domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los Misterios de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en Ciencias de la Tierra    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Encuentros espaciales

La más destructiva intensificación temporal de los normalmente suaves flujos de energía geotectónica – erupciones volcánicas o terremotos extraordinariamente potentes – o de energía atmosférica – vientos o lluvias anormalmente intensas –, parecen irrelevantes cuando se comparan con las repetidas colisiones del planeta con cuerpos extraterrestres relativamente grandes.

Existen simulaciones de lo que puede ser el choque del meteorito en la Tierra y, desde luego, no quisiera estar aquí cuando suceda. La Tierra está siendo bombardeada continuamente por invisibles partículas microscópicas de polvo muy abundantes en todo el Sistema Solar, y cada treinta segundos se produce un choque con partículas de 1 mm de diámetro, que dejan un rastro luminoso al autodestruirse en la atmósfera. También son relativamente frecuentes los choques con meteoritos de 1 metro de diámetro, que se producen con una frecuencia de, al menos, uno al año.

Pero los impactos, incluso con meteoritos mayores, producen solamente efectos locales. Esto es debido a que los meteoritos que deambulan por la región de asteroides localizada entre Marte y Júpiter están girando alrededor del Sol en el mismo sentido que la Tierra, de manera que la velocidad de impacto es inferior a 15 Km/s.

Entre Marte y Júpiter hay cientos de miles de cuerpos pequeños que orbitan alrededor del Sol llamados asteroides. También podemoas encontrarlos más allá de Plutón, llamado cinturón de Kuiper, y que en este caso reciben el nombre de objetos transneptunianos y que están hecho de hielo. Ceres es el asteroide más grande y tiene 913 km de diámetro.

http://1.bp.blogspot.com/-SwuAJK5Bz2U/TV76KPZo_lI/AAAAAAAACQc/JZfFb_Du7kE/s1600/crater_c%255B2%255D.jpg

El cráter de Arizona, casi perfectamente simétrico, se formó hace 25.000 años por el impacto de un meteorito que iba a una velocidad de 11 Km/s, lo que representa una potencia cercana a 700 PW. Estas gigantescas liberaciones de energías palidecen cuando se comparan con un choque frontal con un cometa típico. Su masa (al menos de 500 millones de toneladas) y su velocidad relativa (hasta 70 Km/s) elevan su energía cinética hasta 1022 J. Aunque se perdiera un diez por ciento de esta energía en la atmósfera, el impacto sería equivalente a una explosión de unas 2.500 bombas de hidrógeno de 100 megatones. Está claro que un fenómeno de estas características produciría impresionantes alteraciones climatológicas. Sin embargo, no es seguro y sí discutible que un impacto parecido fuese la causa de la extinción masiva del cretácico, siendo lo más probable, si tenemos en cuenta el periodo relativamente largo en que se produjo, que se podría explicar por la intensa actividad volcánica de aquel tiempo.

La frecuencia de impactos sobre la Tierra disminuye exponencialmente con el tamaño del objeto. Muchas toneladas son las que recibimos cada año de pequeños fragmentos de todo tipo pero, cuando estos van aumentando de tamaño, los sucesos de espacian de manera sustancial

Aproximadamente, cada cincuenta o sesenta millones de años se produce una colisión con un cometa, lo que significaría que la biosfera, que ha evolucionado durante cuatro mil millones de años, ha debido superar unos cuarenta impactos de este tipo. Está claro que ha salido airosa de estas colisiones, ya que aunque haya sido modificada, no ha sido aniquilada.

Supernova 1994D (SN1994D) en la galaxia NGC 4526. La supernova es el punto brillante abajo a la izquierda. Pueden llegar a brillar más que toda la galaxia completa durante un breve período de tiempo. (Crédito: NASA). Ahí, en esa explosión sin igual, se gesta la “fabricación” de materiales muy complejos como el oro y el platino…entre otros.

