domingo, 26 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Entropía

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El Universo es un conjunto de maravillas, y, la Entropía, aunque la miremos con malos ojos (nos lleva a la muerte), si nos detenemos a pensar… ¡Es algo necesario! Ya lo dijo el pensador “Que no está muerto lo que duerme eternamente, y, con el paso de los Eones, hasta la misma muerte tendrá que morir”. Todo es una continuada renovación, y, los seres vivos no son una excepción.

 

Todo en el Universo tiene asignado su propio Tiempo en función de su cometido en el ámbito que le tocó ejercer sus funciones. Una estrella “vive” miles de millones de años, algunos insectos unos segundos, otros días, nosotros 80 años, la Tortuga galápago 150 años, el elefante 70, y, un protón

El protón es un barión y se considera que está compuesto de dos quarks up, y un quark down. Durante mucho tiempo se ha considerado como una partícula estable, pero los recientes desarrollos de modelos de la Gran Unificación, han sugerido que podría decaer con una semi-vida de aproximadamente 1032 años.

Como podréis ver, la Entropía no tiene el mismo efecto para todos y para todo. Habría que buscar la razón, pero no podemos dar una respuesta al por qué las cosas son de esa manera.

 

 

Siguen siendo más abundantes las preguntas que las respuestas. Creo que esa batalla la tenemos perdida

No me gusta comentar ciertas cosas pero…

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

España cayó en desgracia desde que estos dos personajes entraron en escena, el daño que han hecho entre ambos es irreparable. Enumerar aquí todo lo malo que hicieron encontraría el inconveniente de no tener sitio suficiente para relacionar las barbaridades de todo tipo que hicieron, y, todo por un egoísmo personal. Son ególatras (por no llamarlos algo peor), y, con tal de estar en el poder han claudicado con las cosas más sagradas que el Ser Humano nunca debería mancillar: El Honor, la Moral, la Ética, el Respeto por los demás a quienes dicen representar y defender.

Dicen una cosa y hacen la contraria, claudican con siniestros personajes a los que le dan lo que la población necesita quitando a los ciudadanos que deberían defender, todo aquello que prometieron y nunca cumplieron.

¿No llego a explicarme como personajes así se pueden marchar de rositas sin pagar el inmenso daño que hicieron y siguen haciendo? ¿No tiene la Democracia resortes para evitar cosas así?

Ese cuento del Aforamiento… ¿Cómo hemos caído tan bajo? ¿Cómo hemos sido tan tontos?

Cuando veo los resultados de las elecciones, sin lugar a ninguna duda, creo que tenemos lo que nos merecemos.

Y, no digamos del personaje que representa de la oposición… ¡Tampoco me da buena espina!

Comentario de un ciudadano disgustado de como marchan las cosas.

 

Los “cuantos” ¡esa maravilla de la naturaleza!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                     

El núcleo del átomo, el 99% de toda su masa, es 1 parte de 100.000, y, sin embargo, contiene una complejidad asombrada y, las cosas que allí suceden son verdaderamente increíbles. Las llamados hadrones de la rama de los bariones, es decir, protones y neutrones que son los nucleones, están hechas por tripletes de Quarks. Los quarks están dentro de ellos confinados por la fuerza nuclear fuerte que está intermediada por los Bosones llamados Gluones.

Esa fuerza nuclear es la única que funciona al contrario de las otras tres conocidas, es decir, se hace más fuerte con la distancia. Funciona como el muelle de acero que, cuanto más lo estiramos más resistencia opone.

Evolución de Galaxias en Cúmulos | Instituto de Astrofísica de Canarias • IAC                                                                                       Una galaxia envejecida en un joven universo | ESO España

¿Cómo está estructurado el Universo?
A gran escala, el universo está formado por galaxias y agrupaciones de galaxias. Las galaxias son agrupaciones masivas de estrellas, y son las estructuras más grandes en las que se organiza la materia en el universo. A través del telescopio se manifiestan como manchas luminosas de diferentes formas.

 

Introducción a la física de partículas y observación (Muon detector) – RevistaFísica de partículas - Wikipedia, a enciclopedia libre

 

La maravilla de los cuantos. Pequeños objetos de distintas familias que son los responsables de todo lo que existe hecho de materia. Unas familias de Fermiones (Quarks, Leptones, Hadrones), que acompañadas de otra de los llamados Bosones, conforman la materia y las fuerzas del Universo.

