Sep
27
¿Sabremos alguna vez lo que la Vida es?
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
A pesar del tiempo transcurrido, la Vida, nos sigue asombrando. ¿Qué pasó para que surgiera?
Cúmulo abierto 290 Joyero Estelar
Aquellos primeros intentos del hombre por conocer el Universo y el lugar que ocupaba en él, convertía ese misterio de la Naturaleza en una poderosa historia que, desde épocas remotas, ha estado siempre desafiando nuestro intelecto. Cuando llegamos a un aceptable nivel de conocimientos, pudimos buscar los fósiles de animales como los dinosaurios siguen causando el asombro del público en general y nos transportan a un tiempo en los que reinaban en aquellos frondosos bosques mesozoicos por los que bullía la vida de aquellas bestias prodigiosas.
![Cráneo de Lucy, el fósil de un niño de hace 3,3 millones de años de la especie Astrolopithecus afarensis. AP](http://www.abc.es/hemeroteca/imagenes/abc//20092006/Sociedad/lucy--200x230.jpg)
Cráneo de Lucy, el fósil de un niño de hace 3,3 millones de años de la especie Astrolopithecus afarensis. El cráneo de Lucy y unos huesos diminutos, cuidadosamente dispuestos en una vitrina, nos transportan hasta la cálida sabana africana en la que se gestó hace unos tres millones de años, la aventura de la especie humana.
Los más antiguos son los trilobites, esos monarcas de los mares cámbricos que, con sus extremidades articuladas, deambulaban por los arrecifes tropicales hace unos quinientos millones de años.
Pocos especímenes inspiran una mayor emoción entre los coleccionistas de fósiles que un trilobite completo. Estos antiguos artrópodos, parientes evolutivos de las langostas, arañas e insectos, se extinguieron hace muchos millones de años, pero a veces se les encuentra magníficamente conservados.
Los fósiles de animales, reclamados por la cultura popular tanto como por la ciencia, nos ofrece una crónica biológica de importante envergadura. Sin embargo, los fósiles sólo registran los capítulos más recientes de la colosal épica evolutiva de la Tierra. La historia completa de la vida abarca nada menos que cuatro mil millones de años, desde los extraños mundos de los océanos sulfurosos que se extendían bajo una atmósfera asfixiante, pasando por bacterias que respiraban hierro y quimeras microscópicas, hasta llegar por fin a nuestro familiar mundo de Oxígeno y Ozono, de valles boscosos, de animales que nadan, corren o vuelan. Sheherazade no habría imaginado un cuento más fascinante que esa realidad que nos cuenta la historia de la vida en el planeta Tierra.
Siendo mucho lo que, sobre la vida, hemos podido saber, no es suficiente para dar una explicación convincente. Cada nuevo dato, cada nuevo descubrimiento de los científicos especialistas, nos viene a plantear nuevas preguntas que no sabemos contestar.
Acordaos de lo que decía Jhon Archibal Wheeler, aquel gran Físico: “Vivimos en una isla rodeada por un mar de ignorancia”. Y, cada día, tenemos la obligación de buscar las respuestas que nos lleven a saber, de forma tal que, cada vez la isla se haga más grande y ese mar…, al menos se reduzca en una buemna proporción.
La historia científica de la vida es una narración apasionante que, correctamente explicada, nos ayuda a comprender no sólo nuestro pasado biológico sino también la Tierra y toda la vida que nos rodea en la actualidad. Esa diversidad biológica es el producto de casi cuatro mil millones de años de evolución. Somos parte de ese legado; al intentar comprender la historia evolutiva de la vida, comenzamos a entender nuestro propio lugar en el mundo y nuestra responsabilidad como administradores de un planeta que nos dio cobijo y al que nos tuvimos que adaptar lo mismo que él, el planeta, se adaptó a la presencia de la vida que, de alguna manera cambió su entorno climático, precisamente debido, a esa presencia viviente que generó las precisas condiciones para poder estar aquí.
La historia de la vida tiende a relatarse (no pocas veces) al estilo de la genealogía de Abraham: las bacterias engendraron a los protozoos, los protozoos engendraron a los invertebrados, los invertebrados engendraron a los peces, y así sucesivamente. Tales listas de conocimientos adquiridos pueden memorizarse, pero no dejan mucho espacio para pensar. La cuestión no es tan sencilla y los descubrimientos de la paleontología, la más tradicional de las empresas científicas, se entrelazan con nuevas ideas nacidas de la biología molecular y la geoquímica.
Los huesos de los Dinosaurios son grandes y espectaculares y hacen que los que los contemplan (niños y mayores), abran los ojos como platos, asombrados de tal maravilla. Pero, aparte del tamaño de sus habitantes, el mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutiles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hacia el mundo que conocemos hoy.
Pero, ¿cómo podemos llegar a comprender acontecimientos que se produjeron hace mil millones de años o más? Una cosa es aprender que en las llanuras mareales de hace mil quinientos millones de años vivían bacterias fotosintéticas, y otra muy distinta cómo se infiere que unos fósiles microscópicos pertenecen a bacterias fotosintéticas, cómo se averigua que las rocas que los rodean se formaron en antiguas llanuras mareales y cómo se estima su edad en mil quinientos millones de años.
![foto](http://farm6.staticflickr.com/5135/5529520037_e344f349e1_z.jpg)
Las rocas australianas se han convertido en el lugar más idóneo del planeta para buscar indicios del origen de la vida en la Tierra. Ha sido en la formación Strelley Poll, al oeste del país, en Pilbara, donde un equipo de científicos, australianos en su mayoría, ha descubierto los fósiles microscópicos de unas bacterias que vivieron hace 3.400 millones de años y que aparecen asociados a diminutos cristales de pirita.
El leitmotiv epistemológico de cómo sabemos lo que creemos que sabemos, en realidad, aparece de manera espontánea a base de mucho estudio de campo, investigación exhaustiva en los más dispares rincones de la Tierra y, un profundo estudio concatenado en el tiempo de todo aquello que, en cada exploración pueda ir apareciendo. En tanto que empresa humana, estamos inmersos también en un relato de exploración que se extiende desde el espacio interior de las moléculas al espacio literalmente exterior de Marte y otros planetas.
