domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Estrellas Hiper-gigante

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

      Las estrellas súper-masivas tienen una vida más corta

Nebulosas Planetarias y estrellas enanas blancas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 File:Ngc2392.jpg

                                 NGC 2392 es una nebulosa planetaria en la constelación de Gérminis

En la imagen de arriba contemplamos la Nebulosa del Esquimal o del Payaso, NGC 2392, que forma un conjunto vistoso. Por su curiosa apariencia, que recuerda a la cara de una persona rodeada por una capucha, recibe también los nombres de Nebulosa Esquimal. Se encuentra, según autores, a unos 3000 o/ 5000 años-luz de la Tierra.

La edad de NGC 2392 se estima en unos 10.000 años, y está compuesta por dos lóbulos elípticos de materia saliendo de la estrella moribunda. Desde nuestra perspectiva, unos de los lóbulos está delante del otro.

 

 

Se cree que la forma de la nebulosa se debe a un anillo de material denso alrededor del ecuador de la estrella expulsado durante la fase de gigante roja. Este material denso es arrastrado a una velocidad de 115.000 km/h., impidiendo que el viento estelar, que posee una velocidad mucho mayor, empuje la materia a lo largo del ecuador. Por el contrario, este viento de gran velocidad (1,5 millones de km/h) barre material por encima y debajo de la estrella, formando burbujas alargadas. Estas burbujas, de 1 año luz de longitud y la mitad de anchura, tienen filamentos de materia más densa. No obstante, las líneas que van de dentro a afuera en el anillo exterior (en la capucha) no tienen todavía explicación, si bien su origen puede deberse a la colisión entre gases de baja y alta velocidad.

La Nebulosa del Esquimal fue descubierta por William Herschel  el 17 de enero de 1787.

 

http://vignette4.wikia.nocookie.net/masseffect/images/7/75/Nebulosa_Reloj_de_Arena.jpg/revision/latest?cb=20150421183346&path-prefix=es

                                                               La Nebulosa Reloj de Arena

Una nebulosa planetaria es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado,  expulsada durante la fase de rama asintótica gigante que atraviesan las estrellas gigantes rojas  en los últimos momentos de sus vidas.

Las nebulosas planetarias son objetos de gran importancia en astronomía,  debido a que desempeñan un papel crucial en la evolución química de las Galaxias,  devolviendo al medio interestelar metales pesados  y otros productos de la nucleosíntesis de las estrellas (como Carbono, Nitrógeno, oxígeno, Calcio… y otros).  En galaxias lejanas, las nebulosas planetarias son los únicos objetos de los que se puede obtener información útil acerca de su composición química.

 

File:NGC6543.jpg

La Nebulosa Ojo de Gato.  Imagen en falso color (visible y rayos X) tomada por el tomada por el Hubble.

 

La gama y diseños de Nebulosas Planetarias es de muy amplio abanico y, en esa familia de Nubulosas podemos admirar y asombrarnos con algunas que, como la famosa Ojo de Gato (arriba), nos muestra una sinfonía de arquitectónica superpuesta que ni la mente del más avispado arquitecto habría podido soñar.

Enanas Blancas son estrellas misteriosas que, como residuos de otras que fueron, se resisten a “morir” y quedan envueltas en ese manto precioso de nebulosas planetarias durante siglos. Las formas y colores de estas maravillosas figuras han llamado desde siempre la atención de los astrónomos y astrofísicos que se han devanado los sesos para averiguar los mecanismos que allí se han tenido que producir para que esas nebulosas se dejen ver con esas fabulosas formas de exóticas figuras.
 
 
fisica

 

Una enana blanca es una pequeña y densa estrella que es el resultado final de la evolución de todas las estrellas (por el ejemplo el Sol), excepto las muy masivas. Según todos los estudios y observaciones, cálculos, modelos de simulación, etc., estas estrellas se forman cuando, al final de la vida de las estrellas medianas, agotan el combustible de fusión nuclear, se produce el colapso de sus núcleos estelares, y quedan expuestas, cuando las partes exteriores de la estrella son expulsadas al espacio interestelar formar una Nebulosa Planetaria. En el centro de la Nebulosa, queda desnudo un puntito blanco que es, la estrella enana blanca.