 

 

CAPÍTULO 3. Mecanismos de emisión de la radiación electromagnética

Emisión y absorción de energía en forma de cuantos al pasar de una órbita a otra

 

Radiación de cuerpo negro - Wikipedia, la enciclopedia libreLas bases de la química : Radiacion del cuerpo negro y teoría de plank

                                                          Radiación de cuerpo negro

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…

 

 

Figura animada que representa un rayo de luz incidiendo sobre un cuerpo negro hasta su total absorción. l nombre cuerpo negro fue introducido por Gustav Kirchhoff  en 1862 y su idea deriva de la siguiente observación: toda la materia emite radiación electromagnética cuando se encuentra a una temperatura por encima del cero absoluto. La radiación electromagnética emitida por un cuerpo a una temperatura dada es un proceso espontáneo y procede de una conversión de su energía térmica en energía electromagnética. También sucede a la inversa, toda la materia absorbe radiación electromagnética de su entorno en función de su temperatura.

 

                                         

 

 La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas  producidas por las vibraciones de las partículas cargadas  que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.

 

 Ley de Planck para cuerpos a diferentes temperaturas

Curvas de emisión de cuerpos negros a diferentes temperaturas comparadas con las predicciones de la física clásica anteriores a la ley de Planck.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

 

                                       

 

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

 

                     

                                       Acero al  “rojo vivo”, el objeto está radiando en la zona de la luz visible

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

E = hv

Donde E es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Ni que decir tiene que, desde entonces, la fórmula ha sido mejorada y, como siempre pasa, los avances que son imparables van modificando las teorías originales para perfeccionarlas y que se ajusten mucho más a la realidad que la Naturaleza nos muestra cuando somos capaces de descubrir sus secretos.

 

 

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

 

Louis Victor de Broglie – Store norske leksikon

 

El príncipe francés Louis Víctor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

 

                   Átomo de hidrógeno - Wikipedia, la enciclopedia libre

 

En mecánica cuántica, el comportamiento de un electrón en un átomo se describe por un orbital, que es una distribución de probabilidad más que una órbita.  El electrón (e), es una partícula subatómica con una carga eléctrica elemental negativa. Un electrón no tiene componentes o subestructura conocidos, en otras palabras, generalmente se define como una partícula elemental.

 

ProfeSolmar✨ on Twitter: "Por esto, la contribución del espín no es considerada en el estudio de sistemas orgánicos, ya que estos no presentan ferromagnetismo a temperatura ambiente. De igual manera, se dejaNúmero cuántico Spin Magnético (ms) - Quimica | Quimica Inorganica

 

En la Teoría de cuerdas se dice que un electrón se encuentra formado por una subestructura (cuerdas). Tiene una masa que es aproximadamente 1836 veces menor con respecto a la del protón.  El momento angular  (espín) intrínseco del electrón es un valor semientero en unidades de ħ, lo que significa que es un fermión.  Su antipartícula es denominada positrón: es idéntica excepto por el hecho de que tiene cargas —entre ellas, la eléctrica— de signo opuesto. Cuando un electrón colisiona con un positrón, las dos partículas pueden resultar totalmente aniquiladas y producir fotones y rayos gamma.

 

                                                                         

Los leptones

Los electrones, que pertenecen a la primera generación de la familia de partículas de los leptones y participan en las interacciones fundamentales, tales como la Gravedad, el electromagnetismo y la fuerza nuclear débil. Como toda la materia, posee propiedades mecánico cuánticas tanto de partículas como de ondas,   de tal manera que pueden colisionar con otras partículas y pueden ser difractadas como la luz. Esta dualidad se demuestra de una mejor manera en experimentos con electrones a causa de su ínfima masa. Como los electrones son fermiones, dos de ellos no pueden ocupar el mismo estado cuántico, según el Principio de exclusión de Pauli. Por este motivo se forman las estrellas enanas blancas y de neutrones al final de la vida de las estrellas de poca masa.

Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

 

                           

 

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.

Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

 

                                       

 

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.

Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

 

                               

 

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

 

                                              http://www.ecbloguer.com/cienciaaldia/wp-content/uploads/2012/11/luz-onda.jpg

                                                     ¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.

Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.

Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

 

 

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal. Así, los extraterrestres del cuarto planeta a partir de la estrella SIL, cuando descubran esa constante, el resultado sería exactamente el mismo que le dio a Plancl, es decir, el Universo, funciona igual en todas partes.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.

Quizá funcione bien, pero ¿Dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿Dónde está en realidad?, ¿Cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

 

 

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos,  incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!

La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecano-cuánticos.

 

                                                         

 

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.

Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

                        El estado actual de la teoría M - La Ciencia de la Mula Francis

 

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?

Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.

emilio silvera

Dos verdades… ¿Incompatibles?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Mecánica cuántica - Wikipedia, la enciclopedia libreRelatividad General cumple 100 años | Conexión causal

       En el Modelo Estándar de la Física de partícula, éstos dos “universos” no quieren juntarse: Lo pequeño con lo grande

El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia desde hace décadas. El problema es el siguiente:

 

Confirman teoría de la Relatividad General de Einstein

 

Existen dos pilares fundamentales en los cuales se apoya toda la física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del universo a una escala máxima: estrellas, galaxias, cúmulos (o clusters) de galaxias, y aún más allá, hasta la inmensa expansión del propio universo.

 

Cuantica by vidal - Issuu

 

El otro pilar es la mecánica cuántica, que en un primer momento vislumbro Max Planck y posteriormente fue desarrollada por W. Heisenberg, Schrödinger, el mismo Einstein, Dirac, Niels Bohr y otros, que nos ofrece un marco teórico para comprender el universo en su escala mínima: moléculas, átomos, y así hasta las partículas subatómicas, como los electrones y quarks.

 

Teoria de la relatividad vs teoria cuantica | Actualizado agosto 2023

 

Es una lástima que aún no se haya podido construir una Teoría cuántica de la Gravedad. Parece que en la Teoría de Cuerdas, subyace esa teoría, ya que, cuando los físicos trabajan con las ecuaciones de campo, allí aparecen las ecuaciones de Einstein de la Relatividad General sin que nadie las llame.

Durante años de investigación, los físicos han confirmado experimentalmente, con una exactitud casi inimaginable, la practica totalidad de las predicciones que hacen las dos teorías. Sin embargo, estos mismos instrumentos teóricos nos llevan a una conclusión inquietante: tal como se formulan actualmente, la relatividad general y la mecánica cuántica no pueden ser ambas ciertas a la vez.

 

Avances en la combinación de mecánica cuántica y teoría de la gravedad

Un estudio pionero llevado a cabo por científicos en Viena utiliza un simulador cuántico para comprender el comportamiento de las partículas cuánticas en el espacio curvado y la gravedad cuántica.

La mecánica cuántica y la teoría de la relatividad son pilares fundamentales de la física moderna. Mientras que la mecánica cuántica explica los fenómenos y el comportamiento de las partículas a escalas microscópicas, la relatividad aborda las estructuras cósmicas a escalas macroscópicas.

Lo cierto es que, cuando han tratado de juntarlas, aquello se convierte en un sin sentido, aparecen los infinitos que no se dejan re-normalizar. Por muy bien que esté planteado, cuando juntamos cuántica y relatividad general, aquello parece un sin sentido. Así, la Fuerza de Gravedad está ausente del Modelo Estándar de la Física de Partículas.

 

La teoría de la relatividad de Einstein se mantiene fuerte tras el desafío cuántico14 de diciembre de 1900: Max Planck expone su teoría cuántica, base de la física moderna - El Orden Mundial - EOM

 

Nos encontramos con que las dos teorías en las que se basan los enormes avances realizados por la física durante el último siglo (avances que han explicado la expansión de los cielos y la estructura fundamental de la materia) son mutuamente incompatibles. Cuando se juntan ambas teorías, aunque la formulación propuesta parezca lógica, aquello explota; la respuesta es un sinsentido que nos arroja un sin fin de infinitos a la cara.

 

Cuáles son las partículas elementales de la materia? - CuriosoandoAsí se ve el interior de un agujero negro: basados en las teorías, científicos realizaron esta impresionante animación – FayerWayer

                                                          Dos “mundos muy diferentes”

Así que si tú, lector, no has oído nunca previamente hablar de este feroz antagonismo, te puedes preguntar a que  será debido. No es tan difícil encontrar la respuesta. Salvo en algunos casos muy especiales, los físicos estudian cosas que son o bien pequeñas y ligeras (como los átomos y sus partes constituyentes), o cosas que son enormes y pesadas (como estrellas de neutrones y agujeros negros), pero no ambas al mismo tiempo. Esto significa que sólo necesitan utilizar la mecánica cuántica, o la relatividad general, y pueden minimizar el problema que se crea cuando las acercan demasiado; las dos teorías no pueden estar juntas. Durante más de medio siglo, este planteamiento no ha sido tan feliz como la ignorancia, pero ha estado muy cerca de serlo.

 

                                                   

 

No obstante, el universo puede ser un caso extremo. En las profundidades centrales de un agujero negro se aplasta una descomunal masa hasta reducirse a un tamaño minúsculo. En el momento del Bing Bang, la totalidad del universo salió de la explosión de una bolita microscópica cuyo tamaño hace que un grano de arena parezca gigantesco. Estos contextos son diminutos y, sin embargo, tienen una masa increíblemente grande, por lo que necesitan basarse tanto en la mecánica cuántica como en la relatividad general.