Uno de los temas más claros de la historia evolutiva es el carácter acumulativo de la diversidad biológica. Las especies individuales (al menos las de los organismos nucleados) aparecen y desaparecen en una sucesión geológica de extinciones que ponen de manifiesto la fragilidad de las poblaciones en un mundo de competencia y cambio ambiental –de formas de vida con una morfología y fisiología características- es una historia de acumulación. La visión de la evolución a gran escala es indiscutiblemente la de una acumulación en el tiempo gobernada por las reglas de funcionamiento de los ecosistemas. La serie de sustituciones que sugieren los enfoques al estilo de la genealogía de Abraham no consigue captar este atributo básico de la historia biológica.
Así, creemos saber que la vida nació por mediación de procesos físicos en la Tierra primigenia. Estos mismos procesos –tectónicos, oceanográficos y atmosféricos- sustentaron la vida era tras era al tiempo que modificaban continuamente la superficie de la Tierra. Por fin la vida se expandió y se diversificó hasta convertirse en una fuerza planetaria por derecho propio, uniéndose a los procesos tectónicos y físico-químicos en la transformación de la atmósfera y los océanos.
Dondequiera que choquen las relativamente rápidas placas tectónicas oceánicas con las enormes placas continentales, se forman cadenas montañosas en continua elevación. Los ejemplos más espectaculares se subducción y formación montañosa son, respectivamente, la placa del Pacífico sumergiéndose en las profundas fosas del Asia oriental, y el Himalaya, que se eleva por el choque de las placas índica y euroasiática. Todo forma parte del proceso que llevó a la vida.
Para mí y para cualquiera que emplee la lógica de la ciencia que se guía por los hechos probados, el surgimiento de la vida como una característica definitoria –quizá la característica definitoria- de nuestro planeta es algo extraordinario.
¿Cuántas veces ha ocurrido lo mismo en la vastedad del Universo? Es lo primero que se me viene a la mente cuando (en la noche silenciosa, oscura y tranquila lejos del bullicioso ambiente de las ciudades y de su molesta contaminación lumínica), miro hacia las estrellas brillantes del cielo que, muy lejanas en regiones remotas, también como nuestro Sol, están rodeadas de mundos que, como el nuestro, habrán tenido la misma posibilidad que la Tierra para que la vida, pudiera surgir.
Hacer aquí un recorrido pormenorizado del largo camino que la vida ha tenido que recorrer, y dibujar un esquema a modo de un árbol de la vida, es imposible. El presente trabajo trata simplemente, de dejar una idea básica de cómo la vida llegó aquí, al planeta Tierra, y, de cómo pudo evolucionar con el paso del tiempo y dentro de su rica diversidad.
En todos estos escenarios está presente la vida
Los expertos si han construido un árbol de la vida a partir de comparaciones ente secuencias de nucleótidos de genes de diversos organismos, las plantas y los animales quedan reducidos, en ese árbol, a brotes en la punta de una sola de las ramas. La mayor diversidad de la vida y, por extensión, la mayor parte de su historia, es microbiana. Así lo atestiguan todos y cada uno de los hallazgos encontramos en las rocas precámbricas que contienen fósiles de aquellas primeras formas de vida.
Y, una cosa está muy clara y no se presta a ninguna clase de dudas: Las Bacterias y las Arqueas, son los arquitectos de los ecosistemas terrestres.
Biólogos expertos indiscutibles de probada valía y reconocido prestigio, han llegado a sugerir que los genes de los organismos actuales contienen el relato completo de la historia evolutiva. Pero, de ser así se trataría, como en las historias de Shakespeare, de relatos limitados a los vencedores de la vida. Sólo la paleontología nos puede hablar de los trilobites, los dinosaurios y otras maravillas biológicas que ya no adoran la faz de la Tierra.
Para comprender la historia de la vida, tenemos que urdir en una misma tela los descubrimientos de la geología y de la biología comparativa, utilizando los organismos vivos para reanimar a los fósiles y a los fósiles para averiguar cómo ha llegado a formarse la diversidad de nuestra propia era.
![](http://i115.photobucket.com/albums/n293/InfernalSeraph92/bacteriaimg1.jpg)
Tras descubrir el mundo de las bacterias pudimos saber que, la vida en la Tierra, estaba representada de muchas maneras además de la que podíamos contemplar a nuestro alrededor. Otro “mundo” oculto a la vista, contenía una inmensidad de “criaturas” que, también contaban.
La similitud jerarquizada de las especies era bien conocida por aquellos antiguos naturalistas de los que, en su momento, ya hablamos aquí y dejamos una bonita reseña. Linneo la codificó hasta finales de la década de 1730 al proponer un sistema jerárquico de clasificación taxonómica que, prácticamente, sigue utilizándose en nuestros días. Pero fue Charles Darwin quien reconoció explícitamente la naturaleza genealógica de este patrón.
Podemos explicar las similitudes entre humanos y chimpancés atribuyéndolas a su descendencia de un antepasado común que poseía las distintas características que los dos grupos comparten. En realidad, el registro fósil de la descendencia humana es notablemente incompleto, pero los restos de esqueletos hallados en África y Asia, conforman esta predicción: Los Humanos no descienden de los chimpancés, divergieron a partir de un antepasado común que no era ni Homo ni Pan.
Está claro que, la especie Humana (por muchas razones), se cree muy superior a todos los demás seres vivos sobre la Tierra. Puesto que somos grandes animales (algo racionales), se nos podría perdonar que tengamos una visión del mundo que tiende a celebrar lo nuestro, pero la realidad es que nuestra perspectiva es errónea. Somos nosotros los que hemos tenido que evolucionar para encajar en el mundo microbiano, y no al revés. Que esto sea así se debe, en parte, a una cuestión histórica, pero también tiene una explicación en términos de diversidad y funcionamiento del ecosistema. Si los animales son la guinda de la evolución, las Bacterias son el pastel.
