Mar
21
Las Escalas del Universo no son Humanas
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Mejor nos iría
Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.
La edad actual del universo visible ≈ 1060 tiempos de Planck
Tamaño actual del Universo visible ≈ 1060 longitudes de Planck
La masa actual del Universo visible ≈ 1060 masas de Planck
Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:
Densidad actual del universo visible ≈10-120 de la densidad de Planck
Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto
Temperatura actual del Universo visible ≈ 10-30 de la Planck
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.
Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.
Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.
“En el final del universo uno tiene que utilizar mucho el tiempo pretérito… todo ha sido hecho, ¿sabes?”.
Douglas Adams
¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme pasa el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución que tantos miles de millones de años le costó al Universo para poder plasmarla en una realidad que llamamos vida.
El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.
Parece que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.
La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la foto-disociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual. Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.
Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.
A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.
Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.
Miles de mundos parecidos a la Tierra que pueden tener en ellos Civilizaciones inteligentes
La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.
emilio silvera
Mar
21
La Tecnología de Vacío en la simulación Espacial
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Puesto que vamos a utilizar para la simulación sistemas de vacío, la presión total debe de ser menor que la presión atmosférica. Esta es la primera limitación, que excluye automáticamente el estudio de planetas como Venus, cuya presión en la superficie es unas 90 veces mayor que la de la Tierra [7]. Estos planetas, así como el interior de océanos y mares de hielo que puedan existir en objetos planetarios como Europa (luna de Júpiter), deben de estudiarse mediante cámaras de alta presión, que incorporan una tecnología completamente distinta.
Es muy difícil dar valores precisos para la presión total en diferentes entornos planetarios o interestelares, y de hecho se encuentra frecuentemente bibliografía contradictoria. No obstante intentaremos dar algunas estimaciones y sobre todo, los rangos aproximados de estos parámetros para algunos entornos espaciales.
En el espacio interplanetario, por ejemplo, la presión viene determinada por el viento solar y por moléculas provenientes de las atmósferas de los distintos cuerpos celestes que lo pueblan, como cometas, o planetas. En física del espacio se suele utilizar la presión dinámica, que se define como:
Esta fórmula, aplicada para el viento solar en las inmediaciones de la Tierra, que tiene un número de partículas aproximado de 4 por cm como del orden de vacío es el Pascal, 1 mbar se empleaba el Torr, como homenaje a Evangelista Torricelli. 1 mbar = 0,75 Torr [mm Hg]. Nosotros en este trabajo utilizaremos el mbar, que aunque no es la unidad en el sistema internacional, es la utilizada mayoritariamente por la comunidad científico-tecnológica en equipos de alto y ultra alto vacío).
El viento solar lo forman protones, partículas alfa, iones pesados y electrones, que fluyen desde la superficie del Sol con velocidades de hasta 800 Km/s. Como el viento solar es un plasma, este lleva consigo parte del campo magnético solar, por lo que las partículas de viento solar que son atrapadas en el campo magnético terrestre provocan entre otras cosas las auroras boreales y australes cuando chocan con la atmósfera terrestre cerca de los polos. Sabemos que el borde del sistema solar lo forma la burbuja del viento solar en el medio interestelar.
En el punto en el que el viento solar no ejerce presión para desplazar el medio interestelar, se considera que es el borde más exterior del sistema solar [8].
Si nos acercamos a algún cuerpo celeste, es la emisión de gases del mismo la que limita la presión total. Así, por ejemplo, cerca de la estación espacial internacional la presión viene determinada por los propios gases de la estación y otras partículas atrapadas por el campo gravitatorio de la misma, siendo esta del orden de Fuera del espacio interplanetario, en donde las temperaturas son muy bajas y la densidad molecular prácticamente inexistente, el concepto de presión deja de tener sentido. Sin embargo, encontramos zonas del espacio interestelar, las llamadas nubes de polvo, en las que se detecta acumulación de material.
Así, en el llamado medio interestelar difuso, (aquel cuya densidad es menor que el principal componente gaseoso es el hidrógeno atómico.
A causa de la gran cantidad de fotones y rayos cósmicos la temperatura típica del polvo en el medio interestelar difuso es de 100 K y sus principales componentes, según se deduce de las observaciones por absorción en el infrarrojo, son el hidrógeno, silicatos amorfos y carbono amorfo hidrogenado.
