lunes, 27 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Gravedad! ¿La conoceremos alguna vez

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

De la Gravedad se han elaborado algunas teorías, algunas más fiables que otras, y, lo cierto es que, la de mayor credibilidad desde Newton, es la que nos desarrolla la Relatividad General de Einstein y con ella, conocimos una nueva Cosmología.

Si la respuesta es…¡El Universo! ¿Cuál es la pregunta?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Las dos estrellas alumbran a este mundo que, está siendo sometido a doble fuerza de gravedad que les viene el exterior, y, además, tiene que soportar la suya propia, la que genera su masa… ¿Cómo podrían vivir los posibles habitantes de mundos así. Lo cierto es que sería bonito ,ver la salida y la puesta del Sol de dos estrellas distintas desde tu mundo.

El pensamiento “generalizado” hoy en día en la mayoría de los astrónomos, astrofísicos y demás científicos afines a la ciencia del Universo, es que, pueden existir miles de planetas habitados dentro de nuestra propia Galaxia, la Vía Láctea. Ahora sabemos que el Universo no conoce límite alguno ni en el espacio ni en el tiempo que, según todos los indicios, ha estado expandiéndose durante 13.700 millones de años que, es un período de tiempo más que suficiente para que las estrellas que han existido desde entonces, tuvieran el tiempo necesario para producir todos los elementos que conocemos y que hicieron posible el surgir de la vida aquí en la Tierra y…probablemente, en “otras Tierras” que en la Galaxia Vía Láctea estén, y, de la misma manera, en los miles de millones de galaxias que pueblan el vasto universo que hemos llegado a conocer.

 

                                                                 

                             También estarán basados en el Carbono, el Universo es igual en todas partes

Más allá de la meta-galaxia, a la que pertenecen todos los sistemas galácticos que conocemos, tienen, necesariamente, que existir otros mundos que, como el nuestro, estén habitados por seres de toda índole y pelaje, inteligentes también. La meta-galaxia consta de hiper-galaxias, es decir, de grupos de sistemas galácticos.

 

Volumen Local - Wikipedia, la enciclopedia libre

 

Nuestro sistema galáctico consta cuenta con dos “satélites”: la Gran Nebulosa de Magallanes, distante 38.000 Parsec de nosotros y la Pequeña Nebulosa de Magallanes, a 36.000 Parsecs. La Nebulosa de Andrómeda es un sistema compuesto por cinco galaxias. Por lo general existen “puentes” de estrellas entre galaxias que constituyen un grupo. Se podría decir que que los grupos de galaxias estarían unidos por hilos de estrellas de manera tal que, muchas veces, nos cuesta trabajo asegurar a qué galaxia pertenece una estrella determinada.

             http://apod.nasa.gov/apod/image/1108/NGC7331_crawford900c.jpg

Tengo la suerte de que, Ken Crawford (Rancho Del Sol Obs.), me envíe regularmente imágines que obtiene en su Observatorio, y, en esta ocasión, recibí la imagen de la gran y bella galaxia espiral NGC 7331 que es a menudo vendida como una análoga a nuestra Vía Láctea. Está situada a 50 millones de años luz de distancia en la norteña constelación de Pegaso. En la imagen podemos vislumbrar otras galaxias que achican su imagen debido a que sus distancias están mucho más alejadas de nosotros.

La Constelación de Virgo cuenta con más de 3.000 galaxias, la Cabellera de Berenice con más de 10.000. Las super-galaxias tienen un diámetro de 30 o 40 mega-parsecs. No conocemos el número exacto de super-galaxias cuyos conjuntos constituyen las mega-galaxias. Y, sin embargo, la meta-galaxia es sólo una pequeña fracción del “universo infinito” de un universo que, para nuestro tiempo, se podría decir que existe desde la eternidad y que existirá también eternamente (aunque sabemos que no es así), al menos nos lo puede parecer.

 

                     

 

Nuestro Universo está cuajado de maravillas como ésta. La Galaxia de la rueda de la carreta (también conocido bajo el nombre de ESO 350-40) es una galaxia lenticular o anular situada a cerca de 500 millones de años luz de distancia en la constelación del escultor en el hemisferio meridional. Es rodeada de un anillo de 150 000 años de luz de diámetro, compuesto de estrellas jóvenes y brillantes. Esta galaxia era una galaxia idéntica a la Vía láctea antes de que sufra una colisión frontal con una galaxia vecina. Cuando galaxia vecina atravesó la Galaxia Cartwheel, la fuerza de la colisión causó una onda de choque poderosa sobre la galaxia, como una piedra echada en las tranquilas aguas de un estanque. Desplazándose a gran velocidad, este onda de choque barrió el gas y el polvo, creando así un halo alrededor de la parte central de la galaxia quedada indemne. Esto explica la nube azul alrededor del centro, la parte más brillante.