Anabaena (cyanobacterium)
Las plantas, los animales, los hongos, las algas, y los protozoos son todos organismos eucariotas, genealógicamente vinculados por un modo de organización celular en el que el material genético aparece encerrado en el interior de una estructura membranosa llamada núcleo. Las Bacterias y los Procariotas son distintos: sus células carecen de núcleo. Por lo que respecta a su importancia biológica, los eucariotas parecen jugar con una clara ventaja; los organismos eucariotas se presentan en una gran variedad de tamaños y formas que van desde los escorpiones, los elefantes y las setas hasta los geranios, las luminarias y las amebas. Los procariotas, en cambio, son en su mayoría esferas diminutas, cilindros o espirales. Algunas bacterias forman filamentos sencillos de células unidas por sus extremos, pero son muy pocas las que llegan a construir estructuras multicelulares más complejas.
El tamaño y la forma sin duda dan la ventaja a los eucariotas, pero la morfología es sólo uno de los criterios posibles para medir la importancia ecológica. El metabolismo –el modo como un organismo obtiene materia y energía- es otro criterio, y de acuerdo con este son los procariotas los que destacan por su diversidad. Los organismos eucariotas básicamente viven de tres maneras sencillas, algunos, como nosotros mismos, somos heterótrofos, es decir, obtenemos tanto el Carbono como la energía que necesitamos para el crecimiento de ingerir moléculas orgánicas producidas por otros organismos. Para obtener energía, nuestras células utilizan oxígeno para descomponer azúcares en dióxido de carbono y agua mediante el proceso denominado respiración aeróbica (utilizamos oxígeno).
En caso de necesidad, podemos conseguir un poco de energía por medio de un segundo tipo de metabolismo llamado fermentación, un proceso anaeróbico (sin oxígeno) por el que una molécula orgánica se descompone en dos (sólo las levaduras y unos pocos eucariotas más viven fundamentalmente con este metabolismo.)
El tercer tipo principal de metabolismo energético que se encuentra en los eucariotas es la fotosíntesis que realizan las plantas y las algas: la clorofila y otros pigmentos asociados captan la energía del Sol, y ésta permite a las plantas fijar dióxido de carbono en forma de materia orgánica. Para convertir la luz en energía bioquímica las plantas necesitan un electrón, que proporciona el agua, y en el proceso se libera oxígeno como producto secundario.
Claro que, si comparamos las formas de metabolismo de los eucariotas con las de los procariotas, perdemos por goleada. La diversidad metabólica de los microorganismos procariotas, son el aspecto clave para estudiar la vida primigenia. Sus numerosas y asombrosas formas de metabolismo a las que se han adaptado para vivir son, en verdad, una maravilla de la Naturaleza.
Algunas, como nosotros mismos, utilizan oxígeno pero otras, para la respiración utilizan Nitrato disuelto (NO₃¯) en lugar de oxígeno, y aún otras usan iones sulfato (SO₄²¯) u óxidos metálicos de hierro p manganeso. Unos pocos procariotas pueden incluso utilizar CO₂ de forma muy parecida a como lo hacen las algas y plantas terrestres eucariotas. Sin embargo, cuando en el medio hay sulfuro de hidrógeno (H₂S), bien conocido por su característico olor a “huevos podridos” (en las Nebulosas es un material muy abundante), muchas cianobacterias utilizan este gas en lugar del agua para obtener los electrones que requiere la fotosíntesis. Como producto secundario se forma entonces azufre y sulfato, no oxígeno.
Las Cianobacterias constituyen sólo uno de los cinco grupos distintos de bacterias fotosintéticas. En los otros grupos, el aporte de electrones por H₂S, gas hidrógeno (H₂) o moléculas orgánicas es obligado y nunca se produce oxígeno. Estas bacterias fotosintéticas captan la luz con bacteriocloforila en lugar de la clorofila, más familiar. Otras usan vías metabólicas muy distintas, y un tercer grupo se sirve de una fuente de Carbono orgánico en lugar de CO₂.
La Respiración Aerobia y Anaerobia
Las variaciones bacterianas sobre temas metabólicos de la respiración, la fermentación y la fotosíntesis son, pues, impresionantes, pero los organismos procarióticos han desarrollado todavía otro modo de crecer que es completamente desconocido en los eucariotas: la quimiosíntesis. Como los organismos fotosintéticos, los microbios quimiosintéticos toman el carbono del CO₂. Pero obtienen la energía de reacciones químicas y no de la radiación solar, lo que consiguen utilizando oxígeno o nitrato (o, de forma menos frecuente, el sulfato, el hierro hoxidizado o el manganeso) se combina con hidrógeno, metano o formas reducidas de hierro, sulfuro o nitrógeno de tal modo que la célula capta la energía desprendida por la reacción. Los procariotas metanogénicos resultan de particular interés para la ecología y la evolución, estas diminutas células extraen energía de una reacción entre hidrógeno y dióxido de carbono en la que se libera metano (aquí, nos podemos acordar del foco de metano detectado en Marte).
Se ha descubierto que la Atmósfera de Marte pudo haber contenido agua en abundancia, que ahora el agua está allí presente, que existen focos de metano que no se está seguro si su procedencia pudiera ser…de “seres vivos” microscópicos de los llamados metanógenos.
Las vías metabólicas de los procariotas sustentan los ciclos biológicos que mantienen la Tierra en su condición de planeta habitable.
Fijémonos por ejemplo en el dióxido de Carbono. Los Volcanes aportan CO₂ a los Océanos y la Atmósfera, pero la fotosíntesis lo sustrae a un ritmo más rápido. Tan rápido de hecho, que los organismos fotosintéticos podrían proveer de CO₂ a la atmósfera actual en poco menos de una década. Naturalmente no ocurre así, y ello se debe sobre todo a que esencialmente la respiración realiza la reacción fotosintética en sentido inverso. Mientras que los organismos fotosintéticos hacen reaccionar CO₂ con agua para producir azúcares y oxígeno los seres vivos que respiran (entre los que nos incluimos todos nosotros) hacen reaccionar azúcar con oxígeno y en el proceso liberan agua y dióxido de carbono. Conjuntamente, la fotosíntesis y la respiración reciclan el carbono en la biosfera y sostiene así la vida y su ambiente a largo tiempo.