Su presión, puede ser estimada entonces como del orden de medio denso (nubes moleculares con densidades entre 103 – 106 partículas $ cm-3), cuyo principal componente gaseoso es el hidrógeno molecular. Aunque la densidad molecular en este caso es mucho mayor, la temperatura es muy baja en su interior, hasta unos 10 K, debido al apantallamiento de la radiación UV en las capas externas de la nube.
Las partículas de polvo, como las presentes en el medio difuso, se cubren de mantos de hielo con espesores del orden de 0.01 micras. Por tanto la presión total puede ser del orden de 10 -12 – 10 -18 mbar.
Se ha dicho en algunas ocasiones que las presiones del medio interestelar no son alcanzables en un laboratorio. Esto no es del todo cierto. En realidad no son medibles. En algunas líneas criogénicas de He líquido, se estima que la presión residual puede ser de 10-30 mbar, y es debida exclusivamente a la desorción por rayos cósmicos de los gases de las paredes del recipiente. El problema reside en que no existe actualmente tecnología para medir el vacío por debajo de 10-14 – 10-15 mbar. En el CERN, con manómetros modificados del tipo Bayard-Alpert se han podido medir presiones de hasta 2 $ 10-14 mbar [9].
En el caso de la mayor parte de los planetas la presión si es una magnitud alcanzable y con sentido físico. Así la presión media en la superficie de Marte es de unos 7 mbar, o en Tritón de 10-2 mbar. Las atmósferas planetarias de la mayoría de los cuerpos del sistema solar son conocidas por observaciones de IR. Sin embargo, no hay que olvidar que la presión total en un planeta depende de la altura. Por ejemplo, en la tierra a 86.000 m de altura la presión es de 10-2 mbar. (100.000 veces menor que la atmosférica). Por tanto debemos tener en cuenta esta dependencia cuando queramos simular la presión en la atmósfera marciana o la superficie marciana.
La figura 1 representa una gráfica en la que se resumen los distintos rangos del vacío junto con las bombas necesarias para alcanzarlos. En la figura vemos que las presiones interplanetarias y del medio interestelar son sólo reproducibles en sistemas trabajando en las llamadas de vacío extremo (XHV-del inglés, extreme high vacuum). Sin embargo, experimentos que se realicen en la estación espacial internacional, pueden simularse utilizando una bomba turbo molecular.
No sólo es necesario elegir el tipo de bombas adecuado para llegar a una u otra presión. También es necesario contar con distintos tipos de sensores, desde el Pirani y el piezoresistivo, para vacío bajo, capacitivo para vacíos medios y terminando en sensores tipo Penning o Bayard-Alpert para alto vacío y ultra alto vacío y vacío extremo.
La composición atmosférica
El siguiente parámetro relevante para controlar en una cámara de simulación es la composición de los gases de la atmósfera. De nuevo la primera división es entre composición de gases en medio interestelar denso y superficies planetarias. La principal fuente de información para la composición atmosférica son espectros de infrarrojo tomados por telescopios orbitales o por satélites. Por ejemplo en el caso de Marte la atmósfera es muy compleja. Se han detectado composiciones medias de 95% CO2, 2,7% N2, 1.6% Ar y 0.6% H2O.
En el caso de otros planetas como Europa, luna Galileana de Júpiter, la presión está formada en más de un 95% de O2 y en el caso del interior de una cámara de vacío a 10-11– mbar en el laboratorio, casi el 100% es hidrógeno.
La composición atmosférica según el medio interestelar denso es esencialmente hidrógeno tanto en forma molecular como gaseosa. En estos medios existen también una densidad no despreciable de otras moléculas, de composición orgánica y mineral, que se recombinan entre ellas dando lugar a lo que se conoce como Astroquímica. Por ejemplo, en el interior de la nube situada tras la nebulosa de Orión, el gas adquiere la densidad suficiente y la baja temperatura necesaria para que los átomos se enlacen y formen moléculas, en las que predomina el hidrógeno molecular y hay trazas de monóxido de carbono, cianógeno y amoniaco [10], entre otras moléculas.