Observando la imagen con su collar de perlas azulado compuesto por brillantes y radiantes estrellas, nos hablan de una ingente producción de elementos complejos que, en el futuro, pasarán a formar parte de los mundos nuevos y, en ellos, con el tiempo, surgirá también la vida nueva de vaya usted a saber qué criaturas.

El Universo es una maravilla, y, cualquier objeto que podamos mirar nos podrá llevar al más alto grado de éstaxis. A mí me pasó con la luna Titán que visto a contraluz por la nave Cassini en órbita alrededor de Saturno. La atmósfera dispersa la luz del Sol mostrando un anillo completo mientras se filtra por las capas más altas. En este pequeño mundo de ríos de metano y atmósfera imposible, se han puesto altas esperanzas de que, en un futuro, pudiera surgir allí la vida. Es similar a nuestra Tierra de hace algunos millones de años.

MACS J0717.5 3745 - frwiki.wikiA primera vista, este caleidoscopio cósmico de púrpura, azul y rosa ofrece una imagen sorprendentemente hermosa y serena del cosmos. Sin embargo, esta neblina multicolor Marca realmente el sitio de dos cúmulos

 

El cúmulo de galaxias MACS J0717 localizado a 5400 millones de años luz, en una imagen lograda combinando datos ópticos del Hubble y en rayos-x del Chandra, muestra a cuatro cúmulos colisionando. Si hemos podido llegar hasta aquí, una voz en nuestra mente pregunta: ¿Hasta dónde podremos llegar?

 

       

 

La galaxia NGC 55, fotografiada por el observatorio de La Silla utilizando el Wide Field Imagen del telescopio de 2.2 metros MPG/ESO. ¿Cuántos mundos estarán ahí presentes? y, ¿tendrá alguno presencia de vida?

 

 

Arp 261, un par de galaxias localizadas a 70 millones de años luz, fotografiadas por el instrumento FORS2 del VLT en Cerro Paranal. La riqueza de la imagen nos puede llevar (mediante un estudio profundo) a saber lo mucho que en ella está presente, estrellas surgidas de inmensas nubes de gas interestelar, mundos nuevos llenos e promesas futuras y, otros, más viejos que, pudieran tener los vestigios de Civilizaciones perdidas.

 

                            http://chandra.harvard.edu/photo/2009/medusa/medusa.jpg

 

NGC 4194, la Galaxia Medusa, el resultado de la colisión entre dos galaxias, mostrada con datos ópticos del Telescopio Hubble y datos en rayos-x del Telescopio Chandra. La imagen nos habla de vestigios que están en el universo y nos cuentan dramáticas historias de galaxias que dejaron de existir para convertirse en otra nueva que, conteniendo materiales más complejos que aquellas primarias, hacen posible el surgir de estrellas cuyos materiales son más sofisticados que el simple hidrógeno, y, de esas estrellas descendientes de algunas generaciones anteriores…qué materiales podrán salir?

 

ESA - Mars Express revela los procesos que dieron forma a Nereidum Montes

 

Hemos podido admirar, la región de Rupes Tenuis fotografiada por la Mars Express de la ESA, mostrando gran cantidad de nieve sobre el polo marciano. Marte, el planeta hermano, nos tiene que dar muchas sorpresas y, a no tardar mucho (menos de 30 años), podremos por fin cobrar la apuesta del café que hice con algunos amigos sobre si había o no alguna clase de vida en aquel mundo.

 

Grupo Compacto de Hickson - Wikipedia, la enciclopedia libre

                                                           Trio of Galaxies Mix It Up

El trío de galaxias Hickson 90, un grupo compacto localizado en la constelación de Piscis Austrinus a 100 millones de años luz del Sol. Fotografiado por el Telescopio Espacial Hubble. Viendo objetos como los de arriba, podríamos preguntarnos: ¿Cuándo dejará de sorprendernos el Universo? ¡Es tanta su riqueza!

