Jul
15
Las Galaxias…y, ¡La Vida!
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…” Eso comentaba Darwin sobre lo que podría ocurrir en la Naturaleza.
En un lugar como estos pudo surgir aquella primera célula replicante
Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.
No pocas veces nos hemos referimos a los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON).
Lee Smolin, de la Universidad de Waterloo, Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae para formar nuevas estrellas.
Nuestro hogar dentro del espacio, la Vía Láctea, es una entre los cientos de miles de millones de estructuras similares dispersas por todo el Universo visible, y parece ser una más, con todas las características típicas – de tipo medio en cuanto a tamaño, composición química, etc.- La Vía Láctea tiene forma de disco plano, con alrededor de cien mil años luz de diámetro, y está formada por doscientos mil millones de estrellas que describen órbitas en torno al centro del disco.
La luz y el calor del Sol que facilita la presencia de vida, la fotosíntesis de las plantas y otros beneficios
El Sol, en realidad, sólo es importante para nosotros al ser el cuerpo central de nuestro Sistema Solar, y con mucho, la estrella más cercana al planeta Tierra y la única que se puede estudiar con todo lujo de detalles. Se clasifica como una estrella G2V: una estrella amarilla con una temperatura efectiva de 5.770 K (tipo espectral G2) y una enana de la secuencia principal (clase de luminosidad V). Los detalles de su composición son sobradamente sabidos por todos y cabe destacar su abundancia de hidrógeno – 71% en masa- y de helio el 27% y elementos más pesados hasta completarlo. Por lo tanto, nuestro Sol no destaca por nada entre esa multitud de de cientos de miles de millones de estrellas.
Recorre su órbita a una distancia del centro que viene a ser más o menos dos tercios del diámetro. En el centro de la Galaxia las estrellas forman una protuberancia, de tal modo que desde el exterior daría la sensación de estar viendo un enorme huevo frito, en el que la protuberancia sería la yema. Sin embargo, el modo en que este disco gira revela que todo el material brillante (materia bariónica) que compone la parte visible de la Vía Láctea queda sujeto por el tirón gravitatorio de una materia invisible que no brilla ni emite radiación y que viene a ser más o menos diez veces mayor que la materia visible de la Galaxia y que muchos suponen que está diseminada en un halo situado alrededor de ella, extendiéndose mucho más allá del borde del disco de estrellas brillantes.
Descubrir qué es realmente esta “materia oscura” (yo prefiero llamarla no luminosa o materia escondida) constituye un tema de crucial interés para los astrónomos, pero no entraremos ahora en eso, ya que, para lo que estamos tratando, no tiene importancia. Muchas galaxias en forma de disco se caracterizan por una especie de serpentinas que se alejan en espiral desde su centro, lo que hace que se les aplique el nombre de galaxias espirales. Es fácil estudiar las pautas que siguen los llamados “brazos espirales”, porque las galaxias se encuentran relativamente cerca unas de otras, si comparamos estas distancias con sus tamaños.
·Dentro de cuatro mil millones de años, la Vía Láctea, nuestra galaxia, chocará contra Andrómeda, nuestra gran vecina en espiral. Las galaxias, tal y como las conocemos hoy, no sobrevivirán. ·
Andrómeda, la galaxia espiral más cercana comparable a la Vía Láctea, se encuentra con respecto a nosotros a una distancia de poco más de dos millones de años luz; parece una gran distancia, pero la galaxia de Andrómeda es tan grande (un poco mayor que la Vía Láctea) que, incluso a esa distancia, vista desde la Tierra cubre un trozo de cielo del tamaño de la Luna, y puede observarse a simple vista en una noche despejada y sin luz lunar, si nos situamos lejos de las ciudades y de otras fuentes de emisión de luz.
Los brazos espirales, que son una característica tan llamativa en galaxias como la nuestra, son visibles porque están bordeados por estrellas calientes de gran masa que relucen con mucho brillo. Esto significa que también son estrellas jóvenes, ya que no hay estrellas viejas que tengan gran cantidad de masa.
No hay misterio alguno en cuanto al modo en que mantienen esa forma espiral. Se debe exclusivamente a un fenómeno de retroalimentación. c Las nubes gigantescas a partir de las cuales se forman las estrellas pueden contener hasta un millón de veces la masa del Sol cuando empieza a contraerse gravitatoriamente para formar estrellas. Cada nube que se contrae produce, no una sola estrella de gran tamaño, sino todo un conglomerado de estrellas, así como muchas estrellas menores.