El Núcleo se contrae bajo su propia gravedad hasta que, habiendo alcanzado un tamaño similar al de la Tierra , se ha vuelto tan densa (5 x 10 ^8 Kg/m3) que sólo evita su propio colapso por la presión de degeneración de los electrones (los electrones son fermiones que estando sometidos al Principio de exclusión de Pauli, no pueden ocupar ninguno de ellos el mismo lugar de otro al tener el mismo número cuántico y, siendo así, cuando se juntan demasiado, se degeneran y comienzan una frenética carrera que, en su intensidad, incluso frenar la implosión de una estrella -como es el caso de las enanas blancas).

Las enanas blancas se forman con muy altas temperaturas superficiales (por encima de los 10 000 K) debido al calor atrapados en ellas, y liberado por combustiones nucleares previas y por la intensa atracción gravitacional que sólo se ve frenada por la degeneración de los electrones que, finalmente, la estabilizan como estrella enana blanca.

                             Descubren un nuevo tipo de nebulosa alrededor de estrellas binarias gracias a la colaboración de astrónomos aficionados

tipo de estrellas, con el paso del tiempo, se enfrían gradualmente, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30 por ciento de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades de 10 ^-3 – 10 ^-4 veces la del Sol, pasan desapercibidas. La máxima máxima posible de una enana blanca es de 1,44 masas solares, el límite de Shandrasekhar. Un objeto de masa mayor se contraería aún más y se convertiría en una estrella de neutrones o, de tener mucha masa, en un agujero negro.

La enana blanca Sirio B, breve historia sobre su descubrimiento – La Conexión Cósmica

Visión artística de una enana blanca, Sirio B – Crédito: NASA, ESA y G. Bacon (STScl)

Las enanas blancas son estrellas calientes y pequeñas, generalmente del tamaño de la Tierra, por lo que su luminosidad es muy baja. Se cree que las enanas blancas son los residuos presentes en el centro de las nebulosas planetarias. Dicho de otra manera, las enanas blancas son el núcleo de las estrellas de baja masa que quedan después de que la envoltura se ha convertido en una nebulosa planetaria.

El núcleo de una enana blanca consiste de material de electrones degenerados. Sin la posibilidad de tener nuevas reacciones nucleares, y probablemente después de haber perdido sus capas externas debido al viento solar y la expulsión de una nebulosa planetaria, la enana blanca se contrae debido a la fuerza de gravedad. La contracción hace que la densidad en el núcleo aumente hasta que se den las condiciones necesarias para tener un material de electrones degenerados. Este material genera presión de degeneración, el cual contrarresta la contracción gravitacional.

 

                                     

                                                         Procyon B, una débil enana blanca.

Al ser estudiadas más a fondo las propiedades de las enanas blancas se encontró que al aumentar su masa, su radio disminuye. A partir de esto es que se encuentra que hay un límite superior la masa de una enana blanca, el cual se encuentra alrededor de 1.4 masas solares (MS). Si la masa es superior a 1.4 MS la presión de degeneración del núcleo no es suficiente detener la contracción gravitacional. Este se llama el límite de Chandrasekhar.

Debido a la existencia de este límite es que las estrellas de entre 1.4 MS y 11 MS deben perder masa para poder convertirse en enanas blancas. Ya explicamos que dos medios de pérdida de masa son los vientos estelares y la expulsión de nebulosas planetarias. Sin embargo, existen otras posiblidades que se puedan dar en este tipo de estrellas que son muy densas. Por ejemplo, si cerca de alguna de ellas reside otra estrella que esté lo bastante cerca, la enana blanca, poco a poco, puede ir robándole masa a la estrella compañera hasta que, llegado a un punto, ella misma se recicla y se convierte en una estrella de Neutrones.