Estaría bien dejar aquí una reseña de ese otro dominio microscópico al que llamamos extremófilos y que, por sus metabolismos increíbles, podrían vivir, en cualquier parte que nos podamos imaginar: Una Nebulosa, las profundidades de la Tierra, en las Salinas, en aguas pesadas, en capas altas de la atmósfera, en las profundidades oceánicas y, en fin, en cualquier sitio que nos pudiera parecer un infierno inhabitable, allí, para nuestro asombro, podrían estar ellas ricamente instaladas. Sin embargo, el trabajo se hace muy largo ya, y, lo que menos quisiera es que, el personal, comenzara a bostezar, aunque durante todo el recorrido, he procurado siempre plasmar las ideas de manera que despertara la curiosidad y, sobre todo, que dejara una idea clara de lo que la vida ha sido en la Tierra desde su aparición.
¿Qué nos queda mucho por saber de la historia de la vida en la Tierra? Claro que sí. Sin embargo, es bueno estar al día de las cosas que ya sabemos.
emilio silvera
Fuente: Recopilación de textos diversos escritos por autores de reconocido prestigio. Aquí quedan párrafos de “La Vida en un joven Planeta”, de “Así de Simple”, o, de “La vida en Evolución” y, desde luego, nos da una idea básica de lo que la vida es y de cómo ha podido ir adaptándose al medio incidiendo en él para que, el ecosistema se convirtiera en el ideal para ella.
Sep
27
Rumores del saber XI
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Antiguo laboratorio Cavendish
El laboratorio Cavendish de la Universidad de Cambridge, en Inglaterra, es posiblemente la institución científica más prestigiosa del mundo. Desde su fundación, a finales del siglo XIX, el laboratorio ha sido responsable de algunos de los avances más innovadores y trascendentales de todos los tiempos: el descubrimiento del electrón (1897), el descubrimiento de los isótopos de los elementos ligeros de la tabla periódica (1919), la división del átomo (1919), la revelación de la estructura del ADN (1953) y el descubrimiento de los púlsares (1967). Desde la creación del premio Nobel en 1.901, más de veinte científicos del Laboratorio Cavendish o formados en él lo han ganado, ya sea en Física o en Química.
Fundado en 1871, el Laboratorio abrió sus puertas tres años después en un edificio neogótico de Free School Lane, que ostentaba una fachada de seis hastiales y una maraña de pequeñas habitaciones conectadas, en palabras de Steven Weinberg, “por una red incomprensible de escaleras y corredores.”
A finales del siglo XIX, poca gente sabía con exactitud a qué se dedicaban los “físicos”. El término mismo era relativamente nuevo. En Cambridge, la física se enseñaba como parte del grado de matemáticas.
En este sistema no había espacio para la investigación: se consideraba que la física era una rama de las matemáticas y lo que se le enseñaba a los estudiantes era como resolver problemas.
En la década de 1870, la competencia económica que mantenían Alemania, Francia, Estados Unidos, y Gran Bretaña se intensificó. Las Universidades se ampliaron y se construyó un Laboratorio de física experimental en Berlín.
Cambridge sufrió una reorganización. William Cavendish, el séptimo duque de Devonshire, un terrateniente y un industrial, cuyo antepasado Henry Cavendish había sido una temprana autoridad en teoría de la gravitación, accedió a financiar un Laboratorio si la Universidad prometía fundar una cátedra de física experimental. Cuando el laboratorio abrió, el duque recibió una carta en la que se le informaba (en un elegante latín) que el Laboratorio llevaría su nombre.
Lord Kelvin uno de sus primeros miembros
Tras intentar conseguir sin éxito atraer primero a William Thomson, más tarde a lord Kelvin (quien entre otras cosas, concibió la idea del cero absoluto y contribuyó a la segunda ley de la termodinámica) y después a Hermann von Helmohltz, de Alemania (entre cuyas decenas de ideas y descubrimientos destaca una noción pionera del cuanto), finalmente se ofreció la dirección del centro a James Clerk Maxwell, un escocés graduado en Cambridge. Este fue un hecho fortuito, pero Maxwell terminaría convirtiéndose en lo que por lo general se considera el físico más destacado entre Newton y Einstein. Su principal aportación fue, por encima de todo, las ecuaciones matemáticas que permiten entender perfectamente la electricidad y el magnetismo. Estas explicaban la naturaleza de la luz, pero también condujeron al físico alemán Heinrich Hertz a identificar en 1887, en Karlsruhe, las ondas electromagnéticas que hoy conocemos como ondas de radio.
Maxwell también creó un programa de investigación en Cavendish con el propósito de idear un estándar preciso de medición eléctrica, en particular la unidad de resistencia eléctrica, el ohmio. Esta era una cuestión de importancia internacional debido a la enorme expansión que había experimentado la telegrafía en la década de 1850 y 1860, y la iniciativa de Maxwell no solo puso a Gran Bretaña a la vanguardia de este campo, sino que también consolidó la reputación del Laboratorio Cavendish como un centro en el que se trataban problemas prácticos y se ideaban nuevos instrumentos.
A este hecho es posible atribuir parte del crucial papel que el laboratorio iba a desempeñar en la edad dorada de la Física, entre 1897 y 1933. Los científicos de Cavendish, se decía, tenían “sus cerebros en la punta de los dedos.”
Lord Rayleigh
Maxwell murió en 1879 y le sucedió lord Rayleigh, quien continuó su labor, pero se retiró después de cinco años y, de manera inesperada, la dirección pasó a un joven de veintiocho años, Joseph John Thomson, que a pesar de su juventud ya se había labrado una reputación en Cambridge como un estupendo físico-matemático. Conocido universalmente como “J.J.!, puede decirse que Thomson fue quien dio comienzo a la segunda revolución científica que creó el mundo que conocemos.
Joseph John Thomson
La primera revolución científica comenzó con los descubrimientos de Copérnico, divulgados en 1543, y los de Isaac Newton en 1687 con su Gravedad y su obra de incomparable valor Principia Matemática, a todo esto siguió los nuevos hallazgos en la Física, la biología y la psicología.