El control de la composición de gases en el sistema de simulación se realiza mediante la inclusión de detectores de masa cuadrupolares. Estos detectores ionizan el gas separando cada molécula según su relación carga/masa. Sabiendo la masa molecular podemos, identificarla en muchos casos y cuantificar su número. Este instrumento, mediante bombeo diferencial, puede operarse desde presión atmosférica. Sin embargo, a presiones inferiores de 10-5 mbar puede utilizarse con mayor resolución.
Para estar seguros de la composición de la atmósfera es preciso primero hacer el mejor vacío posible, y luego introducir la composición de gases deseada. Es por tanto importante controlar la composición de la presión residual en el sistema de simulación. En un sistema de alto-vacío con cierres KF, y bombeado con una bomba turbo-molecular la presión residual parcial de cada uno de los gases está determinada por la velocidad efectiva de bombeo de la bomba turbo-molecular (es distinta para cada composición gaseosa), y por la tasa de fugas en cierres de juntas de vitón (KF y LF), situándose en 10-8 mbar. Por tanto, planetas como Europa no pueden simularse utilizando este tipo de cierres. En un sistema con cierres de UHV (ultra alto vacío), la presión mínima está determinada por la permeabilidad del hidrogeno en cámaras de vacío de acero inoxidable 316 L o aluminio, que está en el orden de 10-13– mbar.
Para introducir atmósferas complejas, como por ejemplo la de Marte, en el interior de las cámaras de vacío o sistema de simulación, se han desarrollado mezcladores (y evaporadores para el caso del agua) en los que se controla la presión parcial de cada uno de ellos mediante un espectrómetro de masas cuadrupolar antes de introducirlos en el sistema. Estos mezcladores pueden incorporar caudalímetros para experimentos en los que se requiera un control más preciso sobre alguno de los componentes atmosféricos. La mezcla de los gases en los sistemas de simulación se realiza mediante válvulas de fugas o sistemas de capilar controlados por válvulas de aguja. Las válvulas de fuga permiten una entrada de gas controlada hasta 2 $ 10-10 mbar litro/s, mediante el ajuste cónico de dos piezas metálicas una de cobre (metal blando) y la otra de acero (metal duro), de este modo la pieza de cobre se garantiza la estanqueidad ya que recupera su forma original después de cada cierre. En cuanto a los capilares permiten, o bien introducir o extraer gas desde elpunto exacto donde comienza el capilar, esto permite además generar flujos en el interior de la cámara de simulación.
La temperatura
“El clima de Marte varía de manera dramática no sólo de día a día, si no de hora a hora. Puede parecer extraño en un planeta que tiene una atmósfera sólo un 1% tan densa como la de la Tierra. Esa fina atmósfera está compuesta por un 96% de dióxido de carbono, un 1,93% de argón y un 1,89% de nitrógeno, así como trazos de oxígeno y agua. La atmósfera es muy polvorienta, con partículas de hasta 1,5 micrómetros de diámetro. Es lo que le da ese característico color a su cielo visto desde la superficie. Su presión atmosférica va desde los 0,4 a los 0,87 kPa (kilopascales), un 1% de la que hay en la Tierra a nivel del mar.”
El concepto de temperatura es de difícil aplicación, ya que es un concepto termodinámico que se aplica a sistemas en equilibrio. En el espacio, el campo de temperaturas es quizá más amplio que el de las presiones. En planetas cercanos al Sol, puede superar varios cientos de grados y en los hielos de los cometas llega a pocos Kelvin.
La temperatura en la superficie de los objetos planetarios es fácilmente controlable con un criostato refrigerado con He líquido, en el que se pueden realizar ciclos de temperatura simulando por ejemplo, variaciones estacionales o diarias. Para ello, una vez enfriado el material que queremos estudiar en condiciones espaciales, un pequeño filamento nos permite aumentar la temperatura y ajustarla mediante un controlador PID a los valores deseados. Como ya hemos indicado, la temperatura en nubes densas de gas del medio interestelar viene determinada por la interacción de la materia con la radiación UV y rayos cósmicos. Esta temperatura es del orden de 10 K en el interior de la nube. Sin embargo en planetas con atmósfera muy ligera o prácticamente inexistente puede oscilar entre la noche y el día entre 400 K y 100 K,como puede ser el caso de la Luna, o entre 300 K y 135 K en los polos de Marte. La temperatura sobre un cristalito de hielo, por ejemplo de dióxido de carbono, que se pueda crear en el espacio interestelar, puede simularse depositando el gas sobre una ventana transparente de un criostato, que a través de un dedo frío, permite enfriar a 4 K.