 

enanas
A esto da lugar la unión de dos enanas blancas o una enana blanca colisionando con una estrella de neutrones
 

Después de que una estrella se ha convertido en enana blanca, lo más probable es que su destino sea enfriarse y perder brillo. Debido a que las enanas blancas tienen una baja luminosidad, pierden energía lentamente, por lo que pueden permanecer en etapa en el orden de años. Una vez que se enfrían, se vuelven rocas que se quedan vagando por el Universo. Este es el triste destino de nuestro Sol.

La detección de enanas blancas es difícil, ya que son objetos con un brillo muy débil. Por otro lado, hay ciertas diferencias en las enanas blancas según su masa. Las enanas blancas menos masivas sólo alcanzan a quemar hidrógeno en helio. Es decir, el núcleo de la estrella nunca se comprime lo suficiente como alcanzar la temperatura necesaria para quemar helio en carbono. Las enanas blancas más masivas sí llevan a cabo reacciones nucleares de elementos más pesados, es decir, en su núcleo podemos encontrar carbono y oxígeno.

 

                                             

 

Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha). enana blanca tiene una temperatura en la superficie de 35.500 K.

Allá por el año 1908, siendo Chandrasekhar un avanzado estudiante de física, vivía en Madrás, en la Bahía de Bengala (En cuyo Puerto trabajó Ramanujan), y, estando en  aquella ciudad el célebre científico Arnold Sommerfeld, le pidió audiciencia y se pudo entrevistar con él que, le vino a decir que la física que estudiaba estaba pasada, que se estaban estudiando nuevos caminos de la física y, sobre todo, uno a cuya teoría se la llamaba mecánica cuántica que podía explicar el comportamiento de lo muy pequeño.

 

                                                 blancas
                                                     El joven Chandrasekhar

Cuando se despidieron Sommerfeld dio a Chandrasekhar la prueba de imprenta de un artículo técnico que acaba de escribir. Contenía una derivación de las leyes mecano-cuánticas que gobiernan grandes conjuntos de electrones comprimidos en volúmenes pequeños, por ejemplo ( este caso) en una estrella enana blanca.

A partir de aquel artículo, Chandrasekhar buscó más información y estudió estos fenómenos estelares que desembocaban en enanas blancas. Este tipo de estrella habían descuibiertas por las astrónomos a través de sus telescopios. Lo misterioso de las enanas blancas era su densidad extraordinariamente alta de la materia en su interior, una densidad muchísimo mayor que la de cualquier otra cosa que los seres humanos hubieran encontrado antes. Chandrasekhar no tenía forma de saberlo cuando abrió un libro de Eddintong que versaba sobre la materia, pero la lucha por desvelar el misterio de alta densidad le obligaría finalmente a él y a Eddintong a afrontar la posibilidad de que las estrellas masivas, cuando mueren, pudieran contraerse para formar agujeros negros.

 

                               astrofisica

De las enanas blancas más conocidas y cercanas, tenemos a Sirio B. Sirio A y Sirio B son la sexta y la séptima estrellas en orden de proximidad a la Tierra, a 8,6 años-luz de distancia, y Sirio es la estrella más brillante en nuestro cielo. Sirio B orbita en torno a Sirio de la misma manera que lo hace la Tierra alrededor del Sol, pero Sirio B tarde 50 años en completar una órbita a Sirio y la Tierra 1 año al Sol.

Eddintong describía como habían estimado los astrónomos, a partir de observaciones con telescopios, la masa y la circunferencia de Sirio B. La masa era de 0,85 veces la masa del Sol; la circunferencia media 118.000 km. Esto significaba que la densidad media de Sirio B era de 61.000 gramos por centímetro cúbico, es decir 61.000 veces mayor que la densidad del agua. “Este argumento se conoce ya hace algunos años -nos decía Eddintong-” Sin embargo, la mayoría de los astrónomos de aquel tiempo, no se tomaban en serio tal densidad, Sin embargo, si hubieran conocido la verdad que conocemos: (Una masa de 1,05 soles, una circunferencia de 31.000 km y una densidad de 4 millones de gramos por cm3), la habrían considerado aún más absurda.