Cuando las estrellas brillantes emiten luz, la energía de esta luz estelar (especialmente en la parte ultravioleta del espectro) forma una burbuja dentro de la nube, y tiende a frenar la formación de más estrellas. Sin embargo, una vez que las estrellas de gran masa han recorrido sus ciclos vitales y han explotado, sembrando además el material interestelar con elementos de distintos tipos, la onda expansiva ejerce presión sobre las nubes interestelares cercanas y hace que éstas comiencen a contraerse.
Las ondas procedentes de distintas supernovas, al entrecruzarse unas con otras, actúan mutuamente para barrer el material interestelar y formar nuevas nubes de gas y polvo que se contraen produciendo más estrellas y supernovas, en un ejemplo clásico de interacción que se mantiene por sí sola en la que intervienen una absorción de energía (procedentes de las supernovas) y una retroalimentación.
Si la nube es demasiado densa, su parte interna se contraerá gravitatoriamente de manera rápida, formando unas pocas estrellas grandes que recorren sus ciclos vitales rápidamente y revientan la nube en pedazos antes de que puedan formarse muchas estrellas. Esto significa que la generación siguiente de estrellas nace de una nube más delgada, porque ha habido pocas supernovas que barrieran material formando pedazos densos. Si la nube es tan delgada que su densidad queda por debajo de la densidad óptima, nacerán muchas estrellas, y habrá gran cantidad de explosiones supernovas, lo cual producirá gran número de ondas de choque que barrerán el material interestelar, acumulándolo en nubes más densas.
De esta manera, por ambas partes, las retroalimentaciones operan para mantener un equilibrio aproximadamente constante entre la densidad de las nubes y el número de supernovas (y estrellas de tipo Sol) que se producen en cada generación. La propia pauta espiral resulta del hecho de que la galaxia realiza movimiento de rotación y está sometida al tirón gravitatorio que crea la fuerza de marea proveniente de esa materia no luminosa.
Claro que, la materia interestelar es variada. Existen nubes de gas y polvo fríos, que son ricas en interesantes moléculas y se llaman nubes moleculares gigantes; a partir de estas nubes se forman nuevas estrellas (y planetas). Hay nubes de lo que consideraríamos gas “normal”, formadas por átomos y moléculas de sustancias tales como el hidrógeno, y quizá tan caliente como una habitación cerrada durante toda la noche y con la temperatura de dos cuerpos dormidos y emitiendo calor. Además, hay regiones que se han calentado hasta temperaturas extremas mediante la energía procedente de explosiones estelares, de tal modo que los electrones han sido arrancados de sus átomos para formar un plasma cargado de electricidad.
También existe una amplia variedad de densidades dentro del medio interestelar. En la modalidad más ligera, la materia que está entre las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces en densidad sigue siendo un contraste espectacular.
La cuestión es que, unos pocos investigadores destacaron allá por 1.990 en que todos estos aspectos –composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.
El nacimiento de nuevas estrellas y nuevas formas de vida… ¡Reduce la Entropía!
Esto significa que la Vía Láctea (como otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock para la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.
Creo que llevan toda la razón.
emilio silvera
Jul
15
Unas libretas que titulé Rumores del saber
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Cuando tengo un tiempo de asueto para relajarme, acostumbro a coger una libreta y escribir sobre temas que me llaman la atención, como por ejemplo que os decía que los Sumerios fueron una de las primeras Civilizaciones de nuestro mundo y de sus actividades e inventos dieron buena cuenta famosos arqueólogos. Así la antigua Mesopotamia tiene el honor de tener las tres primeras ciudades de nuestro mundo: URUK, ERIDU y NIPPUR.
Los temas volcados en dichas libretas son variados y según me vayan llegan las ideas allí las plasmo. Aquí os dejo dos páginas como muestra:
He tratado de poner aquí dos páginas de mis libretas y no lo consigo.
Algunas de las muchas Libretas manuscritas por el autor se denominan:
- La expansión del universo. La expansión de la mente.
- Presente, pasado y futuro. Una ilusión llamada ¡TIEMPO! – Volumen 1
- Presente, pasado y futuro. Una ilusión llamada ¡TIEMPO! – Volumen 2
- Constantes universales y otros temas de interés
- La FÍSICA, las cosas que nos rodean
- El conocimiento del universo
- Los Misterios de La Tierra
- Cuestiones de Ciencia
- Apuntes de Ciencia
- ¿Qué entendemos por Big Bang?
- Sobre el Modelo Estándar de la Física. ¡El átomo!
- Anotaciones de Ciencia, datos y curiosidades I y II
- La MATERIA, ¿viva? ¿inerte?
- ¿Quién sabe la verdad?
- Rumores del saber
- Curvatura del Espacio-Tiempo
- Hablando de Física I
- Hablando de Física II
- Ciencia/Astronomía; Cuestiones de Física
- Más apuntes de Ciencia
- La Casa de la Materia Oscura, ¿en la quinta dimensión?
