Ago
1
¿La Singularidad? ¡Un extraño objeto!
por Emilio Silvera ~ Clasificado en El Universo dinámico ~ Comments (1)
El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión. La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir. Además, en la singularidad, según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.
La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de una enana blanca o de estrella de neutrones, para convertirse en una singularidad.
Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad, la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.
La figura de la izquierda representa a la nube de polvo en colapso de Oppenhieimer y Snyder, que ilustra una superficie atrapada.
El modelo de Oppenhieimer y Snyder posee una superficie atrapada, que corresponde a una superficie cuya área se iOppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro al desarrollar el planteamiento de una nube de polvo colapsante.
En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidad, de la que pasará a formar parte.
Desde entonces, muchos han sido los físicos que se han especializado profundizando en las matemáticas relativas a los agujeros negros. John Wheeler (que los bautizó como agujeros negros), Roger Penrose, Stephen Hawking, Kip S. Thorne, Kerr y muchos otros nombres que ahora no recuerdo, han contribuido de manera muy notable al conocimiento de los agujeros negros.
Simplemente con imaginar que estamos con nuestra nave en las cercanías de un agujero negro que tira de nosotros y que la nave no tiene potencia para alcanzar la velocidad de escape… ¡los pelos se ponen de punta!
Se afirma que las singularidades se encuentran rodeadas por un horizonte de sucesos, pero para un observador, en esencia, no puede ver nunca tal singularidad desde el exterior. Específicamente implica que hay alguna región incapaz de enviar señales al infinito exterior. La limitación de esta región es el horizonte de sucesos, tras ella se encuentra atrapado el pasado y el infinito nulo futuro. Lo anterior nos hace distinguir que en esta frontera se deberían reunir las características siguientes:
Estos monstruos estelares o residuos de estrellas masivas proliferan por todas las galaxias
- Debe ser una superficie nula donde es pareja, generada por geodésicas nulas,
- contiene una geodésica nula de futuro sin fin, que se origina a partir de cada punto en el que no es pareja, y que
- el área de secciones transversales espaciales jamás pueden disminuir a lo largo del tiempo.
Pueden existir agujeros negros supermasivos (de 105 masas solares) en los centros de las galaxias activas. En el otro extremo, mini agujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después del big bang. Diminutos agujeros negros podrían ser capaces de capturar partículas a su alrededor, formando el equivalente gravitatorio de los átomos.
Todo esto ha sido demostrado matemáticamente por Israel, 1.967; Carter, 1.971; Robinson, 1.975; y Hawking, 1.978 con límite futuro asintótico de tal espacio-tiempo como el espacio-tiempo de Kerr, lo que resulta notable, pues la métrica de Kerr es una hermosa y exacta formulación para las ecuaciones de vacío de vacío de Einstein y, como un tema que se relaciona con la singularidad en los agujeros negros.
No resulta arriesgado afirmar que existen variables en las formas de las singularidades que, según las formuladas por Oppenheimer y su colaborador Snyder, después las de Kerr y más tarde otros, todas podrían existir como un mismo objeto que se presenta en distintas formas o maneras.
Ahora bien, para que un ente, un objeto o un observador pueda introducirse dentro de un agujero negro, en cualquiera que fuese su forma, tendría que traspasar el radio de Schwarzschild (las fronteras matemáticas del horizonte de sucesos), cuya velocidad de escape es igual a la de la luz, aunque ésta tampoco puede salir de allí una vez atrapada dentro de los límites fronterizos determinados por el radio. Este radio de Schwarzschild puede ser calculado usándose la ecuación para la velocidad de escape:
Para el caso de u objeto sin masa, tales como los neutrinos, se sustituye la velocidad de escape por la de la luz c2. “En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, … Es cierto que en mecánica cuántica quedan muchos enigmas por resolver. Pero hablando de objetos de grandes masas, veamos lo que tenemos que hacer para escapar de ellos.
Podemos escapar de la fuerza de gravedad de un planeta pero, de un A.N., será imposible.
La velocidad de escape está referida a la velocidad mínima requerida para escapar de un campo gravitacional. Así hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Veamos algunas:
Objeto |
Velocidad de escape |
La Tierra |
………….11,18 Km/s |
El Sol |
………….617,3 Km/s |
Júpiter |
………….59,6 Km/s |
Saturno |
………….35,6 Km/s |
Venus |
………….10,36 Km/s
|
Agujero negro |
…….+ de 299.000 Km/s |
Como se ve en el cuadro anterior, cada objeto celeste, en función de su masa, tiene su propia velocidad de escape para que cualquier cosa pueda salir de su órbita y escapar de él. El caso de la singularidad, es decir, la inmensa masa que está presente en las entrañas de un Agujero negro, genera una fuerza de gravedad tal que, nada está a salvo en sus inmediaciones, cualquier objeto, sea estrella, polvo estelar, planeta o lo que pudiera ser, será engullido por el “monstruo”, sin que nada pueda evitarlo.
La excepción está en el último ejemplo, la velocidad de escape necesaria para vencer la fuerza de atracción de un agujero negro que, siendo preciso superar la velocidad de la luz en el vacío igual a 299.792’458 Km/s, es algo que no está permitido, ya que todos sabemos que conforme determina la teoría de la relatividad especial esa velocidad es un límite impuesto por nuestro universo.
