Jul
26
Quieren sacar a la luz, la energía oscura del Universo
por Emilio Silvera ~ Clasificado en Descubriendo secretos del Universo ~ Comments (0)
Se habla de materia y energía oscura y, sin embargo, nadie sabe a ciencia cierta, lo que es. Es posible que el haber comprobado que el Universo se expande a mayor velocidad cada vez, pueda ser debido a que, la fuerza de Gravedad de un Universo hermano, esté atrayendo la materia del nuestro. Sin embargo, la Incertidumbre reina en este misterioso conflicto. Aquí os dejo un nuevo proyecto en marcha que publica
El Diario El País.
“El Instrumento Astronómico que medirá la distancia de galaxias lejanas, se ha estrenado en el Telescopio Herschel, en Canarias.
Galaxia M51, o del remolino, situada a unos 23 millones de años luz de la Tierra, fotografiada con la PAUcam el 6 de junio de 2015. / PAU
La gran sorpresa que supuso para los científicos el descubrir, hace más de 15 años, que la expansión del universo no se está ralentizando, como se esperaba, sino que se está acelerando, ha merecido ya un premio Nobel de Física, en 2011 (Saul Perlmutter, Brian P. Schmidt y Adam Riess) por el hallazgo en sí. Pero sigue siendo una incógnita la naturaleza de esa aceleración, llamada energía oscura, que hace que las galaxias se separen unas de otras cada vez más deprisa. Y para atacar el problema expertos en todo el mundo idean y preparan experimentos y observaciones que puedan arrojar luz sobre el fenómeno. El último que se ha estrenado es español: una cámara astronómica especial, denominada PAU, diseñada y construida en España que acaba de abrir sus ojos por primera vez al cielo, lo que se llama primera luz, y con total satisfacción para sus responsables. Esta instalada en el telescopio William Herschel, de espejo principal de 4,2 metros de diámetro, del Observatorio de El Roque de los Muchachos, en Canarias, y podría proporcionar información científica significativa a partir del año que viene, cuando empiecen las observaciones sistemáticas de millones de galaxias lejanas.
La PAU (siglas en inglés de Física del Universo Acelerado), a partir de ahora, “compite y colabora”, como dice el coordinador del proyecto Enrique Fernández, con media docena de instrumentos científicos en el mundo específicos para intentar averiguar qué es la energía oscura. “Cada técnica de observación te aporta parte de la información y cuando combinas la información ves que todo cuadra”, señala Fernández, catedrático de la Universidad Autónoma de Barcelona (UAB) e investigador del IFAE (Instituto de Física de Altas Energías). Así que toca competir para ser los primeros en descubrir algo y colaborar a la vez para avanzar en este intrincado problema científico.
“La primera luz ha ido muy bien, hemos tenido cinco noches de observación y ya hemos hecho la puesta a punto de la cámara; en septiembre u octubre tendremos cinco noches más del telescopio para tomar datos”, explica Fernández a EL PAÍS. “Luego, hemos solicitado un centenar de noches en 2016 y 2017 y después del primer año esperamos tener ya resultados relevantes”. El tipo de trabajo que hará la PAU, de rastreo de millones de objetos celestes, exige muchas horas de observación, a diferencia de los estudios que se centran en una galaxia o una estrella concretas, añade el científico.
La cámara PAU montada en el foco primario del telescopio William Herschel en Observatorio del Roque de los Muchachos, en La Palma, Canarias. / PAU
El universo a partir del Big Bang está en expansión; las galaxias y los cúmulos de galaxias se alejan unos de otros. Eso se sabe desde hace décadas. Cabía esperar que, a medida que pasa el tiempo, la atracción gravitacional entre galaxias hiciera que esa expansión se fuera haciendo cada vez más lenta, por lo que resultó una enorme sorpresa comprobar, en los años noventa, que en realidad se está acelerando, que las galaxias se están separando unas de otras más rápido que antes.
Como no se comprende, el fenómeno se ha venido a llamar energía oscura y siempre que se habla de ella se recuerda que el sensacional hallazgo puede convertir en certero lo que Einstein consideró su mayor error. En pocas palabras: Einstein pensaba que el universo era estático, pero como la resolución de sus ecuaciones daba un cosmos dinámico el físico alemán introdujo la que llamó Constante Cosmológica para frenarlo. Cuando poco después Edwin Hubble descubrió que las galaxias se alejan unas de otras y que lo hacen a mayor velocidad cuanto más lejos están, resultó que el universo era dinámico, surgió la teoría del Big Bang y Einstein calificó de su “mayor error” esa Constante Cosmológica que lo estabilizaba. Décadas después, al descubrirse al expansión acelerada, se desempolvó dicha constante para intentar explicarla. Básicamente la idea es que la energía oscura es una fuerza repulsiva que domina sobre la fuerza gravitatoria atractiva y que hace que las galaxias se distancien cada vez más deprisa.