Ngc 6543 fotografías e imágenes de alta resolución - Alamy

Arriba la famosa Nebulosa planetaria ojo de Gato que, en su centro luce una estrella enana blanca de energéticas radiaciones en el ultravioleta y que, a medida que se vaya enfriando, serán de rayos C y radio que, dentro de unos 100 millones de años vieja y fria, será más rojiza y se habrá convertido en un cadáver estelar.

Aquellos trabajos de Chandraskar y Eddintong desembocaron en un profundo conocimiento de las estrellas de neutrones y, se llego a saber el por qué conseguían el equilibrio que las estabilizaba a través de la salvación que, finalmente encontraban, en la mecánica cuántica, cuando los electrones degenerados por causa del Principio de exclusión de Pauli, no dejaban que la fuerza gravitatoria continuara el proceso de contracción de la estrella y así, quedaba estabilizada como estrella de neutrones.

De la misma manera, se repetía el proceso estrellas más masivas que, no pudiendo ser frenadas en su implosión gravitatoria por la degeneración de los electrones, sí que podia frenarse la Gravedad, mediante la degeneración de los Neutrones. Cuando esa estrella más masiva se contraía más y más, el Principio de exclusión de Pauli que impide que los fermiones estén juntos, comenzaba su trabajo e impedía que los neutrones (que son fermiones), se juntaran más, entonces, como antes los electrones, se degeneraban y comenzaban a moverse con velocidades relativistas y, tan hecho, impedía, por sí mismo que la Gravedad consiguiera comprimir más la masa de la estrella que, de manera, quedaba convertida, finalmente, en una Estrella de Neutrones.

 

                                  Enanas Blancas, estrellas misteriosas

 Al formarse la estrella de neutrones la estrella se colapsa hasta formar una esfera perfecta con un radio de tan solo unos 10 kilómetros. En este punto la presión neutrónica de Fermi resultante compensa la fuerza gravitatoria y estabiliza la estrella de neutrones. Apenas una cucharilla del material que conforma una estrella de neutrones tendría una masa superior a 5 x 10 ^12 kilogramos.

Los modelos de estrellas de neutrones que se han logrado construir utilizando las leyes físicas presentan varias capas. Las estrella de neutrones presentarían una corteza de hierro muy liso de, aproximadamente, un metro de espesor. Debajo de corteza, prácticamente todo el material está compuesto por núcleos y partículas atómicas fuertemente comprimidos formando un “cristal” sólido de materia nucleica.

 

                           

Son objetos extremadamente pequeños u densos que surgen cuando estrellas masivas sufren una explosión supernova del II, el núculeo se colapsa bajo su propia gravedad y puede llegar hasta una densidad de 10 ^17 Kg/m3. Los electrones y los protones que están muy juntos se fusionan y forman neutrones. El resultado final consiste solo en neutrones, cuyo material, conforma la estrella del mismo . Con una masa poco mayor que la del Sol, tendría un diámetro de sólo 30 Km, y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la humkanidad. Cuanto mayor es la masa de una estrella de neutrones, menor será su diámetro. Está compuesta por un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeado por más o menos una corteza sólida de 1 km de grosor compuesta de elementos como el hierro. Los púlsares son estrellas de neutrones magnetizadas en rotación. Las binarias de rayos X masivas también se piensan que contienen estrellas de neutrones.

universo
                                                   Pulsar Star GIFs - Get the best GIF on GIPHY
              Púlsar que, como faro cósmico, señalaría al posible navegante espacial el camino a seguir

Todos aquellos argumentos sobre el comportamiento de las enanas blancas vinieron a desembocar en la paradoja de Edddintong que, en realidad, fue resuelta por el Joven Chandrasekhar en el año 1925 al leer un artículo de R.H. Fowler “Sobre la materia densa”. La solución residía en el fallo de las leyes de la física que utilizaba Eddintong. Dichas leyes debían ser reemplazadas por la nueva mecánica cuántica, que describía la presión en el interior de Sirio B y otras enanas blancas como debida no al calor sino a un fenómeno mecanocuántico : los movimientos degenerados de los electrones, también llamado degeneración electrónica.