Para las medidas de bajas temperaturas se emplean diodos de germanio y silicio, y para el resto de temperaturas hay un espectro amplísimo, que va desde distintos tipos de termopares, pasando por hilos de platino y acabando en Pirómetros ópticos.
Controlar la temperatura ambiental es un proceso más difícil de controlar de manera estable, aunque es relativamente sencillo monitorizarla. La temperatura como manifestación de la energía se transfiere mediante conducción, convección y radiación. En entornos interplanetarios como en ultra alto vacío y vacío extremo sólo se transfiere mediante radiación, y en atmósferas planetarias normalmente mediante convección y radiación. Solamente se le añade la conducción en la superficie de los planetas. En una cámara de simulación juega un papel muy importante las dimensiones, ya que estas condicionan el volumen interno y la superficie de radiación, con lo que se convierte en el factor determinante a la hora de poder cambiar la temperatura ambiental de la atmósfera en función de la temperatura del contenedor, en este caso las paredes de la cámara de vacío.
En los sistemas de simulación es realmente complejo establecer una temperatura homogénea para un volumen relativamente pequeño (50 l), como en una cámara destinada a la verificación de sensores, por lo que se suele emplear es un intercambiador de calor interno refrigerado por nitrógeno líquido, acompañando una resistencia externa que recubre todas la paredes de la cámara y utilizando un gas con una alta movilidad como es el helio. De este modo se consigue una cierta homogeneidad de la temperatura ambiental en detrimento de la composición gaseosa original de la atmósfera planetaria.
Los sistemas desarrollados para medir la temperatura ambiental están basados en conjuntos de sensores repartidos por todo el volumen de la cámara, y a la vez aislados térmicamente, para poder crear un mapa tridimensional de temperaturas en el interior de la cámara de vacío. Así, por ejemplo, la figura 2 representa una simulación mediante ordenador mostrando un diagrama de temperaturas de la cámara MARTE, cuando se resuelve la ecuación del calor en dos dimensiones mediante elementos finitos. Este estudio previo es necesario para poder entender cómo se comporta la temperatura ambiental antes de realizar una prueba experimental. En el caso de la figura 2 todas las paredes externas así como los anillos interiores se encuentran a temperatura ambiental de 300 K, la parte inferior del porta muestras a 77 K (refrigerado por nitrógeno líquido), y la superior a 150 K (controlado térmicamente mediante un controlador PID, Proporcional Integral Diferencial), en un ambiente a 7 mbar en atmósfera de Marte. La figura 2 muestra el gradiente de temperatura ambiental en función de la distancia, en un plano medio de la cámara, que cuenta con simetría cilíndrica en el eje central vertical.
Cámara de vacío
Representación de la temperatura, en el interior de la cámara MARTE. (La cámara MARTE presenta simetría cilíndrica en el eje central vertical).
Las fuentes de irradiación
Para concluir esta revisión de parámetros relevantes para la simulación de entornos espaciales, nos falta añadir la radiación. En el sistema solar la mayor parte de la radiación recibida en la superficie de los planetas es UV (ultravioleta), que es generada en el laboratorio normalmente mediante una fuente de xenón. En el caso de vacío interplanetario, tenemos además electrones, iones y rayos X, que son generados en el laboratorio por fuentes de radiación específicas. Aunque las fuentes más comunes de electrones e iones tienen energías muy inferiores a las producidas por el viento solar pueden ayudar a hacerse una idea del tipo de alteraciones químicas que ocasionan.
Como hemos dicho cruzando todas estas variables generamos un entorno espacial. Entorno sobre el que podemos realizar multitud de estudios científicos y tecnológicos, apoyados en instrumentación específica como es el caso de interferómetros de Fourier en el infrarrojo FTIR y espectroscopia Raman, que nos permitan seguir en tiempo real los cambios químico-físicos que se producen.