Pero fue la Física la que abrió el camino. Disciplina en permanente cambio, debido principalmente a la forma de entender el átomo (esa sustancia elemental, invisible, indivisible que Demócrito expuso en la Grecia antigua).
En estos primeras décadas del siglo XIX, químicos como John Dalton se habían visto forzados a aceptar la teoría de los átomos como las unidades mínimas de los elementos, con miras a explicar lo que ocurría en las reacciones químicas (por ejemplo, el hecho de que dos líquidos incoloros produjeran, al mezclarse, un precipitado blanco). De forma similar, fueron estas propiedades químicas y el hecho de que variaran de forma sistemática, combinada con sus pesos atómicos, lo que sugirió al ruso Dimitri Mendeleiv la organización de la Tabla Periódica de los elementos, que concibió jugando, con “paciencia química”, con sesenta y tres cartas en su finca de Tver, a unos trescientos kilómetros de Moscú.
Pero además, la Tabla Periódica, a la que se ha llamado “el alfabeto del Universo” (el lenguaje del Universo), insinuaba que existían todavía elementos por descubrir.
La tabla de Mendeleyev encajaba a la perfección con los hallazgos de la Física de partículas, con lo que vinculaba física y química de forma racional: era el primer paso hacia la unificación de las ciencias que caracterizaría el siglo XX.
En Cavendish, en 1873, Maxwell refinaría la idea de átomo al introducir la idea de campo electromagnético (idea que tomó prestada de Faraday), y sostuvo que éste campo “impregnaba el vacío “y la energía eléctrica y magnética se” propagaba a través de él” a la velocidad de la luz. Sin embargo, Maxwell aún pensaba en el átomo como algo sólido y duro y que, básicamente, obedecían a las leyes de la mecánica.
El problema estaba en el hecho de que, los átomos, si existían, eran demasiado pequeños para ser observados con la tecnología entonces disponible.
Max Planck, físico alemán
Esa situación empezaría a cambiar con Max Planck, el físico alemán que, como parte de su investigación de doctorado, había estudiado los conductores de calor y la segunda ley termodinámica, establecida originalmente por Rudolf Clausius, un físico alemán nacido en Polonia, aunque lord Kelvin también había hecho algún aporte.
Clausius había presentado su ley por primera vez en 1850, y esta estipulaba algo que cualquiera podía observar, a saber, que cuando se realiza un trabajo la energía se disipaba convertida en calor y que ese calor no puede reorganizarse en una forma útil. Esta idea, que por lo demás parecería una anotación de sentido común, tenía consecuencias importantísimas.
Dado que el calor (energía) no podía recuperarse, reorganizarse y reutilizarse, el Universo estaba dirigiéndose gradual e imparable hacia un desorden completo:
Una casa que se desmorona nunca se reconstruye así misma, una botella rota nunca se recompone por decisión propia. La palabra que Clausius empleó para designar este fenómeno o desorden irreversible y creciente fue “entropía”: su conclusión era que, llegado el momento, el Universo moriría.
En su doctorado, Planck advirtió la relevancia de esta idea. La segunda ley de la termodinámica evidenciaba que el tiempo era en verdad una parte fundamental del Universo, de la física. Sea lo que sea, el tiempo es un componente básico del mundo que nos rodea y se relaciona con la materia de formas que todavía no entendemos.
La noción de tiempo implica que el Universo solo funciona en un sentido, hacia delante, nunca se está quieto ni funciona hacia atrás, la entropía lo impide, su discurrir no tiene marcha atrás. ¿No será nuestro discurrir lo que siempre marcha hacia delante, y, lo que tenemos por tiempo se limita a estar ahí?
emilio silvera
Sep
27
La Historia, algunas veces distorsionan los hechos.
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
HIPARCO DE NICEA (190 – 120 a.C.)
Astrónomo, matemático y geógrafo nacido en Grecia. Llevó a cabo sus observaciones en Rodas, donde construyó un observatorio astronómico en Alejandría (Egipto). Ninguno de sus estudios ha llegado hasta nuestros días, pero tenemos noticia de ellos gracias a los escritos de Estrabón (Geógrafo e historiador griego, 64 a.C.–22 d.C.?) y de Claudio Ptolomeo.
En 134 a.C. observó una nueva estrella en la constelación de Escorpión; alentado por el descubrimiento, el cual, no fue superado en precisión hasta el siglo XVI; elaboró un catálogo en torno a 850 estrellas, clasificadas según su luminosidad aparente, que distingue seis magnitudes, está en la base de la actual clasificación fotométrica de las estrellas.
Pero vayamos directamente al objeto del comentario de hoy que, no es otro que, dejar claro que no siempre se le concede el mérito de alguna idea, al primero que la pudo engendrar. Así ha sido a lo largo de la historia y así seguirá siendo (cada vez menos).
Sep
26
Materia de sombra, Axiones, ¿WIMPs en el Sol?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
![Descubren un planeta bien parecido a la Tierra.](https://fmcreciendo.com.ar//04-2014/resize_1397820327.jpg)
Habiendo leído la Noticia que publica el Diario El Mundo y que he reproducido hoy mismo en este Blog, recuerdo otro trabajo que hice y expuse en esta página que, al estar con esta noticia relacionado, creo que está bien ponerlo de nuevo para que puedan comparar los criterios y cómo van cambiando las cosas
Es curioso como a veces, la realidad de los hechos observados, vienen a derribar esas barreras que muchos ponen en sus mentes para negar lo evidente. Por ejemplo:
Materia en la sombre, Axiones WIMS en el Sol
Los extraordinarios resultados de la sonda Kepler, que en su primer año de misión ha encontrado ya 1.235 candidatos a planetas, 54 de ellos en la zona habitable de sus estrellas, ha permitido a los investigadores extrapolar el numero total de mundos que podría haber sólo en la Vía Láctea, nuestra Galaxia. Y ese número ronda los 50.000 millones. De los cuales, además, unos 500 millones estarían a la distancia adecuada de sus soles para permitir la existencia de agua en estado líquido, una condición necesaria para la vida.