 

Resultado de imagen para COMPUESTOS METALICOS GIF | Teaching science, Teaching, Science

 

La degeneración electrónica es algo muy parecido a la claustrofia humana. Cuando la materia es comprimida hasta una densidad 10.000 veces mayor que la de una roca, la nube de electrones en torno a cada uno de sus núcleos atómicos se hace 10.000 veces más condensada, Así, cada electrón queda confinado en una “celda” con un volumen 10.000 veces menor que el volumen en el que previamente podía moverse. Con tan poco espacio disponible, el electrón, como nos pasaría a cualquiera de nosotros, se siente incómodo, siente claustrofobia y comienza a agitarse de manera incontrolada, golpeando con enorme fuerza las paredes de las celdas adyacentes. Nada puede detenerlo, el electrón está obligado a ello por las leyes de la mecánica cuántica. Esto está producido por el Principio de exclusión de Pauli que impide que dos fermiones estén juntos, así que, fuerza es, la que finalmente posibilita que la estrella que se comprime más y más, quede finalmente, constituida estable como una enana blanca.

emilio silvera

¿Qué tenemos en nuestras Mentes? ¡Sentimientos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                       Una voz privilegiada que nos transmite sentimientos y eleva nuestro Ser

Si es buena música…

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

       Este gran maestro de bandas sonoras de las grandes películas, siempre nos delita con sus obras. Seguiremos poniendo otras de manera intercalada.

!El extraño Universo! ¡El Universo cotidiano!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelos de los cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

Un equipo de científicos ha diseñado un test para descubrir si el universo primitivo poseía una sola dimensión espacial. Este concepto alucinante es el núcleo de una teoría que el físico de la Universidad de Buffalo, Dejan Stojkovic y sus colegas proponen y que sugiere que el Universo primitivo tuvo solo una dimensión antes de expandirse e incluir el resto de dimensiones que vemos en el mundo actualmente. De ser válida, la teoría abordaría los problemas importantes de la física de partículas. Han descrito una prueba que puede ratificar o refutar la hipótesis de la “fuga de dimensiones”.

 

El Objeto de Hanny

 

¿Qué serán, estos extraños cuerpos. Lo llaman Objeto de Hanny es una extraña y brillante nube de gas verde que ha intrigado a los astrónomos desde que se descubrió en 2007. La nube destaca cerca de una galaxia espiral porque un cuásar (un agujero negro supermasivo) en su núcleo la ha iluminado como si fuera un foco. Ahora está siendo estudiada con mucho más detalle gracias a las imágenes tomadas por el telescopio Hubble, que se han presentado en Seattle (EE UU).

Considerado uno de los objetos más extraños de los muchísimos observados en el espacio, en Hanny’s Voorwerp (en holandés), que tiene el tamaño de la Vía Láctea, el Hubbleha descubierto delicados filamentos de gas y un grupo de cúmulos de jóvenes estrellas. El color verde de la nube se debe al oxígeno ionizado.

 

 

Managing Scientific Inquiry in a Laboratory the Size of the Web - The New York Times

                                             Otra enamorada de las estrellas

Su descubridora, Hanny van Arkel, explicó en su blog que está encantada de asistir a la reunión de la Sociedad Americana de Astronomía , donde se han presentado las nueva imágenes, y en general, de haber entrado en contacto con el mundo de la astronomía. Ella es una profesora que descubrió la estructura celeste en 2007 mediante el proyecto Galaxy Zoo, que estimula la participación de no especialistas para que ayuden a clasificar las más de un millón de galaxias catalogadas en el Sloan Digital Sky Survey y las captadas por el propio Hubbleen sus imágenes de campo profundo.

 

Galaxia Andrómeda

                                                     Nuestra vecina del Grupo Local

Un astrónomo persa, al-Sufi, ha sido reconocido como el primero en describir el débil fragmento de luz en la constelación Andrómeda que sabemos ahora que es una galaxia compañera de la nuestra. En 1780, el astrónomo francés Charles Messier publicó una lista de objetos no estelares que incluía 32 objetos que son, en realidad, galaxias. Estas galaxias se identifican ahora por sus números Messier (M); la galaxia Andrómeda, por ejemplo, se conoce entre los astrónomos como M31.

En la primera parte del siglo XIX, miles de galaxias fueron identificadas y catalogadas por William y Caroline Herschel, y John Herschel. Desde 1900, se han descubierto en exploraciones fotográficas gran cantidad de galaxias. Éstas, a enormes distancias de la Tierra, aparecen tan diminutas en una fotografía que resulta muy difícil distinguirlas de las estrellas. La mayor galaxia conocida tiene aproximadamente trece veces más estrellas que la Vía Láctea.

 

Plutón fue descubierto a raíz de una búsqueda telescópica iniciada en 1905 por el astrónomo estadounidense Percival Lowell, quien supuso la existencia de un planeta situado más allá de Neptuno como el causante de ligeras perturbaciones en los movimientos de Urano.

El camino que condujo a su descubrimiento se atribuye a Percival Lowell quien fundó el Observatorio Lowell en Flagstaff, Arizona y patrocinó tres búsquedas separadas del “Planeta X”, del que por cierto, aquí hemos hablado en alguna otra ocasión.

En 1912 el astrónomo estadounidense Vesto M. Slipher, trabajando en el Observatorio Lowell de Arizona (EEUU), descubrió que las líneas espectrales de todas las galaxias se habían desplazado hacia la región espectral roja. Su compatriota Edwin Hubble interpretó esto como una evidencia de que todas las galaxias se alejaban unas de otras y llegó a la conclusión de que el Universo se expandía. No se sabe si continuará expandiéndose o si contiene materia suficiente para frenar la expansión de las galaxias, de forma que éstas, finalmente, se junten de nuevo, parece que esto último no sucederá nunca. La materia del Universo parece estar aproximadamente en la tasa del la Densidad Crítica.

 

Resultado de imagen de El telescopio espacial Hubble enfocó regiones del espacio aparentemente vacías y negras, y después de muchos días de exposición obtuvo unas bellísimas fotos de galaxias muy lejana

 

El telescopio espacial Hubble enfocó regiones del espacio aparentemente vacías y negras, y después de muchos días de exposición obtuvo unas bellísimas fotos de galaxias muy lejanas, entre las cuales se distinguen unas cuantas pequeñas galaxias rojas, color que deben a un corrimiento al rojo tan elevado que se calcula por la ley de Hubble que su luz fue emitida hace unos 13000 millones de años. (foto recortada de foto cortesía de la NASA).

 

La Vía Láctea y la galaxia de Andrómeda eventualmente colisionarán

 

La galaxia se está acercando a nosotros a unos 300 kilómetros por segundo, y se cree que estará aquí aproximadamente en 3.000 millones de años cuando podría colisionar con la nuestra y fusionarse ambas formando una galaxia elíptica gigante. Claro que, no se está de acuerdo con la velocidad a la que Andrómeda, se acerca a nosotros. Según ésta nota, podría llegar cuando nuestro Sol, esté en la agonía de su final para convertirse en gigante Roja primero y enana Blanca después.

 

Resultado de imagen de Una bola de fuego primordial fue el comienzo del Universo

 

La semilla desde la que se desarrolló nuestro Universo fue una Bola de fuego de pura energía inmensamente densa e inmensamente caliente. La pregunta es, ¿Cómo llegó esta bola de fuego hasta el tipo de materia bariónica que podemos ver alrededor de todos nosotros, mientras el Universo se expandía y se enfriaba? O, si se prefiere ¿de donde salieron los quarks y los leptones? Y, puestos a preguntar, esa materia oscura de la que tanto hablamos, ¿estaba ya allí cuando llegó la bariónica? Si no fuese así, ¿Cómo se pudieron formar las Galaxias?

Creemos que conocemos la respuesta, aunque, en realidad, lo que sí tenemos es un modelo de cómo creemos que sucedió, ya que, como a menudo es el caso de las historias, la explicación es más especulativa cuanto más atrás en el tiempo miremos y, en el caso del Universo, esto también corresponde a las energías más altas que se tienen que considerar.

 

Origen y evolución del Universo

Nos vamos hacia atrás en el tiempo y ponemos señales y nombres como los del límite y tiempo de Planck, era hadrónica (quarks: protones y neutrones, etc.) y era leptónicas (electronesmuones y partícula taucon sus neutrinos asociados). Ahí amigos, está toda la materia que podemos ver. Sin embargo, ¿qué sabemos en realidad de la materia? No olvidemos que de la materia llamada inerte, provenimos nosotros cuyos materiales fueron fabricados en los hornos nucleares de las estrellas.

Científicos de EEUU detectan ondas gravitacionales que serían la primera evidencia directa de la inflación, el momento de la historia del universo en que en menos de un segundo pasó de ser un punto diminuto a convertirse en una inmensidad. Han captado los primeros momentos del Big Bang. De acuerdo con la teoría de la Relatividad de Einstein, aquel cataclismo debió generar ondas gravitacionales, una especie de ondas expansivas cuyos efectos, aunque débiles, aún podrían observarse ahora, 13.800 millones de años después. Los investigadores del experimento BICEP 2, un telescopio de microondas situado en pleno Polo Sur, dicen haber fotografiado esas ondas por primera vez. Estas ondas son “los primeros temblores del Big Bang”,según el CFA.

Esas sombras serían una especie de eco del Big Bang en las microondas, lo que pone en duda la validez de la popular teoría sobre el origen del Universo. El trabajo se publica en la edición del 1 de septiembre de 2006 del Astrophysical Journal.

 

WMAP Leaving the Earth or Moon toward L2.jpg

 

Existen otros estudios llevados a cabo por observaciones realizadas con el observatorio orbital de la NASA WMAP (Wilkinson Microwave Anisotropy Probe – prueba Wilkinson de la anisotropía en microondas), que tiene como objetivo estudiar la radiación cósmica de fondo. Para ello se estudiaron las sombras dejadas en esta radiación cósmica de fondo por 31 cúmulos de galaxias.

El Dr. Lieu, especialista en el tema expresa que “Estas sombras son algo bien conocido que había sido previsto hace años”, y es “el único método directo para determinar la distancia al origen de la radiación cósmica de fondo”, hasta ahora toda la evidencia apuntaba a que era originada por una gran bola de fuego denominada big bang y ha sido circunstancial.

Lieu menciona también que “si usted ve una sombra, indica que la radiación viene más allá del cúmulo de galaxias, y si no las ve, hay un problema, entre los 31 cúmulos estudiados, algunos mostraron el efecto de sombra y otras no”.

                                                                                   Diagrama del WMAP

En estudios previos, se han reportado la presencia de este tipo de sombras en la radiación cósmica de fondo, estos estudios sin embargo no usaron los datos proporcionados por el WMAP el cual está diseñado y construido específicamente para estudiar esta radiación de fondo.

Si la teoría estándar de la creación del Universo o Big Bang es la correcta y la radiación cósmica de fondo viene a la Tierra desde los confines del Universo, los cúmulos masivos de galaxias que emiten rayos X, cercanos a la Vía Láctea, deberían mostrar todos, la presencia de estas sombras en la radiación cósmica de fondo.

 

                                                     

                           Imagen del WMAP de la anisotropía de la temperatura del CMB.

Los científicos aseguran también que basados en todo el conocimiento, hasta ahora, de las fuentes de radiación y halos alrededor de los cúmulos de galaxias, es imposible que estos cúmulos galácticos puedan emitir microondas a una frecuencia e intensidad idénticos a la radiación cósmica de fondo.

La predicción de la radiación cósmica de fondo data del año 1948 y fue descubierta en 1965. La predicción del efecto de sombra fue realizada en 1969, por los científicos rusos Rashid Sunyaev y Yakov Zel’dovich. El efecto se crearía de la siguiente forma: los cúmulos de galaxias emiten luz en rayos X por acción de la gravedad de su centro, que atrapa gas y lo calienta enormemente. Este gas es tan caliente que pierde sus electrones, o sea que se ioniza, produciendo, a su vez, enormes espacios llenos de electrones libres. Estos electrones libres interactúan con los fotones individuales de la radiación cósmica de fondo, originando con esto la desviación de sus trayectorias originales y produciendo el efecto de sombra.

Como veréis, siempre habrán motivos más que sobrados para la polémica y, a medida que se avanza la polémica crece, toda vez que, esos avances, dejan al descubierto muchas de las creencias largamanete asentadas que ahora, con las nuevas tecnologías, podemos descubrir que, en realidad, eran distintas de como se habían imaginado.

 

                                                 

                                                     ¿Qué hace la Entropía con nosotros?

Si hablamos del Universo no podemos olvidar “El Tiempo” con su hermana “La Entropía” destructora de todo lo que existe que, a medida que el primero transcurre, la segunda lo transforma todo. Debemos aprovechar ese corto espacio de tiempo que nos otorga el transcurrir entre las tres imágenes de arriba, sin no sabemos aprovecharlos…¿para qué estamos aquí? ¿Acaso será cierto que todo comenzó con la explosión de una singularidad que produjo lo que llamamos Big Bang?

Sí, es posible que todo comenzara así. Sin embargo, nadie lo puede asegurar. Y, algunos dicen que somos uno de tantos universos que en el Multiverso están. Si eso fuese así ¿Habrá otros seres en esos otros universos?

 

                                La última frontera del Universo

 

¿Será ésta la última frontera? No,  creo que no, el Universo que nosotros conocemos, por mucho que corramos tras él, nunca podremos alcanzar el final. Siendo así, hablar de la última frontera, es…, al menos, arriesgado. No conocemos bien ni los objetos que pueblan nuestro propio Sistema solar, esos mundos enormes y gaseosos que, a su vez, están rodeados de otros pequeños mundos en los que, posiblemente, la vida esté presente. Sin embargo, nos permitimos hablar de los confines del Universo situados en lugares inaccesibles para nosotros. Bueno, al menos de momento. Incluso algún grupo de astrónomos han realizado un trabajo queriendo llegar a los confines del Universo y, de manera sorprendente, han declarado que mucho más allá, han detectado la presencia de un inmenso bloque de materia que, según todos los indicios… ¡Es otro Universo!

 

               

 

El poco tiempo que estamos aquí, si podemos disfrutar de Imágenes como ésta, de nuestra amiga Anadelagua, lo podemos dar por bien empleado. Vistas así consiguen sacar de nosotros lo mejor y, si eso es así (que lo es), mirémosla durante un largo rato, si es posible oyendo cantar a Sarah Brightman oyendo el Sueño de las Hadas de Enya, o, cualquier otra melodía que nos eleve el Alma para que nos transporte a otro mundo sin salir de este mundo nuestro.

 

                                         ¡Que sentimiento de paz! ¡De simbiosis con la Naturaleza!

emilio silvera