 

TEORÍA DE LA RELATIVIDADLa historia detrás de la detección de ondas gravitacionales |

Ña Relatividad General nos habla de espacios que se curvan en presencia de masa, de ondas gravitacionales, de Agujeros negros, de cómo se mantienen unidos los planetas alrededor del Sol, de la existencia de cúmulos de galaxias

 

59 - Curso de Relatividad General [Ecuaciones de Campo & Constante Cosmológica] - YouTubeEL FÍSICO LOCO: La ecuación de onda de Schrödinger. 1925

           Ambas ecuaciones nos hablan de cosas diferentes

Por ciertas razones, las fórmulas de la relatividad general y las de la mecánica cuántica, cuando se combinan, empiezan a agitarse, a traquetear y a tener escapes de vapor como el motor de un viejo automóvil. O dicho de manera menos figurativa, hay en la física preguntas muy bien planteadas que ocasionan esas respuestas sin sentido, a que me referí antes, a partir de la desafortunada amalgama de las ecuaciones de las dos teorías.

Aunque se desee mantener el profundo interior de un agujero negro y el surgimiento inicial del universo envueltos en el misterio, no se puede evitar sentir que la hostilidad entre la mecánica cuántica y la relatividad general está clamando por un nivel más profundo de comprensión.

 

                                                      cuerdascuantica.jpg

 

¿Puede ser creíble que para conocer el universo en su conjunto tengamos que dividirlo en dos y conocer cada parte por separado? Las cosas grandes una ley, las cosas pequeñas otra.

No creo que eso pueda ser así. Mi opinión es que aún no hemos encontrado la llave que abre la puerta de una teoría cuántica de la gravedad, es decir, una teoría que unifique de una vez por todas las dos teorías más importantes de la física: mecánica cuántica + relatividad general.

 

 

La teoría de supercuerdas ha venido a darme la razón. Los intensos trabajos de investigación llevada a cabo durante los últimos 20 años demuestran que puede ser posible la unificación de las dos teorías cuántica y relativista a través de nuevas y profundas matemáticas topológicas que han tomado la dirección de nuevos planteamientos más avanzados y modernos, que pueden explicar la materia en su nivel básico para resolver la tensión existente entre las dos teorías.

 

 

En esta nueva teoría de supercuerdas se trabaja en 10, 11 ó en 26 dimensiones, se amplía el espacio ahora muy reducido y se consigue con ello, no sólo el hecho de que la mecánica cuántica y la relatividad general no se rechacen, sino que por el contrario, se necesitan la una a la otra para que esta nueva teoría tenga sentido. Según la teoría de supercuerdas, el matrimonio de las leyes de lo muy grande y las leyes de lo muy pequeño no sólo es feliz, sino inevitable.

Esto es sólo una parte de las buenas noticias, porque además, la teoría de las supercuerdas (abreviando teoría de cuerdas) hace que esta unión avance dando un paso de gigante. Durante 30 años, Einstein se dedicó por entero a buscar esta teoría de unificación de las dos teorías, no lo consiguió y murió en el empeño; la explicación de su fracaso reside en que en aquel tiempo, las matemáticas de la teoría de supercuerdas eran aún desconocidas.  Sin embargo, hay una curiosa coincidencia en todo esto, me explico:

G_{\mu\nu} = R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu}

Tensor de curvatura de Einstein: ecuación

 

File:Geodesiques.png

 

Representación de la curvatura dada por la ecuación de campo de Einstein sobre el plano de la eclíptica de una estrella esférica: Dicha ecuación relaciona la presencia de materia con la curvatura adquirida por el espacio-tiempo

 

Agujeros negros : Blog de Emilio Silvera V.

 

Cuando los físicos trabajan con las matemáticas de la nueva teoría de supercuerdas, Einstein, sin que nadie le llame, allí aparece y se hace presente por medio de las ecuaciones de campo de la relatividad general que, como por arte de magia, surgen de la nada y se hacen presentes en la nueva teoría que todo lo unifica y también todo lo explica; posee el poder demostrar que todos los sorprendentes sucesos que se producen en nuestro universo (desde la frenética danza de una partícula subatómica que se llama quark hasta el majestuoso baile de las galaxias o de las estrellas binarias bailando un valls, la bola de fuego del Big Bang y los agujeros negros) todo está comprendido dentro de un gran principio físico en una ecuación magistral.