Igualmente, la evolución de la biosfera ha sobrevivido a las explosiones altamente energéticas de las supernovas más “cercanas”. Dado que en nuestra galaxia se produce por término medio la explosión de una supernova cada 50 años, el Sistema Solar se encuentra a una distancia de 100 parsecs de la explosión cada dos millones de años y a una distancia menor de 10 parsecs cada dos mil millones de años. En este último caso, la parte alta de la atmósfera se vería inundada por un flujo de rayos X y UV de muy corta longitud de onda, diez mil veces mayor que el flujo habitual de radiación solar, lo que implica que la Tierra recibiría, en unas pocas horas, una dosis de radiación ionizante igual a la que recibe anualmente. Exposiciones de 500 roentgens son setales para la mayoría de los vertebrados y, sin embargo, los diez episodios de esta magnitud que se han podido producir en los últimos 500 millones de años no han dejado ninguna consecuencia observable en la evolución de la biosfera.

                     La imagen de arriba corresponde a un suceso que ninguno quisiéramos que ocurriera

Si suponemos que una civilización avanzada podría preparar refugios para la población durante el año que transcurre ente la llegada de la luz y la llegada de la radiación cósmica, se encontraría con la inevitable dosis de 500 roentgens cada mil millones de años, tiempo suficiente para permitir el desarrollo de una sociedad cuyo conocimiento le sirviera para defenderse de un flujo tan extraordinario y de consecuencias letales.

La fotosíntesis

La fotosíntesis | Blog de Educación Primaria.

Todo el Oxígeno de la Atmósfera terrestre procede del oxígeno que desprenden los organismos autótrofos durante la fotosíntesis.

          La fotosíntesis es el principal proceso bioquímico que consigue pasar materiales desde el biotopo hasta la biocenosis de un ecosistema. Una vez incorporados como parte de los organismos autótrofos, los heterótrofos (por ejemplo, los animales) solo tienen que aprovecharse de aquellos; con la existencia de pequeñas cantidades de agua, todo está preparado para que el ecosistema entero comience a funcionar. Además, siempre habrá animales depredadores, carnívoros, que seguirán aprovechando los materiales de otros.

La conocida ecuación básica que describe la reacción endotérmica por la cual se sintetiza una molécula de glucosa a partir de sus seis moléculas de CO2 y H2O, y 2’8 MJ de radiación solar, es una simplificadisima caja negra. Una caja negra más realista sería la siguiente:

106 CO2 + 90 H2O + 16 NO3 + PO4 + nutrientes minerales + 5’4 MJ de radiación = 3’258 g de protoplasma (106 C, 180 H, 46 O, 16 N, 1 P y 815 g de cenizas minerales) + 154 O2 + 5’35 MJ de calor disipado.

Acumulación y Distribución de Fitomasa en el Asocio de Maíz (Zea mays L.) y  Fríjol (Phaseolus vulgaris L.)SABANA Definición Localización Características Generales Tipos - ppt  descargar

Sin macronutrientes ni micronutrientes no se puede producir fito-masa, que está compuesta por los nutrientes básicos necesarios para todos los seres heterótrofos: azúcares complejos, ácidos grasos y proteínas.

Para entender esta caja negra hay que comenzar por destacar la acción de unos pigmentos sensibles a la luz entre los cuales destacan las clorofilas. Éstas absorben la luz en dos bandas estrechas, una entre 420 y 450 nm, y la otra entre 630 y 690 nm. Así, la energía necesaria para la fotosíntesis sólo procede de la radiación azul y roja a la que corresponde menos de la mitad de la energía total de la insolación. Esta parte de la radiación fotosintéticamente activa (RFA) no se utiliza en reducir CO2, sino en la regeneración de compuestos consumidos durante la fijación del gas.

                                        Ciclo de las pentosas

La síntesis de fitomasa en el ciclo reductor del fosfato pentosa (RPP) – un proceso con varios pasos de carboxilación por catálisis enzimática, reducción y regeneración – tiene que empezar con la formación de trifosfato de adenosina (ATP) y nicotinamida adenina dinucleótido fosfato (NADP), que son los dos compuestos que suministran energía a todas las reacciones biosintéticas. La síntesis de las tres moléculas de ATP y las dos de NADP que se necesitan para reducir cada molécula de CO2 requiere de diez cuantos de radiación solar con longitud de onda próxima al pico rojo de absorción de la clorofila (680 nm). El carbono procedente del CO2, combinado con el hidrógeno del agua y con los micronutrientes, dará lugar a nueva fitomasa que contiene 465 KJ/mol.