 

                                    Tycho's Supernova Remnant

 

La supernova de Tycho, localizada en Cassiopeia y mostrada en una imagen tomada en rayos-x por el telescopio Chandra y en luz infrarroja por el telescopio Spitzer. No por haberla visto muchas veces deja de sorprendernos, esa masa inmensa que, como remanente de los restos de una estrella masiva, nos muestra los filamentos de plasma que crean campos magnéticos a su alrededor sin importar el tiempo transcurrido desde el suceso. En dicha explosión se produjeron miles de toneladas de oro y platino que regaron el espacio interestelar para formar parte, más tarde, de algún mundo perdido.

 

         

 

La siempre fascinante Eta Carinae está escondida detrás de una de las nebulosas más grandes y brillantes del cielo en una imagen tomada desde La Silla utilizando el ESO/MPG de 2.2 metros. Aquí contemplamos parte de la Nebulosa, la estrella, una de las más grandes conocidas (unas 100 masas solares) parece que está a punto de explotar, y, sus consecuencias, podrían ser impredecibles.

 

                                 M101

La galaxia espiral M 101, localizada a 22 millones de años luz, en una imagen compuesta por datos del telescopio Chandra, el telescopio Hubble y el telescopio Spitzer. La bella y enorme galaxia está cuajada de estrellas nuevas y otras que no lo son tanto. El conjunto parece una luminaria de feria, la radiación que se expande por toda la galaxia no parece que sea un lugar muy seguro. Prefiero nuestra Vía Láctea.

 

                                    Unusual Spiral NGC 4921 in the Coma Galaxy Cluster

Atípica y extraña Galaxia. Una nueva imagen del Telescopio Espacial Hubble revela finos detalles de la galaxia espiral NGC 4921 y los objetos circundantes de fondo. La diversidad en el Universo es la norma y, por mucho que podamos pensar en objetos extraños que puedan existir, ahí estarán.

 

             

Una imagen que combina luz visible y rayos-x muestra la actividad del agujero negro supermasivo en la galaxia Centaurus A. Los Agujeros Negros que pueden contener miles y millones de masas solares, son tan peligrosos que, nada de lo que deambule por sus alrededores estará seguro. Se engulle toda la materia que caiga en su radio de acción, su fuerza de gravedad es descomunal y, por mucho que queramos correr, nos atrapará. Ya sabeis, ni la luz es capaz de burlar su fuerza de atracción.

 

                                NGC 604

¡Increíble región de formación estelar! NGC 604, una zona formación estelar en la galaxia M 33. Imagen capturada en alta resolución por el telescopio espacial de rayos-x Chandra. No podéis ni imaginar la enorme cantidad de estrellas jóvenes y masivas que están ahí presentes, sus emisiones de radiación ultravioleta producen fuertes vientos solares que dibujan las formas de las nubes cercanas formando arabescas figuras de gas ionizado por el ultravioleta que tiñe de azul toda la región.

Exótica, una lista para encontrar signos de vida inteligente en el Universo | Internacional | Noticias | El Universo

El Universo está poblado de objetos que ni podemos imaginar (de entre ellos los mundos

La variedad está servida, el prolífico Universo nos suministra de toda clase de objetos activos que, mediante transiciones de fase, pasen a convertirse en otros objetos distintos de lo que en un principio fueron. Nada permanece, todo se transforma. Es es la regla de oro que impone un Universo dinámico creador de materia en el espacio-tiempo infinito que nunca podremos dominar, y, si nos permite seguir en este maravilloso Sistema de Galaxias y mundos, podremos, en el futuro, conocer a nuestros hermanos inteligentes y, si las cosas salen como deberían salir, formaremos una Federación de mundos en la que, por fin, impere la igualdad para todos dentro de un clima de mutuo respeto y en el que, la sabiduría adquirida a través de muchas civilizaciones que fueron, nos habrá dado, ese algo del que ahora carecemos: Racionalidad y Temple, Sabiduría para poder discernir sobre lo que verdaderamente tiene valor y aquello que sólo es el falso brillo de la gloria y el poder que sólo puede traer destrucción y mal para muchos.

 

La humanidad es una flecha con destino a las estrellas • Tendencias21Turismo de estrellas: por qué los cielos limpios son un tesoro que hay que preservar

 

Esperemos que, observando el Universo y mirando dentro de nuestras Mentes, podamos llegar a comprender que, nuestro destino, no depende de nosotros pero sí, podremos mejorarlo si nuestro comportamiento contribuye a que sea mejor.