Planetas parecidos a la Tierra, como arriba nos dicen, hay miles de millones y sólo cabe esperar que estén situados en los lugares adecuados para que la vida tenga la oportunidad de surgir acogida por el ecosistema ideal del agua líquida, una atmósfera acogedora y húmeda, temperatura ideal media y otros parámetros que la vida requiere para su existencia.
Un equipo de astrónomos internacionales pertenecientes al Observatorio Europeo Austral (ESO), el más importante del mundo, investiga la formación de un posible nuevo sistema planetario a partir de discos de material que rodea a una estrella joven. Según un comunicado difundido hoy por el centro astronómico que se levanta en la región norteña de Antofagasta (Chile), a través del “Very Large Telescope”(VLT), los científicos han estudiado la materia que rodea a una estrella joven.
Según los astrónomos, los planetas se forman a partir de discos de material que rodean a las estrellas, pero la transición desde discos de polvo hasta sistemas planetarios es rápida y muy pocos son identificados en esta fase. Uno de los objetos estudiados por los astrónomos de ESO, es la estrella T Chamaleontis (T-Cha), ubicada en la pequeña constelación de Chamaleón, la cual es comparable al sol pero en sus etapas iniciales.
Dicha estrella se encuentra a unos 330 años luz de la Tierra y tiene 7 millones de años de edad, lo que se considera joven para una estrella. “Estudios anteriores han demostrado que T Cha es un excelente objetivo para estudiar cómo se forman los sistemas planetarios”, señala el astrónomo Johan Olofsson, del Max Planck Institute of Astronomy de Alemania.
Algunas veces hablando de los extensos y complejos temas que subyacen en la Astronomía, lo mismo hablamos de “materia de sombre” que de “supercuerdas” y, se ha llegado a decir que existe otro universo de materia de sonbra que existe en paralelo al nuestro. Los dos universos se separaron cuando la Gravedad se congeló sepapándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo cual las convierte en candidatas ideales para la tan traida y llevada “materia oscura”.
Llegamos a los Axiones.
Lo cierto es que, para no saber, no sabemos si realmente existe
Simplemente la hemos adoptado para que cuadren las cuentas. Sin la materia oscura no podemos explicar el movimiento de las galaxias y estrellas que no coincide con el que deberíamos ver si toda la materia del Universo fuese la Bariónica. La que emite luz hecha de átomos.
El estado actual de la cuestión es que los cosmólogos creen saber que hay una gran cantidad de materia oscura en el Universo y, han conseguido eliminar la candidatura de cualquier tipo de partícula ordinaria que conocemos. En tales circunstancias no se puede llegar a otra conclusión que la materia oscura debe de existir en alguna forma que todavía no hemos visto y cuyas propiedades ignoramos totalmente. Sin embargo, se atreven a decir que, la Gravedad, es el efecto que se produce cuando la “materia oscura” pierde consistencia… , o algo así. ¡Cómo son!
A los teóricos nada les gusta más que aquella situación en la cual puedan dejar volar libremente la imaginación sin miedo a que nada tan brusco como un experimento u observación acabe con su juego. En cualquier caso, han producido sugerencias extraordinarias acerca de lo que podría ser la “materia oscura” del universo.
Lo que hay en el Universo…no siempre lo podemos comprender.
Otro de los WIMPs favoritos se llama axión. Como el fotino y sus compañeros, el axión fue sugerido por consideraciones de simetría. Sin embargo, a diferencia de las partículas, sale de las Grandes Teorías Unificadas, que describen el Universo en el segundo 10ˉ³5, más que de las teorías totalmente unificadas que operan en el tiempo de Planck.
Unidades de Planck
Durante mucho tiempo han sabido los físicos que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la película hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reversa del tiempo (pasar la película al revés).
Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es éste el caso. El mundo visto en un espejo se desvía un tanto al mundo visto directamente, y lo mismo sucede al mundo visto cuando la película pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el inverso en cada uno de estos casos se cancelan una a la otra cuando miramos las tres inversiones combinadas.
Aunque esto es verdad, también es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?
La respuesta a esta cuestión parece que puede estar en la posible existencia de esa otra partícula apellidada axión. Se supone que el Axión es muy ligero (menos de una millonésima parte de la masa del electrón) e interacciona sólo débilmente con otra materia. Es la pequeña masa y la interacción débil lo que explica el “casi” que preocupa a los teóricos.
Cuando nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de momento, es imposible verificarla.
El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.
Dispersas entre oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.
¿Podéis imaginar la existencia de un Universo en permanente sombra?
La idea de un universo en sombra nos proporciona una manera sencilla de pensar en la materia oscura. El universo dividido en materia y materia se sombra en el Tiempo de Planck, y cada una evolucionó de acuerdo con sus propias leyes. Es de suponer que algún Hubble de sombra descubrió que ese universo de sombra se estaba expandiendo y es de suponer que algunos astrónomos de sombras piensan en nosotros como candidatos para su materia oscura.
¡Puede que incluso haya unos ustedes de sombras leyendo la versión de sombra de este trabajo!
¿Partículas y partículas súper-simétricas? ¿Dónde están?
Partículas son las que todos conocemos y que forman la materia, la súper-simétricas, fotinos, squarks y otros, las estamos buscando sin poder hallarlas.
Estas partículas son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados, pero son mucho más pesadas. Se nombran en analogía con sus compañeras: el squark es el compañero súper-simétrico del quark, el fotino del fotón, etc. Las más ligeras de estas partículas podrían ser la ·materia oscura·. Si es así, cada partícula probablemente pesaría al menos cuarenta veces más que el protón.
Materia de sombra, si existe, no hemos sabido dar con ella y, sin embargo, existen indicios de que está ahí
En algunas versiones de las llamadas teorías de supercuerdas hay todo un universo de materia de sombra que existe paralelo con el nuestro. Los dos universos se separaron cuando la gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo que las convierte en candidatas ideales para la materia oscura.
Habiendo inventado la “materia oscura” para explicar lo que no pueden, se inventan también, las partículas que la conforma: Axiones, unas partículas súper-simétricas que buscará el LHC.
