Feb
24
¡Siempre persiguiendo sueños!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
El puente entre mecánica cuántica y relatividad general aún es posible. Un equipo internacional de investigadores han desarrollado un marco unificado que explicaría este aparente desglose entre la física clásica y la física cuántica, y lo pusieron a prueba utilizando un satélite cuántico llamado Micius
Leer más: https://www.europapress.es/ciencia/laboratorio/noticia-puente-mecanica-cuantica-relatividad-general-aun-posible-20190920102718.html
Satélite Gravity Probe B. Dedicado a medir la curvatura del campo gravitatorio terrestre, según la teoría de la relatividad de Einstein
La mecánica cuántica y la teoría general de la relatividad forman la base de la comprensión actual de la física, aunque las dos teorías no parecen funcionar juntas. Se han construido toda clase de artilugios de última tecnología para tratar de medir ambas teorías unificándolas, sin que hasta la fecha, el resultado sea positivo
“La gravedad cuántica es el campo de la física teórica que procura unificar la teoría cuántica de campos, que describe tres de las fuerzas fundamentales de la naturaleza, con la relatividad general, la teoría de la cuarta fuerza fundamental: la gravedad. La meta es lograr establecer una base matemática unificada que describa el comportamiento de todas las fuerzas de la Naturaleza, conocida como la teoría del campo unificado.”
Súper-Gravedad en dimensión 11
“En la física de partículas, la supersimetría es una simetría hipotética que podría relacionar las propiedades de los bosones y los fermiones. La supersimetría también es conocida por el acrónimo inglés SUSY. En una teoría supersimétrica cada partícula bosónica tendría un “compañera supersimétrico” de tipo fermiónico y viceversa.”
Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “súper-simetría”, “supercuerdas”, “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.
Representación de la variedad de Calabi-Yau uno de los candidatos para representar las dimensiones compactificadas asociadas a la teoría M, diferente de las cuatro dimensiones observables (no-compactificadas) del espacio-tiempo.
“La teoría M es una teoría física, propuesta como una “teoría del todo” que unifique las cuatro fuerzas fundamentales de la naturaleza. La teoría M fue esbozada inicialmente por Edward Witten, su propuesta combinaba las cinco teorías de supercuerdas y supergravedad en once dimensiones.”
Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo. Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!
¿Quién puede ir a la longitud de Planck para verlas?
La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.
Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
¿Dónde radica el problema?
Pendiendo de unas cuerdas
El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que, si acaso, por medio de SUSY, nos podrá enseñar la simetría unificadora si es capaz de encontrar alguna de esas partículas exóticas como los squarks y los fotinos. Algunos hablan del Neutralino como componente de la hipotética “materia oscura”.
La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Y, no dudando de que ha sido y es una poderosa herramienta para los físicos, tampoco podemos negar que es una teoría incompleta que no incluye a una de las fuerzas, la Gravedad, y, además, tiene demasiados parámetros aleatorios y metidos a la fuerza para que las cuentan cuadren, tales como, el bosón de Higgs que le proporciona la masa a las partículas y, de ahí, la enorme importancia de que el LHC lo encuentre.
¡Necesitamos algo más avanzado!
Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.
Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.
Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.
Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.
Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.
La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Peter Zeeman, en 1896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.
Antes de encontrar el Higgs se decía:
Hasta ahora no tenemos ni idea de qué reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W–, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?
Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa –los W+, W–, Zº y fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.
Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard’t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.
De todas las maneras, todos debemos convenir que, el hombre, sea cual fuere el tiempo en el que se pueda encontrar, tendrá siempre una mente imaginativa que le hará soñar con todo aquello que, en ese momento, no puede alcanzar y, su curiosidad y ganas de saber le impulsará para buscarlo desesperadamente.
Perseguir los sueños nos mantiene vivos
emilio silvera