La unidad de simulación de ambientes planetarios del CAB
Un ejemplo de aplicación de las ideas expuestas anteriormente lo podemos encontrar en la Unidad de Simulación de Ambientes Planetarios y Microscopia, del Centro de Astrobiología (centro mixto INTA-CSIC). El principal objetivo de la unidad es el de prestar apoyo técnico y tecnológico a los científicos usuarios del CAB y cualquier otro investigador interesado en la realización de experimentos
relacionados con el vacío y la simulación espacial.
Fig.3. Fotografía de la Unidad de Simulación de Ambientes Planetarios
y Microscopia en el centro de Astrobiología (INTA-CSIC).
La unidad cuenta actualmente con diversas máquinas de vacío dedicadas a la simulación de diferentes sistemas espaciales. Cada una de ellas está concebida para estudiar distintas facetas de diferentes entornos. En este sentido, las más importantes y representativas son: PASC (Planetary Atmospheres Simulation Chamber), ISAC (Interstellar Astrochemistry Chamber), MARTE (Mars Simulation Chamber) y TUNEL (Túnel de viento en vacío). Pasaremos a describir las más representativas tecnológicamente en la simulación de ambientes planetarios e interplanetarios [11].
ISAC (InterstellarAstrochemistry Chamber)
La primera aplicación de simulación espacial la encontramos en la simulación de ambientes interestelares y circunestelares.
Uno de los objetivos científicos principales es el estudio de la naturaleza (las propiedades físico-químicas), el origen y la evolución de las partículas de polvo, de composición carbonácea/orgánica y/o mineral, en su periplo desde las atmósferas estelares, pasando por el medio interestelar hasta la nebulosa solar, para dar lugar a la formación de cometas, asteroides y planetas. Además se estudian las implicaciones astrobiológicas de dicha materia. Para tal fin es necesario entender la relación entre la materia observada en el espacio (radioastronomía y astronomía en el infrarrojo), la materia orgánica producida por procesos primarios (procesamiento fotónico e iónico de hielos) y simulaciones experimentales del procesamiento de hielos (annealing térmico e irradiación). ISAC ha sido diseñada para tal efecto.
Describiremos la tecnología y las aplicaciones de ISAC [12], que cuenta con el diseño y la tecnología adecuados para trabajar en presiones por debajo de 10-10 mbar. Combinando bombas de absorción sin evaporación (NEG), y sublimadoras de Ti podemos alcanzar presiones de 2 $ 10-11 mbar. Esta máquina incorpora un criostato que permite bajar la temperatura hasta 7 K. A esta temperatura, una mezcla de gases que se introduce en el sistema, como los que se han detectado en las nubes de polvo interestelar, forman una capa de hielo en el criostato. El hielo de composición análoga a los mantos de hielo interestelares se puede irradiar con una fuente de ultravioleta de vacío y espectro parecido a la radiación presente en el medio difuso interestelar. Al mismo tiempo, tanto la composición química del hielo como su alteración debida a la irradiación pueden estudiarse in situ mediante espectroscopia infrarroja (FTIR) en transmisión y Raman. Las moléculas que desorben del hielo durante el calentamiento (desorción térmica) o la irradiación ultravioleta (fotodesorción) son detectadas por QMS. El avance en nuevas bombas de absorción no evaporables, bombas NEG (Non Evaporable Getter), combinado con una optimización del volumen y una correcta disposición de las bombas de vacío así como una desgasificación de la misma en un horno de vacío en el proceso de fabricación, hace posible pasar de UHV a XHV, permitiendo, alcanzar presiones en torno a 10-11 mbar, en tan sólo 48 horas desde su puesta en marcha. Otro punto muy destacable y tecnológicamente viable pero complejo, es el de la preparación de mezclas de gases con una resolución en ppm (partes por millón), gracias al innovador diseño de una línea de gases que funciona con electroválvulas en condiciones de flujo laminar, mezcladores en vacío, monitorizados por un espectrómetro de masas o cuadrupolo en RF (radio frecuencia), que permiten una vez obtenida la composición deseada del gas, depositarlo por medio de una válvula de aguja en la cámara principal para formar el hielo de interés astrofísico. De este modo, es posible controlar el número de mono capas que se desea depositar. PASC (Planetary Atmosphere Simulation Chamber)