El LHC busca la relación de los Axiones con la “materia oscura” Será difícil que la encuentre
El Axión es una partícula muy ligera (pero presumiblemente muy común) que, si existiera, resolvería un problema antiguo en la teoría de las partículas elementales. Se estima que tiene una masa menor que una millonésima parte de la del electrón y se supone que impregna el universo de una manera semejante al fondo de microondas. La materia oscura consistiría en agregaciones de axiones por encima del nivel general de fondo.
Construimos inmensos aparatos de ingeniosas propiedades tecnológicas para tratar de que nos busquen las WIMPs
¿WIMPs en el Sol?
A lo largo de todo el trabajo se ha dado a entender que todas estas partículas candidatas a materia oscura de la que hemos estado hablando, son puramente hipotéticas. No hay pruebas de que ninguna de ellas se vaya a encontrar de hecho en la naturaleza. Sin embargo sería negligente si no mencionase un argumento –un diminuto rayo de esperanza- que tiende a apoyar la existencia de WIMPs de un tipo u otro. Este argumento tiene que ver con algunos problemas que han surgido en nuestra comprensión del funcionamiento y la estructura del Sol.
Creemos que la energía del Sol viene de reacciones nucleares profundas dentro del núcleo. Si éste es el caso en realidad, la teoría nos dice que esas reacciones deberían estar produciendo neutrinos que en principio son detectables sobre la Tierra. Si conocemos la temperatura y composición del núcleo (como creemos), entonces podemos predecir exactamente cuántos neutrinos detectaremos. Durante más de veinte años se llevó a cabo un experimento en una mina de oro de Dakota del Sur para detectar esos neutrinos y, desgraciadamente, los resultados fueron desconcertantes. El número detectado fue de sólo un tercio de lo que se esperaba. Esto se conoce como el problema del neutrino solar.
El problema de los neutrinos solares se debió a una gran discrepancia entre el número de neutrinos que llegaban a la Tierra y los modelos teóricos del interior del Sol. Este problema que duró desde mediados de la década de 1960 hasta el 2002, ha sido recientemente resuelto mediante un nuevo entendimiento de la física de neutrinos, necesitando una modificación en el modelo estándar de la física de partículas, concretamente en las neutrinos” Básicamente, debido a que los neutrinos tienen masa, pueden cambiar del tipo de neutrino que se produce en el interior del Sol, el neutrino electrónico, en dos tipos de neutrinos, el muónico y el tauónico, que no fueron detectados. (Wikipedia).
La segunda característica del Sol que concierne a la existencia de WIMPs se refiere al hecho de las oscilaciones solares. Cuando los astrónomos contemplan cuidadosamente la superficie solar, la ven vibrar y sacudirse; todo el Sol puede pulsar en períodos de varias horas. Estas oscilaciones son análogas a las ondas de los terremotos, y los astrónomos llaman a sus estudios “sismología solar”. Como creemos conocer la composición del Sol, tenemos que ser capaces de predecir las propiedades de estas ondas de terremotos solares. Sin embargo hay algunas duraderas discrepancias entreentre la teoría y la observación en este campo.
No hace hace mucho que los astrónomos han señalado que si la Galaxia está en realidad llena de materia oscura en la forma de WIMPs, entonces, durante su vida, el Sol habría absorbido un gran número
de ellos. Los WIMPs, por tanto, formarían parte de la composición del Sol, una parte que no se había tenido en cuenta hasta ahora. Cuando los WIMPs son incluidos en los cálculos, resultan dos consecuencias: primero, la temperatura en el núcleo del Sol resulta ser menor de lo que se creía, de forma que son emitidos menos neutrinos, y segundo, las propiedades del cuerpo del Sol cambian de tal modo que las predicciones de las oscilaciones solares son exactas.
Hasta nos atrevemos a exponer una imagen que nos muestra la distribución de los WIMPs
Este resultado es insignificante en lo que se refiere a la existencia de WIMPs, pero como no debemos despreciar las coincidencias halladas, lo más prudente será esperar a nuevos y más avanzados experimentos (SOHO y otros). Tanto el problema del neutrino como las oscilaciones se pueden explicar igualmente bien por otros efectos que no tienen nada que ver con los WIMPs. Por ejemplo, el tipotipo de oscilaciones de neutrinos podría resolverse si el neutrino solar tuviera alguna masa, aunque fuese muy pequeña, y diversos cambios en los detalles de la estructura interna del Sol podrían explicar las oscilaciones. No obstante estos fenómenos solares constituyen la única indicación que tenemos de que uno de los candidatos a la materia oscura pueda existir realmente.
Toda esta charla sobre supersimetría y teoría últimas da a la discusión de la naturaleza de la materia oscura un tono solemne que no tiene ningún parecido con la forma en que se lleva en realidad el debate entre los cosmólogos. Una de las cosas que más me gusta de este campo es que todo el mundo parece ser capaz de conservar el sentido del humor y una distancia respecto a su propio trabajo, ya que, los buenos científicos saben que, todos los cálculos, conjeturas, hipótesis y finalmente teorías, no serán visadas en la aduana de la Ciencia, hasta que sean muy, pero que muy bien comprobadas mediante el experimento y la observación y, no una sino diez mil veces antes de que puedan ser aceptadas en el ámbito puramente científico.
El el Sol podemos hallar algunas respuestas
Posiblemente, el LHC nos pueda decir algo al respecto si, como no pocos esperan, de sus colisiones surgen algunas partículas supersimétricas que nos hablen de ese otro mundo oscuro que, estando en este, no hemos sabido encontrar hasta este momento. Otra posibilidad sería que la tan manoseada materia oscura no existiera y, en su lugar, se descubriera otro fenómeno o mecanismo natural desconocido hasta ahoraahora que, incidiendo en el comportamiento de expansión del Universo, nos hiciera pensar en la existencia de la “materia oscura” parapara
cubrir el hueco de nuestra ignorancia.