- Pensando con pluma y libreta
- ¿Cómo se formó la vida? I y II
- La vida en otros Mundos
- Lo que ha pasado, lo que pasa y lo que pasará
- Personajes de la Ciencia I
- Personajes de la Ciencia II
- Otras muchas
En esas Libretas, cuento cosas que pasaron y hablo de civilizaciones antiguas, de grandes hombres o de valientes aventureros, y, lo mismo os cuento un pasaje de la vida de Galileo, Pitágoras, Sócrates, Aristóteles, Platón, Newton, Einstein, Colón, Leonardo da Vinci o Miguel Angel Buonaroti, casi todos sabemos (más o menos) quienes son, o al menos nos suena sus nombres. Sin embargo, ¿qué sabemos de: Dense Schmandt-Besserat, de Ras Shamra, cerca de Alejandreta, de la ciudad de Uruk al norte de Mesopotamia, de Lantancio que en el siglo IV se preguntaba el propósito del saber, o de Lovejoy, o del efecto de Platón en Calvino, o del hilo que une a Nietzsche con Sócrates, o la relación del Budismo con el pensamiento alemán?
Hoy, en otro comentario, he tomado un trozo de la libreta y os hablo de Vesalio. También se habla en ese trabajo de Bagdad cuando el Califa ordenó construir la Casa de la Sabiduría, o de Alejandría y todo lo que aquello fue con su famosa biblioteca y los personajes que estuvieron allí de bibliotecario.
Así era URUK
En rumores del saber se habla de los Sumerios y de los indicios primeros de la Escritura o de las primeras Ciudades construidas en el mundo y, como es natural, de la influencia que tuvieron estas en el avance de la Humanidad cuando empezó a convivir en Sociedad y, cada uno (artistas o alfareros, pongo por ejemplo) podía mostrar su trabajo a los demás para que le fuera reconocido.
La única libertad que tenemos es la del pensamiento, sin embargo, no somos libres para exponer lo que pensamos. Distintas cuestiones de ética, de educación, de inconveniencia social, etc., nos aconseja no decir siempre la verdad y las Sociedades avanzan con ese plus de hipocresía que no necesariamente tiene que ser malo, ya que, muchas veces, decir la verdad, además de inconveniente, puede causar dolor. Sin embargo, contar lo que pasó es bueno, tanto lo positivo para repetirlo, como lo negativo para no caer de nuevo en ello.
El hindú que tenía una mente matemática
En ese trabajo (Rumores del saber) traté de exponer conocimientos sueltos de cuestiones diversas y, como el “saber no ocupa lugar”, los posibles lectores podían aprender algunas cuestiones y pensar en ellas, ver la grandeza de Srinivasa RAmanujan, las tendencias de las religiones y la invención de la moralidad por Zaratustra con sus tres tipos de Almas, lo que hizo y dijo Buda o Confucio. Y, por otra parte, enterarse de aquellos viajeros que, como Piteas o el mismo Marco Polo, se aventuraron en regiones desconocidas buscando la aventura o la riqueza al mismo tiempo que descubrían nuevos pueblos y nuevas costumbres.
Aryabhata
No siempre, a lo largo de la Historia, se ha dado el mérito a quien lo mereció. Por ejemplo, el matemático Aryabhata se adelantó 1.000 años a Copérnico y sus ideas fueron adjudicadas a éste que, en realidad, las tomó prestadas de aquel.
Si has leído este trabajo sabras algo sobre el lenguaje conocido como sánscrito y quienes lo hablaban, o quien fue Panini o Kalidasa. También aquí habrás aprendido algo sobre los orígenes de la escritura y los números y habrás hecho un recorrido por personajes como Tales de Mileto, Anaximandro y su alumno Pitágoras, Euclides (S.III a.C.) o Riemann (S.XIX), como las genialidades de Euler y su famoso LΠi = -1.
La enorme importancia de los avances de la Humanidad en ciencia y matemáticas en el largo periodo que va desde el s. VI a.C. hasta el s. VI d.C.
El saber de hoy se debe a personajes de ayer como los ya nombrados y muchos otros como Menélao, Herón, Diofanto, Pappo, Prodo, también Fray Girolano Savonarola o Marsilio Ficino,y, mas tarde Benjamín Franklin, Eugen Goldstein, Wilhelm, Ròntgen, Hernri Becquerel, Thomson, Ernest Rutherford, Planck, Lorente y Einstein, por decir algunos.