Existen aspectos del A.N. que influyen en el mundo cuántico, y, por ejemplo, el máximo radio que puede tener un agujero negro virtual está dado aproximadamente por:
que equivale a unos 10-³³ centímetros. Esta distancia se conoce como la Longitud de Planck y es la única unidad de distancia que se puede construir con las tres constantes fundamentales de la naturaleza: G, h y c. La Longitud de Planck es tan extremadamente pequeña (10²° veces menor que el radio de un electrón) que debe ser la distancia característica de otro nivel de la naturaleza, subyacente al mundo subatómico, donde rigen las leyes aún desconocidas de la gravedad cuántica.
Así como el océano presenta un aspecto liso e inmóvil cuando se observa desde una gran distancia, pero posee fuertes turbulencias y tormentas a escala humana, el espacio-tiempo parece “liso” y estático a gran escala, pero es extremadamente turbulento en el nivel de la Longitud de Planck donde los hoyos negros se forman y evaporan continuamente. En el mundo de Planck, las leyes de la física deben ser muy distintas de las que conocemos hasta ahora.
La estructura macroscópica del espacio-tiempo parece plana, pero éste debe ser extremadamente turbulento en el nivel de la escala de Planck. Escala en la que parece que entramos en otro mundo… ¡El de la mecánica cuántica! que se aleja de ese mundo cotidinao que conocemos en el que lo macroscópico predomina por todas partes y lo infinitesimal no se deja ver con el ojo desnudo.
¡Existen tantos secretos! ¡Es tan grande nuestra ignorancia!
emilio silvera
el 18 de abril del 2016 a las 9:57
Donde se encuentre una singularidad, allí estará un agujero negro. Muchos son los ríos de tinta que han sido volcados sobre los folios en blanco para tratar de hablarnos de lo que es la singularidad y el horizonte de sucesos que conforman la construcción de un Agujero Negro que, no es otra cosa que el resultado final de la “muerte” de una estrella masiva.
El destino de estas estrellas que tienen decenas de masas solares (algunas hasta cerca de las 150 masas solares), es de manera irreversible, la de pasar a ser un Agujero negro cuando las leyes de la física comiencen a actuar al final de sus vidas, cuando agotado el combustible nuclear de fusión, explotan como Supernovas y, las capas exteriores de la inmensa estrella son eyectadas al espacio interestelar, mientras que el grueso de la ingente masa, una vez ausente la fusión nuclear que la hacía expandirse, queda a merced de la Gravedad, y, aquella descomunal masa se contrae más y más hasta el punto de quedar convertida en un punto de infinita densidad y energía sin que el Principio de Exclusión de Pauli, pueda evitar el proceso como ocurre con las enanas blancas cuando “mueren” estrellas como el Sol.
Después de muchos estudios y observaciones, todos los físicos y astrónomos creen que ese es, el destino final de las estrellas masivas, es decir, convertirse en Agujero Negro, un objeto que genera tal fuente de Gravedad que ningún objeto situado en la vecindad que lo circunda, podrá escapar a sus “garras” y lo atraerán hasta engullirlos y hacerse mayor. En el Núcleo está la Singularidad, ese punto en el cual toda la masa de la estrella está densamente confinada o colapsada, y, a su alrededor, se ha formado una región del espacio de la cual es imposible escapar, es el perímetro de lo que conocemos como Horizonte de Sucesos. Allí, en ese espacio, cualquier cosa que se atreva a entrar…¡nunca volverá a salir! De hecho, ni la misma Luz que tiene una velocidad de 299.792.456 metros por segundo, una vez atrapada allí, se podrá marchar, y, siendo así, se sabe que la información queda allí confinada para siempre.
Esta dinámica de cómo se forma un Agujero Negro y en lo que queda constituido una vez existe, ha venido impidiendo a los estudiosos del tema que sepamos más de tan monstruoso objeto cosmológico que, desde hace cien años en que fue predicha su existencia por Einstein en la Relatividad General, nadie ha podido explicar ciertas cuestiones que, de momento, están situadas en la zona oscura y no se dejan ver, y, como de hecho, nadie ha podido visitar uno de estos objetos para estudiarlos de cerca… ¡Seguimos en ese océano de ignorancia al que el físico John Archival Wheelerse refería.
Está claro que el Horizonte oculta a la singularidad y no podemos contemplar lo que allí ocurre, y, sólo sabemos y conocemos los hechos y sucesos que se producen en las regiones circundantes al agujero, es decir, alrededor del Horizonte de Sucesos que, todo lo que lo pueda atravesar, habrá emprendido el viaje de irás y no volverás.
Algunos hablan de Singularidades “desnudas” y, si existen, podrían dar muchas de las respuestas a las preguntas planteadas que nadie ha sabido responder. Sin embargo, ni con los mayores telescopios de la Tierra ni con los Espaciales, hemos podido desvelar este misterio que continúa aún en el más profundo de los secretos del Cosmos.
Lo cierto es que, desde que Einstein formuló su Teoría de la Relatividad General, y, cuando los físicos descubrieron todas las predicciones allí presentes (entre ellas la existencia de los Agujeros Negros), nadie ha dejado de teorizar con ellos y de exponer lo que pasaría si…
Y, ahí estamos, teorizando y conjeturando sobre lo que no sabemos.