Existe evidencia creciente de que el espacio puede estar lleno de una materia oscura invisible que puede constituir muchas veces la masa total de las Galaxias visible.

Como ya quedó claro antes, el concepto más favorecido de origen del Universo es la teoría del Big Bang, de acuerdo con la cual el Universo se creó a partir de una densa y caliente concentración enorme de materia (una singularidad) en una bola de fuego que explotó y se expandió para crear el espacio, el tiempo y toda la materia que lo conforme.  Todo ello, ocurrió, según los datos de que se disponen, hace ahora aproximadamente 15.000 millones de años o 15 eones (109).

Eddington dijo:

Creo que en el Universo hay:

15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296

de protones y el mismo número de electrones”.

¿Cuántas partículas hay en el Universo?

¿De donde vino la sustancia del Universo?

¿Qué hay más allá del borde del Universo?

En realidad, no existen respuestas concretas para estas preguntas, porque para empezar no sabemos como es de grande el Universo.  Sin embargo, si podemos hacer algunas hipótesis.

Podemos calcular que hay unas 100.000.000.000 de Galaxias en el Universo.  Cada una de estas Galaxias tiene una media de masa igual a 100.000.000.000 la masa del Sol.

El cúmulo de galaxias MACS J0416.1-2403 y su importancia - Fórmula de físicaEvolución de galaxias | Acelerando la Ciencia

Quiere decir que la cantidad total de materia en el Universo sería igual a 1011x1011 ó 1022 veces la masa del Sol.

Dicho de otra manera, en el Universo hay materia suficiente para hacer 10.000.000.000.000.000.000.000 (diez mil trillones) de soles como el nuestro.

La masa del Sol es de 2×1023 gramos.  Esto significa que la cantidad total de materia en el Universo tiene una masa de:  1022x2x1033 ó  2×1055 gramos.  Lo que podemos reseñar

20.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.  que es igual a veinte nonillones.

Miremos ahora al revés.  La masa del Universo está concentrada casi por entero en los nucleones que contiene.  Los nucleones son partículas diminutas y hacen falta 6×1023 de ellas para formar una masa equivalente a un gramo.

Pues bien, si 6×2023 nucleones hacen 1gr. y si hay 2×1055gr. en el Universo, entonces el número total de nucleones en el Universo podría ser de 6×1023x2x1055 ó 12×1078, que de manera más convencional se escribiría 1,2×1079.

Crean el mapa en 3D más detallado del universo y es espectacular

Los astrónomos opinan que el 90 por 100 de los átomos de Universo son hidrógeno, el 9 por 100 helio y el 1 por 100 elementos más complejos.  Una muestra de 100 gramos, o mejor 100 átomos consistiría entonces en 90 átomos de hidrógeno, 9 de helio y 1 de oxígeno (por ejemplo).  Los núcleos de los átomos de hidrógeno contendrían 1 nucleón cada uno: 1 protón.  Los núcleos de los átomos de helio contendrían 4 nucleones cada uno: 2 protones y 2 neutrones.

El núcleo del átomo de oxígeno contendría16 nucleones: 8 protones y 8 neutrones.

Los 100 átomos juntos contendrían, por tanto, 145 nucleones: 116 protones y 26 neutrones.

                                                Electrones, protones y neutrones | Download Scientific Diagram

Existe una diferencia entre estos dos tipos de nucleones. El neutrón no tiene carga eléctrica y no es preciso considerar ninguna partícula que lo acompañe.  Pero el protón tiene una carga eléctrica positiva, y como el Universo es, según creemos, eléctricamente neutro en su conjunto, tiene que existir un electrón (con carga eléctrica negativa) por cada protón, creando así el equilibrio existente.

De esta manera, por cada 142 nucleones hay 116 electrones (para compensar los 116 protones).  Para mantener la proporción, los 1’2×1079 nucleones del Universo tienen que ir acompañados de 1×1078 electrones.  Sumando los nucleones y electrones, tenemos un número total de 2,2×1079 partículas de materia en el Universo.  Lo cual se puede escribir como:

22.000.000.000.000.000.000.000.000.000.000.000.
000.000.000.000.000.000.000.000.000.000.000.000.000.000.000. (ó 22 tredécillones).

Qué es un Fotón? - EspacioCiencia.comO que são neutrinos e como podemos medir sua massa? | Entretanto

De las demás partículas, las únicas que existen en cantidades importantes en el Universo son los fotones, los neutrinos y posiblemente los gravitones.  Pero son partículas sin masa.  Veintidós tredecillones es después de todo un número apreciable para un Universo de importancia.

Nadie sabe de donde vino la sustancia del Universo, no siempre la ciencia puede dar respuesta a todo, es la manera de regular los sistemas para obtener respuestas tras el duro trabajo del estudio, la investigación y el experimento.  Hasta el momento nos falta información para contestar esa pregunta y también la otra que se interesaba por lo que habría más allá del borde o final del Universo.

Pero, ¿Hay final? ¿Quién lo garantiza? ¿Cómo lo podemos saber? y, si me apuráis mucho… ¿Será cierto que el Universo se formó en el Big Bang?.

Muchas de las ideas de Isaac Asimov están aquí volcadas.

Publica emilio silvera