                    

La cantidad de energía de un cuanto de luz roja es de 2’92×10-19 J (el producto de la constante de Planck, 6’62×10-34 por la frecuencia de la luz, que a su vez es el cociente entre la velocidad de la luz y la longitud de onda).

Un einstein (definido como un mol o número de Avogadro, 6’02×1023) de fotones rojos tiene una energía aproximadamente igual a 17 Kg. Suponiendo que la RFA es el 45% de la luz directa, la eficiencia global de la fotosíntesis es del 11%, que equivale a 456/(1.760/0’43). Esta eficiencia se reduce por lo menos en una décima parte más si tenemos en cuenta la reflexión de la luz en las hojas y la pérdida que supone atravesar la cubierta vegetal. Ninguna planta, sin embargo, se acerca siquiera a esta eficiencia teórica, porque parte de la luz absorbida por las clorofilas (generalmente, el 20 – 25 por ciento) vuelve a ser emitida en forma de calor, debido a que los pigmentos no pueden almacenar la luz y las reacciones enzimáticas no se producen con suficiente velocidad como para utilizar completamente el flujo de energía incidente. En la respiración se cede el carbono fijado en el metabolismo de la planta y en el mantenimiento de las estructuras que la soportan.

Mosaico: bienvenido al planeta Tierra

                  Mosaico de nuestro planeta Tierra que recibe una fracción de la energía solar

Para cada especie, la tasa con la que se pierde carbono está determinada principalmente por el tipo de fotosíntesis. Así, existen diferencias sustanciales entre las plantas C3 y C4. La respiración a escala de una comunidad o ecosistema depende del estado de crecimiento, y varía entre menos del 20 por ciento en plantas jóvenes en rápido crecimiento, hasta más del 90 por ciento en bosques maduros.

Con una pérdida del 25 por ciento para la reacción, y otro tanto para la respiración, la eficiencia fotosintética es ligeramente superior al 5 por ciento. En este punto, las estimaciones teóricas y los valores reales coinciden, ya que el valor medio de fotosíntesis neta en plantas muy productivas y en condiciones óptimas y durante cortos periodos de tiempo, oscila entre el 4 y el 5 por ciento. La mayoría de las plantas rinden en función de los nutrientes, especialmente nitrógeno y agua, o por las bajas temperaturas en las regiones de mayor altura y latitud. Los mejores rendimientos en sistemas naturales muy productivos, como los humedales y los cultivos, están entre el 2 y el 3 por ciento. En otros ecosistemas, como los pantanos tropicales templados y los bosques templados, el rendimiento de la transformación es del 1’5 por ciento, y en las praderas muy áridas sólo del 0’1 por ciento. Globalmente, la producción anual es, al menos, de 100.000 millones de toneladas de fitomasa, que se sintetizan con un rendimiento medio del 0’6 por ciento.

Resultado de imagen de La fotosíntesis en los océanos, muy afectada por la escasez de nutrientesResultado de imagen de La fotosíntesis en los océanos, muy afectada por la escasez de nutrientes

                                                  Mapa de clorofila en los océanos

La fotosíntesis en los océanos, muy afectada por la escasez de nutrientes, es incluso menos eficiente. La productividad medie es de poco más de 3 MJ/m2 y se realiza con un rendimiento fotosintético del 0’06 por ciento. La media ponderada total es 0’2 por ciento, es decir, que sólo uno de cada 500 cuantos de energía solar que llega a la superficie de la Tierra se transforma en energía de biomasa en forma de tejido vegetal.

La mayor parte de esta energía se almacena en forma de azúcares simples, que contienen más energía, y que sólo se encuentran en las semillas.

La mayor parte de la fitomasa está en los bosques. En los océanos, los principales productores son los organismos que componen el fitoplancton, que son muy pequeños y flotan libres. Su tamaño varía entre algo menos de 2 y 200 μm de diámetro y están formados por cantidades variables de bacterias y protoctistas eucarióticos. Las cianobacterias cocoides son tan abundantes en algunas aguas oligotrópicas que pueden ser las responsables de la mayor parte de la producción de fitoplancton.