La máquina de simulación PASC, [13,14], es un entorno de simulación para las condiciones de objetos planetarios con atmósferas. La característica principal de esta máquina es la versatilidad, de manera que el investigador puede definir cada uno de los parámetros para simular el entorno que desee. Esta máquina reproduce la presión atmosférica, composición gaseosa, temperatura e irradiación de la mayor parte de los planetas sólidos del sistema solar o en un entorno ficticio. La presión puede regularse entre 5 y 5 $ 10-9 mbar y la temperatura desde 4 a 325 K. El porta muestras está concebido para permitir introducir diferentes tipos de muestras y de diferentes tamaños, que vayan desde regolitos marcianos o terrestres, esporas, hielos o materiales utilizados en aeronáutica. La irradiación (UV) se realiza mediante una lámpara de deuterio. Uno de los principales retos tecnológicos de este diseño es que permite el encendido de fuentes de irradiación de electrones e iones a presiones de 10-2 mbar. Para ello se ha diseñado una cámara interior en la que se realizan dos etapas de bombeo diferencial, como se indica en la figura 5. Así, se puede enviar electrones sobre la muestra en estudio, por ejemplo, mientras que en la presión total es 10-2 mbar. Las aplicaciones científicas de la misma tienen mucho que ver con el comportamiento de muestras de origen biológico y geológico, en condiciones similares a las de Marte, Tritón o Europa, algunos ejemplos pueden ser el comportamiento de absorción y desorción de CO2 en muestras minerales bajo ciclos de temperatura y radiación estacionales, desorción de vapor de agua en jarositas, estabilidad de fases minerales en Marte, estudio de resistencia radiactiva UV de biosensores, son algunos de los proyectos de investigación recientes realizados en esta máquina.
4. MARTE
Viking
Veinte años ha tardado la NASA en volver a mostrar interés por Marte, este es el periodo de tiempo que hay entre las sondas Viking y el Mars Pathfinder (MPf). Durante este tiempo los científicos han estudiado las 57.000 imágenes de la Viking, que han permitido conocer la geología del planeta rojo con bastante exactitud. Sin lugar a dudas no hay planeta del sistema solar con mejores condiciones para albergar vida, extinta o actual, que Marte. Se parece a la Tierra en muchos aspectos; El proceso de su formación, la historia climática de sus primeros tiempos, sus reservas de agua y fenómenos geológicos como los volcanes [15,16]. Las misiones desde la MPf tienen un carácter de exploración física y ambiental del entorno, para lo cual la exploración no sólo se realiza con satélites y sondas como la Viking, sino también con rovers (pequeños vehículos todoterreno) que son capaces de recorrer la superficie marciana, cada vez con mayor autonomía. En las futuras misiones a Marte, no sólo por la NASA sino también por la ESA, se desea caracterizar la climatología, así como la búsqueda de vida primigenia, en la que mediante una tecnología basada en biosensores, se puedan analizar muestras in situ y de enviar los resultados a la Tierra en tiempo real.
La cámara de simulación de MARTE, está especialmente diseñada para estudiar condiciones marcianas e introducir muestras electrónicas reales. Para ello, se puede modificar la temperatura en el porta-muestras en un rango entre 80 K y 450 K, y además es capaz de modificar la temperatura ambiental entre 200 K y 400 K y de generar “tormentas de polvo” en su interior. El principal objetivo de esta cámara es la de probar nuevos dispositivos electromecánicos “sensores”, por lo que su ámbito de aplicación se destina principalmente a la calibración de sensores e instrumentación ambiental que serán enviados al espacio en futuras misiones espaciales. El principal reto, está en poder combinar rangos de temperatura en el porta muestras distintos a los de la atmósfera, y cruzar esto con cambios bruscos de presión, mientras se mantiene la composición gaseosa de Marte. El porta muestras de MARTE, está diseñado para poder soportar dispositivos electromecánicos de grandes dimensiones usando la misma geometría de las mesas ópticas, y pudiendo ser enfriado y calentado desde el interior. En cuanto a la atmósfera el interior, de MARTE cuenta con unos anillos refrigeradores de nitrógeno líquido que en función de la presión y la composición de la atmósfera permite enfriar la misma no sólo por radiación sino también por conducción y convección.