De todos ellos conocemos (y no siempre bien) a los más famosos, tal es el caso de los grandes del Renacimiento, la gente corriente, si acaso, conocen a Leonardo Da Vinci y a Miguel Angel Buonarroti, pero, ¿Qué saben de Brunelleschi, de Battista, Vecchielta, Zenale, Martín, Bramante, Giacondo, Aquilano, Masón, Liborio o Vesari? ¿Qué hicieron
En este trabajo hemos hablado de todos ellos resumiendo lo que hicieron para vuestro conocimiento de los hechos. Ahora, os han llegado “rumores” y sabéis más.
En Rumores del saber, sus lectores habéis aprendido que Bagdad (que significa regalo de Dios) también conocida como ciudad redonda, fue construida en 4 años por 100 mil trabajadores por orden de AL-Mansur. La modernidad y la cultura, sus hospitales y grandes médicos hacen que, si la miramos hoy, nos entren ganas de llorar.
¡Valiente condición Humana!
El conquistar el saber nos ha costado muchas generaciones y Civilizaciones que fueron el ejemplo que hemos podido seguir. Muchas mentes y miles de años nos costó llegar aquí. Sin embargo, ¡es tan fácil perderlo! y tan frágil el equilibrio que, cualquier extralimitación de los humanos o cualquier suceso natural de dimensiones cataclismicas, podría dar al traste con todo.
emilio silvera
Jul
15
¿Donde esta el origen de la masa?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Desde que dijeron que lo habían hallado, poco o nada se habló del Bosón de Higgs
Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.
Una voz potente y segura nos decía: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?
“El Campo de Higgs es un campo cuántico que de acuerdo con una hipótesis del modelo estándar de física de partículas expuesta por el físico Peter Higgs, permearía el universo entero, y cuyo efecto sería que las partículas adquiriesen masa, debido a la interacción asociada de partículas elementales, con el bosón de Higgs …”
La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “re-normalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.
Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.
La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.
Qué es el espín de una partícula?
¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero. El espín supone una direccionalidad en el espacio, pero el campo de Higgs de masa a los objetos dondequiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.
La interacción débil, recordareis, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.
Hay que responder montones de preguntas. ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? Como es su partícula, nos cabe esperar que la veamos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.
También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.
¿Acaso entran las partículas en el campo de Higgs y adquieren masa por el efecto frenado?
El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura caen bajo los 10′5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.
El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe.
Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W–, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.
De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que, algunos, han llegado a llamar:
¡Ya veremos en que termina todo esto! Como las observaciones continúan habrá que ver lo que dicen los físicos experimentadores del LHC o del Acelerador que esté de moda para entonces, sobre todo esto.
Steven Weinberg y Abduz Salam
Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas. La utilizaron los teóricos Steven Weinberg y Abduz Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0 de masa grande. Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft. También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta. Además, ¿Cuántos teóricos hacen falta para encender una bombilla?
De izquierda a derecha, Steven Weinberg, Sheldon Lee Glasgow
La verdad es que, casi siempre, han hecho falta muchos. Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todos, exponer su teoría relativista.
Veltman
Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice: “Es una alfombra bajo la que barremos nuestra ignorancia”. Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales. La objeción principal: que no teníamos la menor prueba experimental.
Ahora, por fin la tendremos con el LHC, y ésta pega, se la traspasamos directamente a la teoría de supercuerdas.
El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.
Después de todo esto, llego a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el bosón de Higgs. Y ahora, por fin, tenemos un acelerador con la energía necesaria para que nos la muestre y que con su potencia pueda crear para nosotros una partícula que pese nada menos que 1 TeV. Para ello contamos con energías de hasta 14 TeV.
¡La confianza en nosotros mismos, no tiene límites! (Mi amigo Ramon me dice siempre que la masa es el resultado del efecto frenado cuando las partículas se adentran en el campo de Higgs. Las partículas que deambulan por los océanos de Higgs interaccionan y toman masa a través del efecto frenado.)
De la nada, de pronto surge un destello cegador, un conjunto de energía que dura unos segundos. Cuando se desvanece, allí queda la serena figura de un hombre.
¿De dónde ha salido? ¿De dónde viene?
Bueno, estimo que sería conveniente que me formuléis esas preguntas dentro de algunos miles de años. Ahora es pronto.
De la misma manera es pronto para contestar otras muchas preguntas. Sin embargo, cuando dijeron que la habían encontrado con un nivel de garantías muy alto, todos lo celebraron por todo lo alto y el Nobel fue a parar al CERN y a los autores de la teoría del Bosón de Higgs. El futuro nos dirá si todo aquello estuvo justificado.
¿Pasará igual con las cuerdas? Su verificación va para largo, ya que, según dicen los expertos, se necesitaría la energía de Planck (1019 GeV) para llegar hasta ellas, y, esa energía no está a nuestro alcance… Por el momento.
emilio silvera