¡El Universo! Demasiado grande para seres tan pequeños como nosotros y, sin embargo…. ¡Quién sabe!

emilio silvera

Coreografía de un par de electrones

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El movimiento sincronizado de los electrones en el átomo de Helio se ha podido visualizar y controlar por primera vez utilizando pulsos láser de otto-segundos. Así nos cuentan en TRIBUNA Luca Argenti y Fernando Martín que lo publicaron hace algún tiempo ya para asombro de los lectores.

 

                 
          fotogramas de la película del movimiento de un par de electrones en el átomo de helio.

Físicos y químicos nos sorprenden cada día con el control que pueden ejercer sobre la materia. Por primera vez, investigadores españoles y alemanes hemos conseguido obtener la película del movimiento de los dos electrones que constituyen el átomo de helio e incluso controlar los pasos de esta singular pareja de baile. Para ello, hemos empleado una combinación de pulsos de luz visible y ultravioleta con una duración de tan solo unos pocos cientos de atto-segundos (un atto-segundo es una mil millonésima de una milmillonésima parte de un segundo).

 

La función de onda, su ecuación y su interpretación. Postulados. – Física cuántica en la red

       Las imágenes nos muestran de forma clara la función de onda

El control sobre el movimiento de pares de electrones podría revolucionar nuestra visión de la química, ya que los enlaces entre los distintos átomos que constituyen las moléculas, desde el agua al ADN, son el resultado del apareamiento de dos electrones. Por tanto, la perspectiva de utilizar láseres de atto-segundos para controlar el destino de los electrones apareados en un enlace abre el camino a la producción de sustancias que no pueden ser sintetizadas utilizando procedimientos químicos convencionales.

 

Electron Singularity

    Los átomos de carga negativa orbitan el núcleo de carga positiva creando un campo electromagnético

Para explicar algunas características extrañas en el espectro del átomo de hidrógeno, en 1913, el físico Niels Bohr introdujo un modelo planetario en el que el electrón cargado negativamente, unido al núcleo cargado positivamente por la fuerza electrostática de Coulomb, está restringido a moverse solamente a lo largo de órbitas muy concretas. Esta cuantificación del movimiento electrónico abrió un nuevo capítulo de la física y química modernas, sin el cual no se podría haber alcanzado el conocimiento de la materia del que se dispone hoy en día. En el modelo de Bohr, las cosas suceden rápidamente: el año sideral, es decir, el tiempo que el electrón necesita para completar la órbita más corta alrededor del núcleo, tiene la increíblemente corta duración de 0.000 000 000 000 000 152 segundos, o 152 attosegundos (as), un valor que se hace aún más pequeño cuando se consideran elementos más pesados en la tabla periódica de los elementos químicos.

 

 

… investigadores de la UAM consigue por primera vez utilizar pulsos láser con una duración de atto-segundos para observar el movimiento de los electrones

El atto-segundo es, de hecho, la escala de tiempo natural en el que los electrones se mueven en la materia ordinaria. El movimiento ultrarrápido predicho por el modelo de Bohr no pudo ser confirmado directamente hasta que, a comienzos de este siglo, una serie de avances revolucionarios generó la tecnología láser capaz de producir destellos de luz suficientemente cortos (el récord mundial es de 67 as) para hacer fotografías del movimiento de un electrón y así generar la película de ese movimiento. En contraste con el mundo macroscópico, una película del movimiento del electrón no revela un desplazamiento a lo largo de una trayectoria bien definida. Como consecuencia del comportamiento ondulatorio de la materia a nivel atómico, el electrón aparece como una nube difusa (o paquete de ondas) en movimiento. La densidad de la nube indica la probabilidad de encontrar al electrón en distintas regiones del espacio.

 

                   A table of five rows and five columns, with each cell portraying a color-coded probability density

                  Observar el comportamiento de los electrones es todo un espectáculo

En los sistemas más grandes que el hidrógeno, con varios electrones, la misma fuerza de Coulomb que une a un electrón con el núcleo también actúa repulsivamente entre los electrones. El efecto de tal repulsión es apantallar la carga nuclear, debilitando así el efecto atractivo del núcleo sobre cada uno de los electrones. Sin embargo, en gran medida, los electrones siguen actuando como partículas independientes y, por tanto, el movimiento del paquete de ondas que representa a todos los electrones no es mucho más complicado que el observado para un solo electrón en el átomo de hidrógeno. Hasta ahora, los experimentos llevados a cabo para seguir el movimiento de los paquetes de onda en átomos complejos fueron capaces de poner en marcha un solo electrón a la vez, confirmando esta imagen de que los electrones se mueven de forma casi independiente los unos de los otros.