Además la cámara, está diseñada y construida para poder generar tormentas de polvo en su interior mediante un ingenioso sistema de deposición, que mediante la combinación de un tamiz vibratorio, la gravedad y la diferencia de presiones es capaz de producir una niebla de polvo de partículas de hierro, similar a las de Marte. Sobre todo este conjunto de posibilidades también hay unos pasamuros, en los que se pueden adaptar fuentes de luz halógenas y de xenón, siguiendo el esquema del movimiento del Sol en el hemisferio norte de Marte, de este modo simulamos la incidencia de la luz solar en función de la dependencia angular. Todo este complejo sistema se ha desarrollado para testear los sensores de la estación meteorológica REMS (Rover Environmental Monitoring Station), de la misión MSL (Mars Science Laboratory) de la NASA, así como otros proyectos para la ESA, como ExoMars. El proyecto REMS, lo compone una estación meteorológica formada por sensores de radiación ultravioleta, sensor de presión, sensor de temperatura del suelo, sensor de temperatura ambiental, y sensor de viento. En cuanto al vacío, la cámara MARTE puede trabajar en dinámico o en estático, en dinámico cuando las condiciones de temperatura tanto del porta muestras como del interior modifican las condiciones de presión, y en estático cuando lo que interesa es cambiar el volumen sin modificar las condiciones de temperatura, como ocurre cuando se desea verificar la resolución del sensor de presión (calibración y tiempo de respuesta) en incrementos de presión a partir de 0.05 mbar.
Conclusión
El avance en la tecnología del vacío, dado por la consecución de presiones cada vez menores, es debido no sólo a las mejoras de las bombas, sino también al avance en materiales contenedores de vacío, “cámaras”, con presiones de vapor y permeabilidades cada vez más bajas. Este desarrollo unido a sistemas de medida más precisos y fiables en rangos extremos, ha permitido que sea posible estudiar la materia condicionada por fenómenos atmosféricos, que ocurren en objetos planetarios con un gran interés científico, y que están situados a cientos de miles de kilómetros de la Tierra, y de dar credibilidad a los resultados en los sistemas experimentales. La experiencia ha demostrado que la simulación no es sólo un recurso de innovación tecnológica, sino también una herramienta útil, que permite validar la responsabilidad de las misiones espaciales, que debido al alto coste de las mismas condicionan su propia viabilidad. Del fruto de la simulación de algo tan complejo y tan vasto como es un sistema climático, en el que una mínima variación de un parámetro condiciona el comportamiento global del sistema, estamos obteniendo un gran provecho tecnológico, que nos permitirá en un futuro cada vez más cercano verificar nuestros propios resultados, y realizarnos preguntas sobre fenómenos que ni siquiera podemos conocer.
De Jesús Manuel Sobrado y José Ángel Martín-Gago
6. Agradecimientos
Queremos agradecer a las empresas Tecnovac SL y Maques SL el gran esfuerzo técnico y tecnológico, así como su colaboración desinteresada, realizado durante la construcción de algunos de los sistemas de simulación que se describen en este artículo. También agradecemos a José Flores del ICMM-CSIC, por su tiempo, experiencia y dedicación en la construcción de cámaras y componentes de vacío, a Andrés Buendía de la UAM por sus consejos en criogenia y principalmente, a nuestros compañeros Eva Mateo Martí, Pablo Merino, Guillermo Muñóz Caro, Antonio Jimeneéz, Elena López, y Celia Rogero por su dedicación y responsabilidaden la explotación de las máquinas de la unidad de simulación de ambientes planetarios y microscopia de CAB.
Referencias bibliográficas
[1] Física y Sociedad. nº18, Especial sobre Astronáutica: 50 años
después del Sputnik
[2] GILES SPARROW. Astronáutica, La historia desde el Sputnik
al transbordador y más allá, Editorial Akal.
ISBN: 9788446029472.
[3] CARL SAGAN. Un punto azul pálido: Una visión del futuro
humano en el espacio. Editorial Planeta. 2006.
ISBN: 9788408059073.
[4] LORI C. WALTERS. To Create Space on Earth: The Space
Environment Simulation Laboratory and Project Apollo.
NASA/CR-2003-208933.
[5] http://www.cab.inta.es
[6] JOHN F. O´HANLON. A user´s guide to vacuum technology.
Editorial Wiley, Third Edition. ISBN: 9780471270522.
[7] ROMAN SMOLUCHOWSKI. El sistema solar. Biblioteca Scientifi c
American, ISBN: 9788475930138.
[8] La NASA dispone de datos sobre el viento solar en tiempo
real a través del satélite ACE, lanzado en 1997. La variación
del viento solar en tiempo real puede encontrarse en la página
web del satélite.
[9] KARL JOUSTEN. Pressure Measurement with ionization
Gauges. Physikalisch-Technische Bundesanstalt. Berlin.
[10] NICK SCOVILLE Y JUDITH S. YOUNG, Nubes moleculares,
formación de estrellas y estructura galáctica. La vida
de las estrellas, TEMAS 7 de Investigación y Ciencia.
ISBN: 9778411355668-0007.
[11] http://www.electronvoltio.com
[12] G.M. MUÑOZ-CARO, J.A. MARTÍN-GAGO, C. ROGERO,
J.M. SOBRADO, C. ATIENZA, S. PUERTAS. The Interstellar
Astrochemistry Chamber (ISAC). WSPC – September 9, 2008
[13] E. MATEO-MARTÍ, O. PRIETO-BALLESTEROS, J.M. SOBRADO,
J. GÓMEZ-ELVIRA AND J.A. MARTÍN-GAGO. A chamber for
studying planetary environments and its applications to
astrobiology. Meas. Sci. Technol. 17 (2006) 2274–2280.
[14] MARTIN REES. Universo, La guía visual defi nitiva. Editorial
Pearson de Alhambra. ISBN: 8420551414.
[15] PHILIP R. CHRISTENSEN, Estratigrafía y relieve de Marte.
Planetas. TEMAS 53 de, Investigación y Ciencia, Tercer
trimestre del 2008. ISBN: 9778411355668-00053
[16] TIM BEARDSLEY, Paseo Planetario, Marte. Sistemas Solares.
TEMAS 15 de Investigación y Ciencia, Primer trimestre de
1999. ISBN: 9778411355668-00015.
Jesús Manuel Sobrado
Centro de Astrobiología. CSIC-INTA
Unidad de Simulación de Ambientes Planetarios y Microscopía
(sobradovj@inta.es)
José Ángel Martín-Gago
Instituto de Ciencia de Materiales de Madrid. CSIC,
(gago@icmm.csic.es)
Nota: Si quieren leer el original y verlos gráficos, sólo tienen que poner en Google el Título de arriba y pulsar buscar. Enlace
Mar
20
Los Volcanes y sus incidencias
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Mar
20
Los Volcanes
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Los volcanes
La unívoca asociación de los volcanes activos con las zonas de subducción de las grandes placas tectónicas permite localizar casi todas las erupciones recientes alrededor del océano Pacífico y, sobre todo, en América central, Sudamérica, Filipinas, Japón y Kamchatka. Una categoría menos común incluye los volcanes asociados a los puntos calientes, donde las placas tectónicas se ven atravesadas por flujos magmáticos procedentes del manto, a la cual pertenecen los volcanes de Hawái y África central.
Las erupciones históricas más conocidas son las Théra, en Grecia (alrededor del 1.500 a. C.), del Vesubio en Italia (79 a. C.) y del Cracatoa (1.883 d. C.) en Indonesia, y el del monte St. Helens en el estado de Washington en 1.980. Éste último caso es la erupción volcánica mejor estudiada hasta la fecha. Se conoce, no solamente el volumen de los depósitos expulsados (0’18 Km3) y de lava (0’5 Km3), sino también un detallado desglose de la energía relacionada con la erupción.
Mar
19
¿Cómo son las cosas? Habría que estudiar cada caso
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
Los destinos de las personas… Siempre serán una incógnita, y, no siempre se dirigen en la dirección que eligen los padres, la vida, a veces, nos marca el camino a seguir conforme a nuestras ideas y pensamientos.