La energía oscura supone el 68,3% del Universo
Pero son teorías, y en ciencia hay que demostrar las cosas con observaciones y experimentos. Lo que ya se sabe es que la energía oscura supone el 68,3% del universo.
La cámara PAU va a medir la distancia a muchas galaxias determinando el llamado corrimiento al rojo de cada una. Al expandirse el universo, la luz que emiten las galaxias llega a la Tierra desplazada a longitudes de onda mayores que en las que se emitió, es decir, se desplaza hacia la parte roja del espectro electromagnético. “Es el equivalente del cambio de tono de la sirena de una ambulancia cuando se aleja de nosotros”, explican los científicos de la colaboración PAU. “El corrimiento al rojo se mide con técnicas fotométricas, donde se fotografía el mismo objeto celeste múltiples veces a través de filtros de diferentes colores”, continúan. “El innovador diseño de la PAU-cam incorpora 40 filtros, mientras que habitualmente son media docena, lo cual permite una precisión sin precedentes en la medida del corrimiento al rojo”, y de ahí la distancia a las galaxias.
“La cámara permite hacer estudios amplio y precisos de la expansión del universo”, señala Cristóbal Padilla, investigador del IFAE. “Gracias a los 40 filtros incorporados y su gran campo de visión, la cámara puede conseguir en una sola noche de observación los espectros de luz, de baja resolución, de unos 50.000 objetos celestes de forma simultánea. La PAUcam es pionera en algunos aspectos, tanto en técnicas de observación como en temas puramente tecnológicos”, afirma.
“Para investigar la energía oscura se necesita cubrir mucho volumen, para lo cual se requieren cámaras de gran campo que cubran una gran área en el cielo y que estén instaladas en telescopios con gran poder colector para ir profundo y poder observar a alto corrimiento al rojo (a distancias lejanas)”, explica Francisco Javier Cantander, investigador del Instituto de Ciencias del Espacio (ICE-CSIC/IEEC) a EL PAIS por correo electrónico desde Lausana (Suiza). Allí participa en una reunión de la futura misión Euclid, de la Agencia Europea del Espacio (ESA), precisamente dedicada a explorar la energía oscura y podría aprovechar la experiencia de la PAUcam.
No es este proyecto español el único diseñado para afrontar experimentalmente este gran y difícil reto de la cosmología del siglo XXI. Castander cita hasta siete cámaras más instaladas ya en observatorios en Chile, Hawai y Arizona (EEUU). Y otras están en preparación. “Pero ninguna de ellas dispone de un sistema de filtros como el de la PAUcam, que permite obtener corrimientos al rojo fotométricos precisos”, puntualiza Castander. Incluso en una de ellas, la DECcam estadounidense, que lleva ya dos años tomando datos, la aportación del equipo español de PAU ha sido notable: toda la electrónica del instrumento, apunta Fernández.
La cámara española va a permitir medir la distancia con un error relativo de solo un 0,3% para una gran cantidad de galaxias lejanas, destacan los miembros del proyecto en un comunicado.
La PAUcam es pionera en algunos aspectos, tanto en técnicas de observación como en temas puramente tecnológicos”
“De la energía oscura lo que hacemos es medir su efectos, y eso se hace de varias maneras, como los estudios de supernovas, la estructura a gran escala del universo…. cada técnica te dice algo, de ahí la necesidad de cooperar y competir”, comenta Fernández. “Nosotros vamos a concentrarnos en medir correlaciones entre distribuciones de galaxias a distintas distancias, algo que podemos hacer muy bien”.
La cámara española ha sido diseñada y construida en seis años por especialistas de varias instituciones españolas: IFAE, ICE, el Puerto de Información Científica (PIC), el Ciemat y el Instituto de Física Teórica (IFT-UAM-CSIC). Su coste, en material, asciende a unos tres millones y medio de euros, que sería el doble si se suma el coste de personal de las distintas instituciones que integran el proyecto, señala Fernández. La cámara pesa 270 kilos y destaca su “revolucionaria estructura de fibra de carbono” desarrollada en España, con la indudable ventaja de su reducción de peso, señala la colaboración.
“Ahora tenemos que analizar los datos obtenidos durante la fase de commissioning [ensayos iniciales de funcionamiento]”, explica Castander. “El análisis rápido que hicimos en el observatorio, nos dio la impresión de que no necesitamos más tiempo de prueba; de hecho, conseguimos realizar todos los test y tareas que teníamos programadas más rápido de lo previsto y, en las dos últimas noches, pudimos tomar datos para hacer la verificación científica”, continúa.
Para la fase de posibles descubrimientos científicos habrá que esperar un poco.
Jul
26
¿Es viejo el Universo? ¿Cómo puede ser tan grande?