Hace algún tiempo, en esas reuniones periódicas que se llevan a cabo entre científicos de materias relacionadas: física, astronomía, astrofísica, cosmología…, alguien del grupo sacó a relucir la idea de la extinción de los dinosaurios y, el hombre se refirió a la teoría (de los muchas que circulan) de que el Sol, en su rotación alrededor de la Vía Láctea, se salía periódicamente fuera del plano de la Galaxia. Cuando hacía esto, el polvo existente en ese plano podía cesar de proteger la Tierra, que entonces quedaría bañada en rayos cósmicos letales que los autores de la teoría pensaban que podían permeabilizar el cosmos. Alguien, desde el fondo de la sala lanzó: ¿Quiere decir que los dinosaurios fueron exterminados por la radiación de fotinos?
La cosa se tomó a broma y risas marcaron el final de la reunión en la que no siempre se tratan los temas con esa seriedad que todos creen, toda vez que, los conocimientos que tenemos de las cosas son muy limitados y tomarse en serio lo que podría no ser… ¡No sería nada bueno!
emilio silvera
Sep
26
La NASA nos habla de una estrella muy resistente
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
!Estrella Resistente Sobrevive a una Explosión Supernova!
“20.03.14.- Cuando una estrella masiva se queda sin combustible, se colapsa y explota como una supernova. Aunque estas explosiones son extremadamente poderosas, es posible para una estrella compañera soportar la explosión. Un equipo de astrónomos utilizando el Observatorio de Rayos X Chandra de la NASA y otros telescopios han encontrado pruebas de una de estas supervivientes.
Regiones HII
Esta resistente estrella está en el campo de escombros de la explosión estelar –también llamado remanente de supernova– situado en una región HII llamada DEM L241. Una región HII (se pronuncia “H-dos”) se crea cuando la radiación de estrellas jóvenes y calientes se despoja de los electrones de los átomos de hidrógeno neutro (HI) para formar nubes de hidrógeno ionizado (HII). Esta región HII se encuentra en la Gran Nube de Magallanes, una pequeña galaxia compañera de la Vía Láctea.
Región H II en la G. N. de Magallanes
Una nueva imagen compuesta de DEM L241 contiene datos del Chandra (púrpura) que describen el remanente de supernova. El remanente se mantiene caliente y por lo tanto, brillante en rayos X durante miles de años después de que ocurriese la explosión original. También se incluyen en esta imagen los datos ópticos de la Línea de Emisión de la Nube
de Magallanes (MCELS), tomados desde telescopios terrestres en Chile (amarillo y cian), que traza la emisión HII producida por DEM L241. También se incluyen los datos ópticos adicionales del Digitized Sky Survey (blanco), que muestra las estrellas en el campo.
Los últimos datos del Chandra revelaron la presencia de una fuente de rayos X puntual en el mismo lugar como una joven estrella masiva dentro del remanente de supernova de DEM L241
Región HII llamada DEM L241
Imagen de la estrella resistente a la explosión supernova. Image Credit: NASA/Chandra
“Esta imagen se ha obtenido con el Observatorio de rayos X Chandra de la NASA y telescopios ópticos terrestres, y muestra un haz extremadamente largo (o filamento) de materia y antimateria que se extiende desde un púlsar relativamente pequeño. Este rayo con su tremenda amplitud, puede ayudar a explicar la enorme cantidad de positrones (las contrapartes de antimateria de los electrones) que los científicos han detectado en toda la galaxia de la Vía Láctea.”
Grandes observatorios
Los observatorios que vemos más arriba detectan las ondas expansivas de una estrella en explosión
Los astrónomos pueden mirar los detalles de los datos del Chandra para recoger pistas importantes sobre la naturaleza de la fuente de rayos X. Por ejemplo, cómo es el brillo de los rayos X, cómo cambian con el tiempo y la forma en que se distribuyen en todo el rango de energía que observa el Chandra.
En este caso, los datos sugieren que la fuente puntual es un componente de un sistema estelar binario. En un par tan celestial, una estrella de neutrones o un agujero negro (que se forma cuando la estrella se convierte en supernova) está en órbita con una estrella mucho más grande que nuestro Sol. A medida que orbitan entre sí, la densa estrella de neutrones o un agujero negro tira del material lejos de su estrella compañera a través del viento de partículas que fluye lejos de su superficie. Si se confirma este resultado, DEM L241 sería sólo el tercer binario que contiene una estrella masiva y una estrella de neutrones o un agujero negro encontrado como secuela de una supernova.
De remanentes de Supernovas, como el de la Nebulosa del Cangrejo, con sus filamentos de plasma, está lleno el Espacio Interestelar, en el que, periódicamente “muere” alguna estrella masiva eyectando a ese entorno sus capas exteriores para formar una Nebulosa. La estrella se contrae sobre sí misma y queda convertida en un objeto diferente en función de su masa.
Se han detectado estrellas de neutrones a punto de ser engullidas por un agujero negro
Los datos de rayos X del Chandra también muestran que el interior del remanente de supernova es rico en oxígeno, neón y magnesio. Este enriquecimiento y la presencia de la estrella masiva implican que la estrella que explotó tenía una masa superior a 25 veces, o quizás hasta 40 veces, la del Sol. Observaciones ópticas con el telescopio de 1,9 metros del Observatorio Astronómico de Sudáfrica muestran que la velocidad de la estrella masiva está cambiando y que orbita alrededor de la estrella de neutrones o agujero negro con un período de decenas de días. Una medición detallada de la variación de la velocidad de la estrella compañera masiva debería proporcionar una prueba definitiva de si el binario contiene o no un agujero negro.
Ya existen pruebas indirectas de que otros remanentes de supernovas se formaron por el colapso de una estrella para formar un agujero negro. Sin embargo, si la estrella colapsada en DEM L241 resulta ser un agujero negro, esto proporcionaría la evidencia más fuerte hasta ahora para un acontecimiento tan catastrófico.
¿Qué depara el futuro para este sistema? Si el último pensamiento es correcto, la estrella masiva superviviente será destruida en una explosión de supernova dentro de algunos millones de años a partir de ahora. Cuando lo haga, es posible que se forme un sistema binario que contenga dos estrellas de neutrones o una estrella de neutrones y un agujero negro, o incluso un sistema con dos agujeros negros.
Fuente: Noticias NASA