                           Las Algas Unicelulares – NAUČITI PLUSChrysophyceae - Wikipedia, la enciclopedia libre

Los protoctistas fotosintetizadores varían entre los más pequeños flagelados pigmentados (como las criptomonas y crisofitos), hasta las diatomeas y dinoflagelados, que son mayores (más de 10 mm) y generalmente dominantes. Las diatomeas están formadas por células sin flagelos, con paredes de silicio amorfo mezclados con otros compuestos orgánicos. Presentan una sorprendente y amplia variedad de diseño, desde las que tienen simetría central (las de forma radial son las dominantes en el océano), a las pennadas (simetría lateral), y otras forman largas cadenas.

La productividad de fitoplancton está controlada por la temperatura del agua y por la disponibilidad de radiación solar y nutrientes. La temperatura no es determinante, porque muchas especies son muy adaptables y consiguen una productividad similar en distintos ambientes. Aunque es frecuente la adaptación a diferentes condiciones lumínicas, tanto el volumen como en contenido en clorofila de las diatomeas aumenta con la intensidad de la luz. En el mar abierto, la mayor limitación es la cantidad de nutrientes disponibles.

Entre las carencias que más limitan la producción de fitoplancton está la de nitrógeno, el macro-nutriente más importante, la de fósforo, y la de algunos otros micronutrientes clave como el hierro y el silicio.

         MICRO WEEK | Furry Español Amino

Los medios menos productivos de la Tierra están en la capa superficial y la capa inmediatamente inferior de los océanos. En el mar abierto, las concentraciones más altas de nutrientes se encuentran entre los 500 y los 1.000 metros, a bastante más profundidad que la zona eufórica, capa en la que penetra la luz solar y que se extiende a unos 100 metros en las aguas transparentes.

El pequeñísimo tamaño de los productores dominantes es una adaptación eficaz a la escasez de nutrientes, ya que cuanto mayor sea el cociente entre la superficie y el volumen, y más lento el hundimiento de las células de fitoplancton en la capa eufórica, mayor es la tasa de absorción de nutrientes.

Cuando las corrientes elevan a la superficie las aguas frías y cargadas de nutrientes, la producción de fitoplancton aumenta sustancialmente. Las aguas costeras de Perú, California, noroeste y sudoeste de África, y de la India occidental son ejemplos destacados de ascensión costera de aguas frías. También se dan casos de ascensión mar adentro en la mitad del Pacífico, cerca del ecuador y en las aguas que rodean la Antártida. Otras zonas altamente productivas se encuentran en las aguas poco profundas cercanas a la costa que están enriquecidas por el aporte continental de nutrientes. Este enriquecimiento, con una proporción N/P muy descompensada, es especialmente elevados en los estuarios adonde van a parar grandes cantidades de aguas residuales y fertilizantes.

 

Las diferentes medidas de la productividad en las aguas oligotróficas de los mares subtropicales y de las aguas eutróficas con corrientes ascensionales, varían entre menos de 50 gC/m2 y 1 gC/m2, más de un orden de magnitud. Las estimaciones de la producción global de fitoplancton están comprendidas entre 80.000 y 100.000 millones de toneladas, que representan entre dos tercios y cuatro quintos de la fitomasa total terrestre. Contrasta con el resultado anterior el hecho de que, dado el corto periodo de vida del fitoplancton (1 – 5 días), la fitomasa marina represente sólo una pequeña fracción de todo el almacenamiento terrestre.

Los humanos rompen una ley natural que rige la biomasa en los océanosEl calentamiento de los mares y la futura biomasa de especies marinas

La distribución espacial del fitoplancton muestra zonas delimitadas que se extienden a escala local y global. La exploración desde los satélites es, con gran diferencia, la que permite detectar con mayor precisión las concentraciones de clorofila y la que ha posibilitado obtener las pautas de la distribución de fitoplancton. En las aguas que rodean la Antártida se observa claramente una distribución asimétrica en dos bandas casi concéntricas. La mejor distribución se explica por el hecho de que se deba a corrientes circumpolares y a la abundancia de ácido silicílico. Pero las zonas de mayor riqueza de fitoplancton se encuentran cerca de los continentes donde los ríos arrastran abundantes nutrientes disueltos.