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
BIOLOGÍA Y ESTRELLAS
¿Es viejo el universo? Todos los cálculos nos llevan a una edad de 13.700 millones de años que, comparado con el tiempo en el que nosotros hicimos acto de presencia en él, es que un simple parpadeo de ojos. Sin embargo, a veces nos sentimos los amos del mundo y del Universo mismo, lo que en realidad, es un simple espejismo, una ilusión que se forja en nuestras mentes que, jóvenes e inmaduras… Aún no comprenden, como son las cosas.
Cuando tenemos que operar con la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de tiempo y espacio. Son tan inmensas las distancias y tan descomunal el tiempo que está presente en el ámbito del Universo que, hemos inventado unidades especiales poder hablar de ellas sin tener que escribir cantidades tan grandes con los números y, el año-luz, la Unidad Astronómica, el Parsec, Kiloparsec o Gigaparsec son palabras que expresan medidas antropomórficas y extraordinarias que se pierden en el espacio-tiempo.
¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor del astro rey, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque queremos saber en qué lugar estamos, porque es conveniente y porque siempre hemos tratado de saber, lo que el universo es. Por otra parte, también en el ámbito de lo muy pequeño hemos tenido que inventar unidades que, esta vez, han querido significar lo que dice la Naturaleza y no el hombre.
Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales”; la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.
El joven Planck
Mientras que Stoney había visto en la elección de unidades prácticas una manera de cortar el nudo gordiano de la subjetividad, Planck utilizaba sus unidades especiales sustentar una base no antropomórfica para la física y que, por consiguiente, podría describirse como “unidades naturales”.
De acuerdo con su perspectiva , en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que lleva el nombre de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Sus valores no difieren mucho de los de Stoney que figuran en el siguiente de hoy:
Mp = | (hc/G)½ = | 5’56 × 10-5 gramos |
Lp = | (Gh/c3) ½ = | 4’13 × 10-33 centímetros |
Tp = | (Gh/c5) ½ = | 1’38 × 10-43 segundos |
Temp.p = | K-1 (hc5/G) ½ = | 3’5 × 1032 ºKelvin |
Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.
La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.
En las unidades de Planck, una vez más, vemos un contraste la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:
“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales sean medidas por las inteligencias más diversas con los métodos más diversos.”
¿Quién sabe cómo serán?
En sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros. Lo cierto es que estas unidades, al tener su origen en la Naturaleza y no ser invenciones de los seres humanos, de la misma manera que nosotros y, posiblemente por distintos caminos, seres de otros mundos las hallarán y serán idénticas a las nuestras. De entrada había algo muy sorprendente en las unidades de Planck, como lo había también en las de Stoney. Entrelazaban la gravedad con las constantes que gobiernan la electricidad y el magnetismo. Planck nos decía:
“La creciente distancia la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”
Sí, Planck tenía razón, el mundo de los sentidos cada vez están más cerca de ese mundo real que perseguimos. Sabemos que nuestra realidad no es la realidad del mundo y, poco a poco, con descubrimientos estos de las Unidades de Stoney-Planck, nos vamos acercando a la comprensión de esa Naturaleza creadora que permitió aquí nuestra presencia y que ahora, nosotros tratamos de saber.
Podemos ver que Max Planck apelaba a la existencia de constantes universales de la naturaleza como prueba de una realidad física al margen y completamente diferentes de las mentes humanas. Al respecto decía:
“Estos…números, las denominadas “constantes universales” son en cierto sentido los ladrillos inmutables del edificio de la física teórica. Deberíamos preguntar:
¿Cuál es el significado real de estas constantes?”
Claro que, nosotros, simplemente somos un misterio más de los muchos que en el Universo son. Sin embargo y a diferencias de los otros, tenemos la ventaja de ser conscientes con la facultad de pensar y, además, tenemos una insaciable curiosidad. Un fallo que a menudo tenemos ha sido caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.
Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Y, creemos saber que…
La edad actual del universo visible ≈ 1060 tiempos de Planck
Tamaño actual del Universo visible ≈ 1060 longitudes de Planck
La masa actual del Universo visible ≈ 1060 masas de Planck
Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:
Densidad actual del universo visible ≈10-120 de la densidad de Planck
Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto
Temperatura actual del Universo visible ≈ 10-30 de la Planck
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los de su propia construcción.
Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser. Pero, pese a la enorme edad del universo en “tics” de Tiempos de Planck, hemos aprendido que casi todo este tiempo es necesario producir estrellas y los elementos químicos que traen la vida.
¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena.
Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar .
La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos y el vulcanismo parará su actividad al ser frenado el planeta geológicamente y carecerán de muchos de los movimientos internos que impulsan la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione formas complejas.
Las estrellas típicas como el Sol, emiten su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, existen serias amenazas exteriores.
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución. Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.
La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros en comparación, llevamos aquí tres días y, luego, ¡la que hemos formado!
Y no podemos tener la menor duda, mientras que estemos aquí, seguiremos pretendiendo y queriendo saber sobre los secretos de la Naturaleza que, al fin y al cabo, ser nuestra salvación. Ya saben ustedes: ¡Saber es poder!
emilio silvera