 

1. Electrostática – Departamento de Matematicas COESTEHAWISTAElectrostática, qué es, características, ejemplos y fórmulas - Curso de física

Los electrones son Fermiones sometidos al Principio de exclusión de Pauli, si se juntan se repelen

La repulsión electrostática entre los electrones, sin embargo, tiene un efecto secundario, más sutil. De la misma manera que un pasajero de autobús evita sentarse al lado de otros pasajeros y toparse con ellos a medida que camina por el pasillo, los electrones tratan de evitarse el uno al otro cuando se mueven en el interior de un átomo o una molécula; el movimiento de los electrones se dice que está correlacionado. De este modo, los electrones minimizan su repulsión mutua y, como consecuencia, estabilizan el átomo o molécula a la que pertenecen.

 

Gifs de atomos - Gifs e Imagens Animadas

 

Dicha estabilización es responsable del balance energético de todos los procesos naturales, y es clave para nuestra comprensión y control del comportamiento de la materia, como la transferencia de energía en sistemas fotosintéticos, la protección de datos en los futuros ordenadores cuánticos, etcétera. A pesar de ello, el movimiento de dos electrones correlacionados ha eludido la observación experimental directa hasta el momento presente. Además, es muy difícil de reproducir teóricamente, ya que, incluso para el átomo de helio, que es el sistema más simple con dos electrones, las ecuaciones físico-cuánticas que describen este movimiento no pueden resolverse exactamente y, en su lugar, deben realizarse costosos cálculos numéricos en superordenadores.

                                                 

 

Para poder tomar en cuenta la indistinguibilidad de los dos electrones del helio siguiendo las reglas de la Mecánica Cuántica, lo cual requiere que en una …

Esta semana, en la revista Nature, los investigadores teóricos de la Universidad Autónoma de Madrid, Luca Argenti y Fernando Martín, en colaboración con el grupo experimental de Thomas Pfeifer, del Instituto Max Planck de Heidelberg, explicamos cómo hemos reconstruido por primera vez el movimiento simultáneo de dos electrones excitados en el helio, a partir de datos experimentales y cálculos de física cuántica inéditos. Hemos utilizado una versión de alta resolución de una técnica conocida como espectroscopia de absorción transitoria de atto-segundos, mediante la cual se midió la transparencia de una muestra de helio a destellos cortos de luz ultravioleta en función del tiempo transcurrido entre este destello y otro de luz roja generado por un láser de titanio-zafiro.

 

LAser – La Químicaweb

Al igual que un adulto empuja a un niño en un columpio, el pulso ultravioleta lleva el átomo a un estado excitado, donde ambos electrones oscilan. Actuando de manera adecuada, las piernas de los niños pueden amplificar o amortiguar las oscilaciones del columpio. Y midiendo la amplitud de dichas oscilaciones se puede deducir el punto en el que el niño movió las piernas, es decir, reconstruir el movimiento original del columpio. De una manera similar, en el experimento, el pulso de luz roja fortalece o debilita la absorción de la luz ultravioleta en función del tiempo transcurrido entre los dos pulsos. A partir de la modulación de la absorción ultravioleta, hemos logrado reconstruir la oscilación de los dos electrones, y de ahí deducir la evolución del correspondiente paquete de ondas. Más allá del seguimiento de este movimiento, también pudimos modificarlo y controlarlo aumentando la intensidad del pulso rojo. Volviendo a la analogía del columpio, es como si el niño estuviera, además, sujetando una cometa: un fuerte golpe de viento alteraría por completo la oscilación del columpio.

Con este trabajo, consideramos que hemos abierto el camino para la observación directa del movimiento electrónico correlacionado en átomos y moléculas, y quizá para controlar el movimiento de los electrones apareados en enlace químicos, lo que permitiría la producción de sustancias que no pueden ser obtenidas con procedimientos químicos convencionales.

Luca Argenti y Fernando Martín son investigadores teóricos del Departamento de Química de la Universidad Autónoma de Madrid.

Reportaje de prensa