Qué es una CADENA TRÓFICA y ejemplos - ¡Resumen!Qué es una CADENA TRÓFICA y ejemplos - ¡Resumen!

La vida necesita un aporte continuo de energía que llega a la Tierra desde el Sol y pasa de unos organismos a otros a través de la cadena trófica.

El fitoplancton es la base energética de las intrincadas pirámides tróficas. Las cadenas alimenticias en el océano, generalmente, son redes complicadas. Una gran parte de la fito-masa disponible no la consumen directamente los herbívoros, sino que primero se almacena en depósitos de materia muerta que, transformada por bacterias, se convertirá en alimento para otros seres heterótrofos.

La gran producción de fitoplancton puede alimentar grandes cantidades de zoo-masa. El kril, pequeños crustáceos parecidos a las quisquillas que se alimentan de diatomeas, son los organismos más abundantes en la superficie del mar; sus densas acumulaciones pueden contener hasta mil millones de individuos y su producción anual de zoo-masa quizá llegue hasta los 1.300 millones de toneladas. Esta prodigiosa cantidad de zoo-masa sirve de alimento a focas, calamares y peces, así como a los mayores carnívoros de la biosfera, las especies de ballenas con barbas que se alimentan filtrando el agua.

emilio silvera

 

  1. 1
    emilio silvera
    el 4 de agosto del 2022 a las 11:06

    Lo de misterio es por llamarlo de alguna manera, en realidad son funciones de la mecánica terrestre que hemos tenido que ir descubriendo a medida que el tiempo pasaba y nosotros observábamos una y otra vez aquel suceso hasta que, por fin, podíamos entenderlo. El Planeta Tierra tiene que ser considerado como GAIA (o Gea). 


    “La hipótesis Gaia es un modelo interpretativo que afirma que la presencia de la vida en la Tierra fomenta unas condiciones adecuadas para el mantenimiento de la biosfera.​ Según la hipótesis Gaia (cuyo nombre es tomado de la diosa Gaia), la atmósfera y la parte superficial del planeta Tierra se comportan como un sistema donde la vida, su componente característico, se encarga de autorregular sus condiciones esenciales tales como la temperatura, composición química y salinidad en el caso de los océanos. Gaia se comportaría como un sistema autorregulado (que tiende al equilibrio). La hipótesis fue ideada por el químico James Lovelock en 1969​ (aunque publicada en 1979), siendo apoyada y extendida por la bióloga Lynn Margulis.​
    Lovelock estaba trabajando en ella cuando se lo comentó al escritor William Golding, siendo este quien le sugirió que la denominase “Gaia”, diosa griega de la Tierra (Gaia, Gea o Gaya)” 

    Lo cierto es que, la visión de la Tierra como GAIA es lo que nos dice todo lo que observamos que pasa en ella si estudiamos los hechos acaecidos a lo largo del Tiempo, y, algunos, se empeñan en el dichoso cambio climático que no es más que una excusa para muchas cuestiones y, sobre todo, para obtener dinero.

    La Tierra se recicla así mismo, y regula su clima y temperatura mediante distintos medios, y, su mecánica de huracanes, Tsunamis, volcanes, terremotos y placas tectónicas la mantiene como debe estar, y todo eso procura los cambios que a lo largo del Tiempo se han producido para que todo siga igual.

    La Tierra (seguramente como otros muchos en la Galaxia y en todo el Universo), es un planeta adecuado para la vida, y, está situada a 1 UA (una unidad astronómica = 150.000.000 Km), del Sol para evitar que la vida se achicharre o se congele.

    Lástima que el Sol, dentro de 5.000 M de años, agotará su combustible nuclear de fusión y se convertirá en una Gigante Roja, expulsará sus capas exteriores al Espacio Interestelar para formar una Nebulosa Planetaria, y, finalmente, la masa restante se contraerá hasta formar una estrella enana blanca que radiará en el ultravioleta ionicando toda la Nebulosa.

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting