Sí, amigos míos, la Belleza puede estar en todas partes y, a cualquier lugar que podamos mirar nos podemos encontrar con ese maravilloso paisaje que nos deje sin respiración. También una simple mirada o una bella canción… Nos pueden transportar a otro mundo sin salir de este.
La llegada de nuestro primer hijo, es un acontecimiento que va mucho más allá de la contemplación de la belleza. Un revoltijo de sentimientos se agolpan dentro de ti, sentías que sois los responsable de la criatura, un Ser que viene al mundo desprovisto de las propias armas para poder defenderse y que, durante los primeros años estará bajo vuestra responsabilidad.
Saber hacer feliz al Ser amado, respetar su propia intimidad, dejarle espacio libre para sus necesidades de compartir momentos con otras personas, saber escuchar lo que nos tenga que decir, valorar lo que hace, y, sobre todo, comprender que es una de las dos partes con el mismo valor, es decir, que dos son uno.
¡AH! Es importante no callar los sentimientos y, de vez en cuando decirle ¡Te quiero! Le sentará muy bien, que ella o él se sientan queridos, sobre todo con los hechos y los comportamientos del uno hacia el otro.
Encontrar el momento de aislarte contigo mismo y poder saborear un buen libro. Eso también es belleza
Hacer el bien a otras personas que se pueden sentir solas, ayudar de alguna manera. Eso también es Belleza
También es Belleza el trabajo bien hecho que ofrece conocimientos y, de alguna manera, mejora de la Sociedad para todos. Eso también es Belleza.
Pasar unos días en plena naturaleza oyendo los ruidos del Bosque, el rumos del regajo de transparentes aguas, el trino de los pajarillos, el viento sobre las hojas de los árboles, y, el chisporroteo de la leña en la chimenea mientras tomas un buen cafe acompañado del Ser Amado…. ¡Eso es Belleza!
Que toda tu familia esté bien de salud, que los niños vayan evolucionando a un ritmo normal y avancen en los estudios para que el día de mañana sean hombres y mujeres de provecho… ¡Eso es Belleza!
Desde aquí, os deseo de corazón la Belleza en vuestras vidas.
Quedó, hace algún tiempo, instalado el espectrógrafo de Infrarrojo Cercano en el Telescopio James Webb. Veremos que maravillas nos depara.
Era el mes de marzo de 2014, el Espectrógrafo de Infrarrojo Cercano (NIRSpec) del Telescopio Espacial James Webb fue instalado en el módulo de instrumentos. El NIRSpec se une a la cámara de infrarrojo cercano (NIRCam), un sensor de guiado de precisión y una cámara en el infrarrojo cercano y un espectrógrafo sin ranura (FGS-NIRISS), y una cámara y espectrógrafo en el infrarrojo medio (MIRI), que ya se encuentran integrados en el Módulo de Instrumentos Científicos, por lo que el módulo de instrumentos está completo.
Instalación de espectrógrafo de infrarrojo cercano en el telescopio espacial James Webb. Image Credit: NASA/Chris Gunn
El Telescopio Espacial James Webb es un gran telescopio espacial, optimizado para longitudes de onda infrarrojas. Su lanzamiento está previsto a finales de esta década. Webb encontrará las primeras galaxias que se formaron en el universo temprano, conectando el Big Bang a nuestra propia galaxia la Vía Láctea. El telescopio espacial James Webb y sus instrumentos están optimizados para captar la luz infrarroja y así poder estudiar la radiación emitida por galaxias remotas y observar a través del denso velo de polvo que envuelve a algunos objetos, como los embriones de estrellas.
El día llegó y el lanzamiento fue todo un acontecimiento que tenía a todos con el alma en vilo pendiente de la operación
“Después de varios aplazamientos, estaba previsto que este 31 de octubre despegara por fin el telescopio James Webb desde la Guayana Francesa, pero los responsables de esta misión de la NASA, la Agencia Espacial Europea y la de Canadá han informado esta semana que la ventana de lanzamiento está abierta hasta principios de diciembre.
Esta potente “máquina del tiempo” con la que se aspira a desentrañar la formación del universo, despegará entre esa fecha y comienzos de diciembre, según han precisado sus responsables durante una rueda de prensa organizada este martes por la Agencia Espacial Europea (ESA).”
Este telescopio alcanzará un nivel de sensibilidad sin precedentes, ya que se encontrará a 1.5 millones de kilómetros de la Tierra en dirección opuesta al Sol y protegido por un parasol del tamaño de una cancha de tenis, que le mantendrán alejado de las influencias de la atmósfera terrestre, a baja temperatura, y en la más absoluta oscuridad. El Telescopio Espacial James Webb es un proyecto conjunto de la ESA, la NASA y la Agencia Espacial Canadiense diseñado para tomar el relevo del exitoso telescopio espacial Hubble.
Deçían: “El Telescopio Espacial James Webb (JWST), es un observatorio espacial en fase de desarrollo que estudiará el cielo en frecuencia infrarroja, sucesor científico del telescopio espacial Hubble y del Spitzer. Las principales características técnicas son un gran espejo de 6,5 metros de diámetro, una posición de observación lejos de la Tierra, en órbita alrededor del punto L2 del sistema Sol- Tierra, y cuatro instrumentos especializados. La combinación de estas características le dará una resolución sin precedentes y sensibilidad de larga longitud de onda visible al infrarrojo medio, permitiendo sus dos principales objetivos científicos –estudiar el nacimiento y evolución de las galaxias y la formación de estrellas y planetas.”
Si ellos pudieran contemplar hasta donde hemos llegado en las avanzadas técnicas y prestaciones de los ingenios que podemos fabricar y que son capaces de captar galaxias y estrellas situadas al filo de su nacimiento del Universo, hace ahora más de 12.000 millones de años-luz… ¡Se morían del susto!
El Webb está en órbita desde el segundo punto de Lagrange (L2), una de las cinco posiciones del espacio donde la atracción gravitacional del Sol y la Tierra equilibra la fuerza centrípeta requerida para que una nave espacial se mueva con ellos.
“Los puntos de Lagrange, también denominados puntos L o puntos de libración, son las cinco posiciones en un sistema orbital donde un objeto pequeño, solo afectado por la gravedad, puede estar teóricamente estacionario respecto a dos objetos más grandes, como es el caso de un satélite artificial con respecto a la Tierra y la Luna. Los puntos de Lagrange marcan las posiciones donde la atracción gravitatoria combinada de las dos masas grandes proporciona la fuerza centrípeta necesaria para rotar sincrónicamente con la menor de ellas. Son análogos a las órbitas geosincrónicas que permiten a un objeto estar en una posición «fija» en el espacio en lugar de en una órbita en que su posición relativa cambia continuamente.”
Por estas condiciones, los puntos de Lagrange son particularmente útiles para reducir el combustible requerido para que una nave espacial permanezca en posición.
Paso a paso, sin que apenas nos demos cuenta, cada día nos acercamos un poco más al futuro que vendrá y, aunque nosotros seguimos instalados en el presente, estamos haciendo todo lo preciso para que ese futuro sea muy diferente al hoy, y, en relación al Universo y a la Naturaleza misma (también la nuestra), estamos avanzando de manera imparable. Cada nuevo conocimiento conquistado, nos posibilitan la apertura de nuevas puertas, antes cerradas, y, detrás de ellas, encontramos respuestas nuevas.
Entonces nos preguntábamos: ¿Qué nos dirá el James Webb?
Y llegó la respuesta en forma de asombrosas imágenes:
Las primeras imágenes tomadas por el Telescopio EspacialJames Webb se han hecho esperar. Sin embargo, ha merecido la pena. “Hoy, presentamos a la humanidad una vista nueva y revolucionaria del cosmos desde el telescopio espacial James Webb, una vista que el mundo nunca antes había tenido”, dijo Bill Nelson, administrador de la NASA. Y lo cierto es que es así. Gracias al James Webb hemos descubierto una galaxia a 35.000 millones de años luz de la Tierra y 55 galaxias lejanas, 44 de las cuales no habían sido vistas hasta ahora.
Imagen que muestra la misma área del espacio fotografiada por el Hubble y por el James Webb. Las imágenes muestran una gran galaxia a la derecha y dos galaxias espirales mucho más pequeñas a la izquierda, una encima de la otra. NASA
Las cámaras del Webb están diseñadas para mirar hacia atrás en el tiempo, para mostrarnos la época en la que el Universo era un recién nacido, hace unos 13.500 millones de años. Son muchas las diferencias tecnologicas que se han usado en la construcción del Hubble y el Webb, que se traducen en una mejora muy significativa en la calidad de las fotografías que toma.
El Telescopio Espacial James Webb retrata el planeta WASP-96b, un planeta caliente e hinchado fuera de nuestro sistema solar. Y revela la clara firma del agua, junto con la evidencia de neblina y nubes en la atmósfera del planeta que estudios previos no detectaron.
Quinteto de Stephan
Esta fotografía recoge cómo las galaxias que interactúan desencadenan la formación de estrellas entre sí y cómo se altera el gas en las mismas.
Nebulosa Carina captada por James Webb. NASA / ESA / CSA / STSCI
Nebulosa de Carina
El Telescopio Espacial James Webb revela viveros estelares emergentes y estrellas individuales en la Nebulosa de Carina que antes estaban ocultas. Los objetos en las primeras y rápidas fases de formación estelar son difíciles de retratar, sin embargo la extrema sensibilidad, la resolución espacial y la capacidad de imagen de Webb han permitido capturar estos momentos.
Esto es sólo el principio de lo que nos espera de este Telescopio Espacio que nos dará muchas alegrías desvelándonos secretos bien escondidos hasta el presente por el Universo. Nos ofrecerá imágenes de objetos que ni podemos imaginar.
Antes fue una estrella masiva y ahora, sólo vemos sus filamentos remanentes. Dentro esconde un Púlsar
Pues yo he sido a veces un muchacho y una chica,
Un matorral y un pájaro y un pez en las olas saladas.
Quería decir que, con el paso del Tiempo, todo cambia y se transforma
Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo y estos la materia.
Sí, hay cosas malas y buenas pero, todas deben ser conocidas para poder, en el primer caso aprovecharlas y en el segundo prevenirlas.
Pero demos un salto en el tiempo y viajemos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años después del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlín especulaba que los átomos eran “complejas organizaciones y centros de enormes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más, sobre los átomos y las estrellas.
El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar.
La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).
El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversas partículas de familias diferentes: unas son bariones que en el seno del átomo llamamos nucleones, otras son leptones que giran alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.
Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los tos principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.
De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción inifintesimal del total atómico.
Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los Estrabones y Tolomeos de la cartografía atómica, en Manchester , de 1909 a 1911, sondearon el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Ruthertford pudo calcular la carga y el diámetro máximo del núcleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.
Los electrones crean el campo magnético del electrón y equilibra la carga positiva del núcleo
Todos sabemos ahora, la función que desarrollan los electrones en el átomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)
Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo. Cuando un electrón cae de una órbita externa a una órbita interior emite un fotón. La longitud de onda de este fotón está determinada por las órbitas particulares entre las que el electrón efectúa la transición. E esta es la razón de que un espectro que registra las longitudes de onda de los fotones, revele los elementos químicos que forman las estrellas u otros objetos que sean estudiados por el espectroscopista. En palabras de Max Planck, el fundador de la física cuántica, el modelo de Bohr del átomo nos proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral (por Fraunhoufer) había desafiado ostinadamente todos los intentos de conocerlo”.
Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.
Por las líneas espectrales supimos de que estaban hechas las estrellas
Es un gran triunfo del ingenio humano el saber de qué, están conformadas las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.
Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.
En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.
Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.
Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blanco-azuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad debajo de la asombrosa variedad de las estrellas.
Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiasmado cuando recorre con el telescopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.
Híades
Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell.
El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustró los esfuerzos de las físicos teóricos para copmprender como la fusión nuclear podía producir energía en las estrellas.
La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.
Plasma en ebullición en la superficie del Sol
Hasta el momento todo lo que hemos repasado está bien pero, Que pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.
Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica. La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.
George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb. Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.