Esta nueva teoría requiere conceptos nuevos y matemáticas muy avanzados y nos exige cambiar nuestra manera actual de entender el espacio, el tiempo y la materia. Llevará cierto tiempo adaptarse a ella hasta instalarnos en un nivel en el que resulte cómodo su manejo y su entendimiento. No obstante, vista en su propio contexto, la teoría de cuerdas emerge como un producto impresionante pero natural, a partir de los descubrimientos revolucionarios que se han realizado en la física del último siglo. De hecho, gracias a esta nueva y magnifica teoría, veremos que el conflicto a que antes me refería existente entre la mecánica cuántica y la relatividad general no es realmente el primero, sino el tercero de una serie de conflictos decisivos con los que se tuvieron que enfrentar los científicos durante el siglo pasado, y que fueron resueltos como consecuencia de una revisión radical de nuestra manera de entender el universo.

 

                                                                             

El primero de estos conceptos conflictivos, que ya se había detectado nada menos que a finales del siglo XIX, está referido a las desconcertantes propiedades del movimiento de la luz.

Isaac Newton y sus leyes del movimiento nos decía que si alguien pudiera correr a una velocidad suficientemente rápida podría emparejarse con un rayo de luz que se esté emitiendo, y las leyes del electromagnetismo de Maxwell decían que esto era totalmente imposible. Einstein, en 1.905, vino a solucionar el problema con su teoría de la relatividad especial y a partir de ahí le dio un vuelco completo a nuestro modo de entender el espacio y el tiempo que, según esta teoría, no se pueden considerar separadamente y como conceptos fijos e inamovibles para todos, sino que por el contrario, el espacio-tiempo era una estructura maleable cuya forma y modo de presentarse dependían del estado de movimiento del observador que lo esté midiendo.

 

Existe algo que pueda viajar más rápido que la luz?

El Universo nos impone el límite de la velocidad de la luz en el vacío para poder desplazarnos, y, si intentamos sobrepasar ese límite, ocurren cosas desagradables para los viajeros, para la nave que los transporta, y, para todo elemento que esté involucrado en ese viaje.

El escenario creado por el desarrollo de la relatividad especial construyó inmediatamente el escenario para el segundo conflicto. Una de las conclusiones de Einstein es que ningún objeto (de hecho, ninguna influencia o perturbación de ninguna clase) puede viajar a una velocidad superior a la de la luz. Einstein amplió su teoría en 1915 – relatividad general – y perfeccionó la teoría de la gravitación de Newton, ofreciendo un nuevo concepto de la gravedad que estaba producida por la presencia de grandes masas, tales como planetas o estrellas, que curvaban el espacio y distorsionaban el tiempo.

 

                                                               

 

Tales distorsiones en la estructura del espacio y el tiempo transmiten la fuerza de la gravedad de un lugar a otro. La luna no se escapa y se mantiene ahí, a 400.000 Km de distancia de la Tierra, porque está influenciada por la fuerza de gravedad que ambos objetos crean y los mantiene unidos por esa cuerda invisible que tira de la una hacia la otra y viceversa. Igualmente ocurre con el Sol y la Tierra que, separados por 150 millones de kilómetros, están influidos por esa fuerza gravitatoria que hace girar a la Tierra (y a los demás planetas del Sistema Solar) alrededor del Sol.

Así las cosas, no podemos ya pensar que el espacio y el tiempo sean un telón de fondo inerte en el que se desarrollan los sucesos del universo, al contrario; según la relatividad especial y la relatividad general, son actores que desempeñan un papel íntimamente ligado al desarrollo de los sucesos.

El descubrimiento de la relatividad general, aunque resuelve un conflicto, nos lleva a otro. Durante tres décadas desde 1.900, en que Max Planck publicó su trabajo sobre la absorción o emisión de energía de manera discontinua y mediante paquetes discretos a los que él llamo cuantos, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Así que el tercer conflicto estaba servido, la incompatibilidad manifiesta entre relatividad general y mecánica cuántica.

 

                                           

 

La forma geométrica ligeramente curvada del espacio que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica, lo cual era sin duda alguna el problema central de la física moderna.

Las dos grandes teorías de la física, la relatividad general y la mecánica cuántica, infalibles y perfectas por separado, no funcionaban cuando tratábamos de unirlas resulta algo incomprensible, y, de todo ello podemos deducir que, el problema radica en que debemos saber como desarrollar nuevas teorías que modernicen a las ya existentes que, siendo buenas herramientas, también nos resultan incompletas para lo que, en realidad, necesitamos.

emilio silvera